Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.620
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 41: 483-512, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36750317

RESUMEN

Transforming growth factor ß (TGF-ß) is a key cytokine regulating the development, activation, proliferation, differentiation, and death of T cells. In CD4+ T cells, TGF-ß maintains the quiescence and controls the activation of naive T cells. While inhibiting the differentiation and function of Th1 and Th2 cells, TGF-ß promotes the differentiation of Th17 and Th9 cells. TGF-ß is required for the induction of Foxp3 in naive T cells and the development of regulatory T cells. TGF-ß is crucial in the differentiation of tissue-resident memory CD8+ T cells and their retention in the tissue, whereas it suppresses effector T cell function. In addition, TGF-ß also regulates the generation or function of natural killer T cells, γδ T cells, innate lymphoid cells, and gut intraepithelial lymphocytes. Here I highlight the major findings and recent advances in our understanding of TGF-ß regulation of T cells and provide a personal perspective of the field.


Asunto(s)
Linfocitos T CD8-positivos , Factor de Crecimiento Transformador beta1 , Animales , Humanos , Diferenciación Celular , Inmunidad Innata , Linfocitos/metabolismo , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
2.
Annu Rev Immunol ; 40: 249-269, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35080918

RESUMEN

Inflammasomes are inflammatory signaling complexes that provide molecular platforms to activate the protease function of inflammatory caspases. Caspases-1, -4, -5, and -11 are inflammatory caspases activated by inflammasomes to drive lytic cell death and inflammatory mediator production, thereby activating host-protective and pathological immune responses. Here, we comprehensively review the mechanisms that govern the activity of inflammatory caspases. We discuss inflammatory caspase activation and deactivation mechanisms, alongside the physiological importance of caspase activity kinetics. We also examine mechanisms of caspase substrate selection and how inflammasome and cell identities influence caspase activity and resultant inflammatory and pyroptotic cellular programs. Understanding how inflammatory caspases are regulated may offer new strategies for treating infection and inflammasome-driven disease.


Asunto(s)
Caspasas , Inflamasomas , Animales , Caspasa 1/metabolismo , Caspasas/metabolismo , Muerte Celular , Humanos , Inflamasomas/metabolismo , Piroptosis
3.
Annu Rev Immunol ; 36: 549-578, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29677469

RESUMEN

Signaling through the T cell antigen receptor (TCR) activates a series of tyrosine kinases. Directly associated with the TCR, the SRC family kinase LCK and the SYK family kinase ZAP-70 are essential for all downstream responses to TCR stimulation. In contrast, the TEC family kinase ITK is not an obligate component of the TCR cascade. Instead, ITK functions as a tuning dial, to translate variations in TCR signal strength into differential programs of gene expression. Recent insights into TEC kinase structure have provided a view into the molecular mechanisms that generate different states of kinase activation. In resting lymphocytes, TEC kinases are autoinhibited, and multiple interactions between the regulatory and kinase domains maintain low activity. Following TCR stimulation, newly generated signaling modules compete with the autoinhibited core and shift the conformational ensemble to the fully active kinase. This multidomain control over kinase activation state provides a structural mechanism to account for ITK's ability to tune the TCR signal.


Asunto(s)
Activación de Linfocitos , Proteínas Tirosina Quinasas/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Biomarcadores , Humanos , Activación de Linfocitos/inmunología , Fosfolipasa C gamma/metabolismo , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Tirosina Quinasas/química , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Familia-src Quinasas/metabolismo
4.
Annu Rev Immunol ; 36: 127-156, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29237129

RESUMEN

T cells possess an array of functional capabilities important for host defense against pathogens and tumors. T cell effector functions require the T cell antigen receptor (TCR). The TCR has no intrinsic enzymatic activity, and thus signal transduction from the receptor relies on additional signaling molecules. One such molecule is the cytoplasmic tyrosine kinase ZAP-70, which associates with the TCR complex and is required for initiating the canonical biochemical signal pathways downstream of the TCR. In this article, we describe recent structure-based insights into the regulation and substrate specificity of ZAP-70, and then we review novel methods for determining the role of ZAP-70 catalytic activity-dependent and -independent signals in developing and mature T cells. Lastly, we discuss the disease states in mouse models and humans, which range from immunodeficiency to autoimmunity, that are caused by mutations in ZAP-70.


Asunto(s)
Susceptibilidad a Enfermedades , Transducción de Señal , Linfocitos T/metabolismo , Proteína Tirosina Quinasa ZAP-70/metabolismo , Animales , Autoinmunidad , Biomarcadores , Catálisis , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Regulación de la Expresión Génica , Humanos , Inmunidad , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Fosforilación , Transporte de Proteínas , Relación Estructura-Actividad , Especificidad por Sustrato , Linfocitos T/inmunología , Proteína Tirosina Quinasa ZAP-70/antagonistas & inhibidores , Proteína Tirosina Quinasa ZAP-70/química , Proteína Tirosina Quinasa ZAP-70/genética
5.
Cell ; 187(19): 5238-5252.e20, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39208796

RESUMEN

Fanzor (Fz) is an ωRNA-guided endonuclease extensively found throughout the eukaryotic domain with unique gene editing potential. Here, we describe the structures of Fzs from three different organisms. We find that Fzs share a common ωRNA interaction interface, regardless of the length of the ωRNA, which varies considerably across species. The analysis also reveals Fz's mode of DNA recognition and unwinding capabilities as well as the presence of a non-canonical catalytic site. The structures demonstrate how protein conformations of Fz shift to allow the binding of double-stranded DNA to the active site within the R-loop. Mechanistically, examination of structures in different states shows that the conformation of the lid loop on the RuvC domain is controlled by the formation of the guide/DNA heteroduplex, regulating the activation of nuclease and DNA double-stranded displacement at the single cleavage site. Our findings clarify the mechanism of Fz, establishing a foundation for engineering efforts.


Asunto(s)
División del ADN , ADN , ADN/metabolismo , ADN/química , Dominio Catalítico , Modelos Moleculares , ARN Guía de Sistemas CRISPR-Cas/metabolismo , ARN Guía de Sistemas CRISPR-Cas/química , Humanos , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/química , Edición Génica , Sistemas CRISPR-Cas
6.
Cell ; 187(12): 2990-3005.e17, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38772370

RESUMEN

Integrins link the extracellular environment to the actin cytoskeleton in cell migration and adhesiveness. Rapid coordination between events outside and inside the cell is essential. Single-molecule fluorescence dynamics show that ligand binding to the bent-closed integrin conformation, which predominates on cell surfaces, is followed within milliseconds by two concerted changes, leg extension and headpiece opening, to give the high-affinity integrin conformation. The extended-closed integrin conformation is not an intermediate but can be directly accessed from the extended-open conformation and provides a pathway for ligand dissociation. In contrast to ligand, talin, which links the integrin ß-subunit cytoplasmic domain to the actin cytoskeleton, modestly stabilizes but does not induce extension or opening. Integrin activation is thus initiated by outside-in signaling and followed by inside-out signaling. Our results further imply that talin binding is insufficient for inside-out integrin activation and that tensile force transmission through the ligand-integrin-talin-actin cytoskeleton complex is required.


Asunto(s)
Integrinas , Talina , Animales , Humanos , Ratones , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Adhesión Celular , Células CHO , Cricetulus , Integrinas/metabolismo , Integrinas/química , Ligandos , Unión Proteica , Conformación Proteica , Transducción de Señal , Imagen Individual de Molécula , Talina/metabolismo , Talina/química
7.
Cell ; 187(13): 3284-3302.e23, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38843832

RESUMEN

The cleavage of zygotes generates totipotent blastomeres. In human 8-cell blastomeres, zygotic genome activation (ZGA) occurs to initiate the ontogenesis program. However, capturing and maintaining totipotency in human cells pose significant challenges. Here, we realize culturing human totipotent blastomere-like cells (hTBLCs). We find that splicing inhibition can transiently reprogram human pluripotent stem cells into ZGA-like cells (ZLCs), which subsequently transition into stable hTBLCs after long-term passaging. Distinct from reported 8-cell-like cells (8CLCs), both ZLCs and hTBLCs widely silence pluripotent genes. Interestingly, ZLCs activate a particular group of ZGA-specific genes, and hTBLCs are enriched with pre-ZGA-specific genes. During spontaneous differentiation, hTBLCs re-enter the intermediate ZLC stage and further generate epiblast (EPI)-, primitive endoderm (PrE)-, and trophectoderm (TE)-like lineages, effectively recapitulating human pre-implantation development. Possessing both embryonic and extraembryonic developmental potency, hTBLCs can autonomously generate blastocyst-like structures in vitro without external cell signaling. In summary, our study provides key criteria and insights into human cell totipotency.


Asunto(s)
Diferenciación Celular , Empalmosomas , Animales , Humanos , Ratones , Blastocisto/metabolismo , Blastocisto/citología , Blastómeros/metabolismo , Blastómeros/citología , Reprogramación Celular , Desarrollo Embrionario/genética , Estratos Germinativos/metabolismo , Estratos Germinativos/citología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Empalme del ARN , Empalmosomas/metabolismo , Células Madre Totipotentes/metabolismo , Células Madre Totipotentes/citología , Cigoto/metabolismo , Células Cultivadas , Modelos Moleculares , Estructura Terciaria de Proteína , Genoma Humano , Análisis de la Célula Individual , Factor 15 de Diferenciación de Crecimiento/química , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Epigenómica , Linaje de la Célula
8.
Cell ; 187(16): 4246-4260.e16, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38964326

RESUMEN

The human seasonal coronavirus HKU1-CoV, which causes common colds worldwide, relies on the sequential binding to surface glycans and transmembrane serine protease 2 (TMPRSS2) for entry into target cells. TMPRSS2 is synthesized as a zymogen that undergoes autolytic activation to process its substrates. Several respiratory viruses, in particular coronaviruses, use TMPRSS2 for proteolytic priming of their surface spike protein to drive membrane fusion upon receptor binding. We describe the crystal structure of the HKU1-CoV receptor binding domain in complex with TMPRSS2, showing that it recognizes residues lining the catalytic groove. Combined mutagenesis of interface residues and comparison across species highlight positions 417 and 469 as determinants of HKU1-CoV host tropism. The structure of a receptor-blocking nanobody in complex with zymogen or activated TMPRSS2 further provides the structural basis of TMPRSS2 activating conformational change, which alters loops recognized by HKU1-CoV and dramatically increases binding affinity.


Asunto(s)
Serina Endopeptidasas , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/química , Humanos , Cristalografía por Rayos X , Coronavirus/metabolismo , Coronavirus/química , Precursores Enzimáticos/metabolismo , Precursores Enzimáticos/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Modelos Moleculares , Unión Proteica , Células HEK293 , Animales , Activación Enzimática , Internalización del Virus
9.
Cell ; 187(22): 6200-6219.e23, 2024 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-39288764

RESUMEN

TGF-ß, essential for development and immunity, is expressed as a latent complex (L-TGF-ß) non-covalently associated with its prodomain and presented on immune cell surfaces by covalent association with GARP. Binding to integrin αvß8 activates L-TGF-ß1/GARP. The dogma is that mature TGF-ß must physically dissociate from L-TGF-ß1 for signaling to occur. Our previous studies discovered that αvß8-mediated TGF-ß autocrine signaling can occur without TGF-ß1 release from its latent form. Here, we show that mice engineered to express TGF-ß1 that cannot release from L-TGF-ß1 survive without early lethal tissue inflammation, unlike those with TGF-ß1 deficiency. Combining cryogenic electron microscopy with cell-based assays, we reveal a dynamic allosteric mechanism of autocrine TGF-ß1 signaling without release where αvß8 binding redistributes the intrinsic flexibility of L-TGF-ß1 to expose TGF-ß1 to its receptors. Dynamic allostery explains the TGF-ß3 latency/activation mechanism and why TGF-ß3 functions distinctly from TGF-ß1, suggesting that it broadly applies to other flexible cell surface receptor/ligand systems.


Asunto(s)
Comunicación Autocrina , Integrinas , Comunicación Paracrina , Factor de Crecimiento Transformador beta1 , Animales , Ratones , Regulación Alostérica , Factor de Crecimiento Transformador beta1/metabolismo , Integrinas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta3/metabolismo , Microscopía por Crioelectrón
10.
Annu Rev Biochem ; 92: 247-272, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001136

RESUMEN

The insulin receptor (IR) is a type II receptor tyrosine kinase that plays essential roles in metabolism, growth, and proliferation. Dysregulation of IR signaling is linked to many human diseases, such as diabetes and cancers. The resolution revolution in cryo-electron microscopy has led to the determination of several structures of IR with different numbers of bound insulin molecules in recent years, which have tremendously improved our understanding of how IR is activated by insulin. Here, we review the insulin-induced activation mechanism of IR, including (a) the detailed binding modes and functions of insulin at site 1 and site 2 and (b) the insulin-induced structural transitions that are required for IR activation. We highlight several other key aspects of the activation and regulation of IR signaling and discuss the remaining gaps in our understanding of the IR activation mechanism and potential avenues of future research.


Asunto(s)
Insulina , Receptor de Insulina , Humanos , Receptor de Insulina/genética , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Microscopía por Crioelectrón , Insulina/química , Insulina/metabolismo , Transducción de Señal , Proteínas Tirosina Quinasas Receptoras/metabolismo , Fosforilación
11.
Cell ; 186(21): 4615-4631.e16, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37769658

RESUMEN

SARS-CoV-2 primary strain-based vaccination exerts a protective effect against Omicron variants-initiated infection, symptom occurrence, and disease severity in a booster-dependent manner. Yet, the underlying mechanisms remain unclear. During the 2022 Omicron outbreak in Shanghai, we enrolled 122 infected adults and 50 uninfected controls who had been unvaccinated or vaccinated with two or three doses of COVID-19 inactive vaccines and performed integrative analysis of 41-plex CyTOF, RNA-seq, and Olink on their peripheral blood samples. The frequencies of HLA-DRhi classical monocytes, non-classical monocytes, and Th1-like Tem tended to increase, whereas the frequency of Treg was reduced by booster vaccine, and they influenced symptom occurrence in a vaccine dose-dependent manner. Intercorrelation and mechanistic analysis suggested that the booster vaccination induced monocytic training, which would prime monocytic activation and maturation rather than differentiating into myeloid-derived suppressive cells upon Omicron infections. Overall, our study provides insights into how booster vaccination elaborates protective immunity across SARS-CoV-2 variants.

12.
Cell ; 186(2): 327-345.e28, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36603581

RESUMEN

Components of transcriptional machinery are selectively partitioned into specific condensates, often mediated by protein disorder, yet we know little about how this specificity is achieved. Here, we show that condensates composed of the intrinsically disordered region (IDR) of MED1 selectively partition RNA polymerase II together with its positive allosteric regulators while excluding negative regulators. This selective compartmentalization is sufficient to activate transcription and is required for gene activation during a cell-state transition. The IDRs of partitioned proteins are necessary and sufficient for selective compartmentalization and require alternating blocks of charged amino acids. Disrupting this charge pattern prevents partitioning, whereas adding the pattern to proteins promotes partitioning with functional consequences for gene activation. IDRs with similar patterned charge blocks show similar partitioning and function. These findings demonstrate that disorder-mediated interactions can selectively compartmentalize specific functionally related proteins from a complex mixture of biomolecules, leading to regulation of a biochemical pathway.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , ARN Polimerasa II , Transcripción Genética , Proteínas Intrínsecamente Desordenadas/metabolismo , ARN Polimerasa II/metabolismo , Activación Transcripcional , Animales , Ratones
13.
Annu Rev Immunol ; 33: 677-713, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25665077

RESUMEN

Dynamic tuning of cellular responsiveness as a result of repeated stimuli improves the ability of cells to distinguish physiologically meaningful signals from each other and from noise. In particular, lymphocyte activation thresholds are subject to tuning, which contributes to maintaining tolerance to self-antigens and persisting foreign antigens, averting autoimmunity and immune pathogenesis, but allowing responses to strong, structured perturbations that are typically associated with acute infection. Such tuning is also implicated in conferring flexibility to positive selection in the thymus, in controlling the magnitude of the immune response, and in generating memory cells. Additional functional properties are dynamically and differentially tuned in parallel via subthreshold contact interactions between developing or mature lymphocytes and self-antigen-presenting cells. These interactions facilitate and regulate lymphocyte viability, maintain their functional integrity, and influence their responses to foreign antigens and accessory signals, qualitatively and quantitatively. Bidirectional tuning of T cells and antigen-presenting cells leads to the definition of homeostatic set points, thus maximizing clonal diversity.


Asunto(s)
Linfocitos/inmunología , Linfocitos/metabolismo , Animales , Supervivencia Celular/inmunología , Homeostasis , Humanos , Memoria Inmunológica , Infecciones/inmunología , Infecciones/metabolismo , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Linfocitos/citología , Fenotipo , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Timocitos/citología , Timocitos/inmunología , Timocitos/metabolismo
14.
Annu Rev Immunol ; 33: 823-74, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25706096

RESUMEN

Patients with autoinflammatory diseases present with noninfectious fever flares and systemic and/or disease-specific organ inflammation. Their excessive proinflammatory cytokine and chemokine responses can be life threatening and lead to organ damage over time. Studying such patients has revealed genetic defects that have helped unravel key innate immune pathways, including excessive IL-1 signaling, constitutive NF-κB activation, and, more recently, chronic type I IFN signaling. Discoveries of monogenic defects that lead to activation of proinflammatory cytokines have inspired the use of anticytokine-directed treatment approaches that have been life changing for many patients and have led to the approval of IL-1-blocking agents for a number of autoinflammatory conditions. In this review, we describe the genetically characterized autoinflammatory diseases, we summarize our understanding of the molecular pathways that drive clinical phenotypes and that continue to inspire the search for novel treatment targets, and we provide a conceptual framework for classification.


Asunto(s)
Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Predisposición Genética a la Enfermedad , Inflamación/genética , Inflamación/inmunología , Animales , Enfermedades Autoinmunes/metabolismo , Autoinmunidad , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/inmunología , Síndromes de Inmunodeficiencia/metabolismo , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Interferones/metabolismo , Interleucina-1/metabolismo , Trastornos Linfoproliferativos/genética , Trastornos Linfoproliferativos/inmunología , Trastornos Linfoproliferativos/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , FN-kappa B/metabolismo , Transducción de Señal
15.
Cell ; 185(26): 4954-4970.e20, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36493774

RESUMEN

Nuclear pore complexes (NPCs) are channels for nucleocytoplasmic transport of proteins and RNAs. However, it remains unclear whether composition, structure, and permeability of NPCs dynamically change during the cleavage period of vertebrate embryos and affect embryonic development. Here, we report that the comprehensive NPC maturity (CNM) controls the onset of zygotic genome activation (ZGA) during zebrafish early embryogenesis. We show that more nucleoporin proteins are recruited to and assembled into NPCs with development, resulting in progressive increase of NPCs in size and complexity. Maternal transcription factors (TFs) transport into nuclei more efficiently with increasing CNM. Deficiency or dysfunction of Nup133 or Ahctf1/Elys impairs NPC assembly, maternal TFs nuclear transport, and ZGA onset, while nup133 overexpression promotes these processes. Therefore, CNM may act as a molecular timer for ZGA by controlling nuclear transport of maternal TFs that reach nuclear concentration thresholds at a given time to initiate ZGA.


Asunto(s)
Poro Nuclear , Pez Cebra , Animales , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra/metabolismo , Cigoto/metabolismo , Genoma
16.
Cell ; 184(2): 460-475.e21, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33278358

RESUMEN

SARS-CoV-2-induced hypercytokinemia and inflammation are critically associated with COVID-19 severity. Baricitinib, a clinically approved JAK1/JAK2 inhibitor, is currently being investigated in COVID-19 clinical trials. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages, and tissues was not reduced with baricitinib. Type I interferon (IFN) antiviral responses and SARS-CoV-2-specific T cell responses remained similar between the two groups. Animals treated with baricitinib showed reduced inflammation, decreased lung infiltration of inflammatory cells, reduced NETosis activity, and more limited lung pathology. Importantly, baricitinib-treated animals had a rapid and remarkably potent suppression of lung macrophage production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for inflammation induced by SARS-CoV-2 infection.


Asunto(s)
Antiinflamatorios/administración & dosificación , Azetidinas/administración & dosificación , Tratamiento Farmacológico de COVID-19 , COVID-19/inmunología , Macaca mulatta , Infiltración Neutrófila/efectos de los fármacos , Purinas/administración & dosificación , Pirazoles/administración & dosificación , Sulfonamidas/administración & dosificación , Animales , COVID-19/fisiopatología , Muerte Celular/efectos de los fármacos , Degranulación de la Célula/efectos de los fármacos , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/inmunología , Quinasas Janus/antagonistas & inhibidores , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Activación de Linfocitos/efectos de los fármacos , Macrófagos Alveolares/inmunología , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Linfocitos T/inmunología , Replicación Viral/efectos de los fármacos
17.
Cell ; 184(12): 3143-3162.e32, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34004147

RESUMEN

Gene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6. PP2A dynamically antagonizes phosphorylation of key CDK9 substrates including DSIF and RNAPII-CTD. Loss of INTS6 results in resistance to tumor cell death mediated by CDK9 inhibition, decreased turnover of CDK9 phospho-substrates, and amplification of acute oncogenic transcriptional responses. Pharmacological PP2A activation synergizes with CDK9 inhibition to kill both leukemic and solid tumor cells, providing therapeutic benefit in vivo. These data demonstrate that fine control of gene expression relies on the balance between kinase and phosphatase activity throughout the transcription cycle, a process dysregulated in cancer that can be exploited therapeutically.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteína Fosfatasa 2/metabolismo , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo , Animales , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Endogámicos NOD , Fosforilación , Unión Proteica , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Especificidad por Sustrato
18.
Cell ; 184(25): 6157-6173.e24, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34856126

RESUMEN

Chromosome loops shift dynamically during development, homeostasis, and disease. CCCTC-binding factor (CTCF) is known to anchor loops and construct 3D genomes, but how anchor sites are selected is not yet understood. Here, we unveil Jpx RNA as a determinant of anchor selectivity. Jpx RNA targets thousands of genomic sites, preferentially binding promoters of active genes. Depleting Jpx RNA causes ectopic CTCF binding, massive shifts in chromosome looping, and downregulation of >700 Jpx target genes. Without Jpx, thousands of lost loops are replaced by de novo loops anchored by ectopic CTCF sites. Although Jpx controls CTCF binding on a genome-wide basis, it acts selectively at the subset of developmentally sensitive CTCF sites. Specifically, Jpx targets low-affinity CTCF motifs and displaces CTCF protein through competitive inhibition. We conclude that Jpx acts as a CTCF release factor and shapes the 3D genome by regulating anchor site usage.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Cromosomas/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Sitios de Unión , Línea Celular , Células Madre Embrionarias , Ratones , Unión Proteica
19.
Cell ; 184(4): 931-942.e18, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33571431

RESUMEN

The D1- and D2-dopamine receptors (D1R and D2R), which signal through Gs and Gi, respectively, represent the principal stimulatory and inhibitory dopamine receptors in the central nervous system. D1R and D2R also represent the main therapeutic targets for Parkinson's disease, schizophrenia, and many other neuropsychiatric disorders, and insight into their signaling is essential for understanding both therapeutic and side effects of dopaminergic drugs. Here, we report four cryoelectron microscopy (cryo-EM) structures of D1R-Gs and D2R-Gi signaling complexes with selective and non-selective dopamine agonists, including two currently used anti-Parkinson's disease drugs, apomorphine and bromocriptine. These structures, together with mutagenesis studies, reveal the conserved binding mode of dopamine agonists, the unique pocket topology underlying ligand selectivity, the conformational changes in receptor activation, and potential structural determinants for G protein-coupling selectivity. These results provide both a molecular understanding of dopamine signaling and multiple structural templates for drug design targeting the dopaminergic system.


Asunto(s)
Receptores de Dopamina D1/química , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/química , Receptores de Dopamina D2/metabolismo , Transducción de Señal , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/análogos & derivados , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Secuencia de Aminoácidos , Secuencia Conservada , Microscopía por Crioelectrón , AMP Cíclico/metabolismo , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Dopamina D1/ultraestructura , Receptores de Dopamina D2/ultraestructura , Homología Estructural de Proteína
20.
Cell ; 180(3): 490-501.e16, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31955848

RESUMEN

Integrin αvß8 binds with exquisite specificity to latent transforming growth factor-ß (L-TGF-ß). This binding is essential for activating L-TGF-ß presented by a variety of cell types. Inhibiting αvß8-mediated TGF-ß activation blocks immunosuppressive regulatory T cell differentiation, which is a potential therapeutic strategy in cancer. Using cryo-electron microscopy, structure-guided mutagenesis, and cell-based assays, we reveal the binding interactions between the entire αvß8 ectodomain and its intact natural ligand, L-TGF-ß, as well as two different inhibitory antibody fragments to understand the structural underpinnings of αvß8 binding specificity and TGF-ß activation. Our studies reveal a mechanism of TGF-ß activation where mature TGF-ß signals within the confines of L-TGF-ß and the release and diffusion of TGF-ß are not required. The structural details of this mechanism provide a rational basis for therapeutic strategies to inhibit αvß8-mediated L-TGF-ß activation.


Asunto(s)
Microscopía por Crioelectrón/métodos , Integrinas/química , Integrinas/metabolismo , Proteínas de Unión a TGF-beta Latente/química , Proteínas de Unión a TGF-beta Latente/metabolismo , Factor de Crecimiento Transformador beta1/química , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Anticuerpos/inmunología , Sitios de Unión , Bronquios/citología , Células CHO , Cricetulus , Femenino , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Integrinas/inmunología , Activación de Linfocitos , Masculino , Visón , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Linfocitos T Reguladores/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA