Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(22): e2309555, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38155502

RESUMEN

Antiferromagnetic spintronics is a rapidly emerging field with the potential to revolutionize the way information is stored and processed. One of the key challenges in this field is the development of novel 2D antiferromagnetic materials. In this paper, the first on-surface synthesis of a Co-directed metal-organic network is reported in which the Co atoms are strongly antiferromagnetically coupled, while featuring a perpendicular magnetic anisotropy. This material is a promising candidate for future antiferromagnetic spintronic devices, as it combines the advantages of 2D and metal-organic chemistry with strong antiferromagnetic order and perpendicular magnetic anisotropy.

2.
Small ; : e2402328, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150001

RESUMEN

Magnetic anisotropy and magnetic exchange interactions are crucial parameters that characterize the hybrid metal-organic interface, a key component of an organic spintronic device. It is shown that the incorporation of 4f RE atoms to hybrid metal-organic interfaces of CuPc/REAu2 type (RE = Gd, Ho) constitutes a feasible approach toward on-demand magnetic properties and functionalities. The GdAu2 and HoAu2 substrates differ in their magnetic anisotropy behavior. Remarkably, the HoAu2 surface promotes the inherent out-of-plane anisotropy of CuPc, owing to the match between the anisotropy axis of substrate and molecule. Furthermore, the presence of RE atoms leads to a spontaneous antiferromagnetic exchange coupling at the interface, induced by the 3d-4f superexchange interaction between the unpaired 3d electron of CuPc and the 4f electrons of the RE atoms. It is shown that 4f RE atoms with unquenched quantum orbital momentum ( L $L$ ), as it is the case of Ho, induce an anisotropic interfacial exchange coupling.

3.
J Synchrotron Radiat ; 31(Pt 2): 336-342, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38372673

RESUMEN

This work presents a detailed analysis of the performance of X-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) as a tool for vector reconstruction of magnetization. For this, 360° domain wall ring structures which form in a synthetic antiferromagnet are chosen as the model to conduct the quantitative analysis. An assessment is made of how the quality of the results is affected depending on the number of projections that are involved in the reconstruction process, as well as their angular distribution. For this a self-consistent error metric is developed which allows an estimation of the optimum azimuthal rotation angular range and number of projections. This work thus proposes XMCD-PEEM as a powerful tool for vector imaging of complex 3D magnetic structures.

4.
J Synchrotron Radiat ; 31(Pt 4): 877-887, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38771778

RESUMEN

Nanoscale structural and electronic heterogeneities are prevalent in condensed matter physics. Investigating these heterogeneities in 3D has become an important task for understanding material properties. To provide a tool to unravel the connection between nanoscale heterogeneity and macroscopic emergent properties in magnetic materials, scanning transmission X-ray microscopy (STXM) is combined with X-ray magnetic circular dichroism. A vector tomography algorithm has been developed to reconstruct the full 3D magnetic vector field without any prior noise assumptions or knowledge about the sample. Two tomographic scans around the vertical axis are acquired on single-crystalline Nd2Fe14B pillars tilted at two different angles, with 2D STXM projections recorded using a focused 120 nm X-ray beam with left and right circular polarization. Image alignment and iterative registration have been implemented based on the 2D STXM projections for the two tilts. Dichroic projections obtained from difference images are used for the tomographic reconstruction to obtain the 3D magnetization distribution at the nanoscale.

5.
ACS Nano ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146501

RESUMEN

As a host for exchange bias (EB), van der Waals (vdW) magnetic materials have exhibited intriguing and distinct functionalities from conventional magnetic materials. The EB in most vdW systems is far below room temperature, which poses a challenge for practical applications. Here, by using Kerr microscopy, we demonstrate a record-high blocking temperature that approaches room temperature and a huge positive EB field that nears 2 kOe at 100 K in naturally oxidized two-dimensional (2D) vdW ferromagnetic Fe3GaTe2 nanoflakes. Moreover, we realized a reversible manipulation of both the presence/absence and positive/negative signs of EB via a training magnetic field without multiple field cooling processes. Thus, our study clearly reveals the robust, sizable, and sign-tunable EB in vdW magnetic materials up to near room temperature, thereby establishing Fe3GaTe2 as an emerging room-temperature-operating vdW material and paving the way for designing practical 2D spintronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA