Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 664
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 31(10): 1007-1023, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28611190

RESUMEN

Janus kinase 2 (JAK2) is a central kinase in hematopoietic stem/progenitor cells (HSPCs), and its uncontrolled activation is a prominent oncogenic driver of hematopoietic neoplasms. However, molecular mechanisms underlying the regulation of JAK2 have remained elusive. Here we report that the Casitas B-cell lymphoma (CBL) family E3 ubiquitin ligases down-regulate JAK2 stability and signaling via the adaptor protein LNK/SH2B3. We demonstrated that depletion of CBL/CBL-B or LNK abrogated JAK2 ubiquitination, extended JAK2 half-life, and enhanced JAK2 signaling and cell growth in human cell lines as well as primary murine HSPCs. Built on these findings, we showed that JAK inhibitor (JAKi) significantly reduced aberrant HSPCs and mitigated leukemia development in a mouse model of aggressive myeloid leukemia driven by loss of Cbl and Cbl-b Importantly, primary human CBL mutated (CBLmut ) leukemias exhibited increased JAK2 protein levels and signaling and were hypersensitive to JAKi. Loss-of-function mutations in CBL E3 ubiquitin ligases are found in a wide range of myeloid malignancies, which are diseases without effective treatment options. Hence, our studies reveal a novel signaling axis that regulates JAK2 in normal and malignant HSPCs and suggest new therapeutic strategies for treating CBLmut myeloid malignancies.


Asunto(s)
Janus Quinasa 2/metabolismo , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/fisiopatología , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Citocinas/metabolismo , Estabilidad de Enzimas , Células Madre Hematopoyéticas/enzimología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Janus Quinasa 2/genética , Leucemia Mieloide Aguda/genética , Proteínas de la Membrana , Ratones , Mutación , Proteolisis , Proteínas Proto-Oncogénicas c-cbl/genética , Transducción de Señal/genética , Ubiquitinación
2.
J Proteome Res ; 23(7): 2495-2504, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38829961

RESUMEN

Asparaginase-based therapy is a cornerstone in acute lymphoblastic leukemia (ALL) treatment, capitalizing on the methylation status of the asparagine synthetase (ASNS) gene, which renders ALL cells reliant on extracellular asparagine. Contrastingly, ASNS expression in acute myeloid leukemia (AML) has not been thoroughly investigated, despite studies suggesting that AML with chromosome 7/7q deletions might have reduced ASNS levels. Here, we leverage reverse phase protein arrays to measure ASNS expression in 810 AML patients and assess its impact on outcomes. We find that AML with inv(16) has the lowest overall ASNS expression. While AML with deletion 7/7q had ASNS levels slightly lower than those of AML without deletion 7/7q, this observation was not significant. Low ASNS expression correlated with improved overall survival (46 versus 54 weeks, respectively, p = 0.011), whereas higher ASNS levels were associated with better response to venetoclax-based therapy. Protein correlation analysis demonstrated association between ASNS and proteins involved in methylation and DNA repair. In conclusion, while ASNS expression was not lower in patients with deletion 7/7q as initially predicted, ASNS levels were highly variable across AML patients. Further studies are needed to assess whether patients with low ASNS expression are susceptible to asparaginase-based therapy due to their inability to augment compensatory ASNS expression upon asparagine depletion.


Asunto(s)
Aspartatoamoníaco Ligasa , Leucemia Mieloide Aguda , Proteómica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Aspartatoamoníaco Ligasa/genética , Aspartatoamoníaco Ligasa/metabolismo , Femenino , Proteómica/métodos , Masculino , Persona de Mediana Edad , Adulto , Anciano , Deleción Cromosómica , Análisis por Matrices de Proteínas/métodos , Asparaginasa/uso terapéutico , Asparaginasa/genética , Cromosomas Humanos Par 7/genética , Adulto Joven , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N
3.
Curr Issues Mol Biol ; 46(4): 2946-2960, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38666914

RESUMEN

Targeting the FLT3 receptor and the IL-1R associated kinase 4 as well as the anti-apoptotic proteins MCL1 and BCL2 may be a promising novel approach in the treatment of acute myeloid leukemia (AML). The FLT3 and IRAK4 inhibitor emavusertib (CA4948), the MCL1 inhibitor S63845, the BCL2 inhibitor venetoclax, and the HSP90 inhibitor PU-H71 were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells in vitro. AML cells represented all major morphologic and molecular subtypes, including FLT3-ITD and NPM1 mutant AML cell lines and a variety of patient-derived AML cells. Emavusertib in combination with MCL1 inhibitor S63845 or BCL2 inhibitor venetoclax induced cell cycle arrest and apoptosis in MOLM-13 cells. In primary AML cells, the response to emavusertib was associated with the presence of the FLT3 gene mutation with an allelic ratio >0.5 and the presence of NPM1 gene mutations. S63845 was effective in all tested AML cell lines and primary AML samples. Blast cell percentage was positively associated with the response to CA4948, S63845, and venetoclax, with elevated susceptibility of primary AML with blast cell fraction >80%. Biomarkers of the response to venetoclax included the blast cell percentage and bone marrow infiltration rate, as well as the expression levels of CD11b, CD64, and CD117. Elevated susceptibility to CA4948 combination treatments with S63845 or PU-H71 was associated with FLT3-mutated AML and CD34 < 30%. The combination of CA4948 and BH3-mimetics may be effective in the treatment in FLT3-mutated AML with differential target specificity for MCL1 and BCL2 inhibitors. Moreover, the combination of CA4948 and PU-H71 may be a candidate combination treatment in FLT3-mutated AML.

4.
Cancer ; 130(11): 1952-1963, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244208

RESUMEN

BACKGROUND: This study compared the survival of persons with secondary acute myeloid leukemia (sAML) to those with de novo AML (dnAML) by age at AML diagnosis, chemotherapy receipt, and cancer type preceding sAML diagnosis. METHODS: Data from Surveillance, Epidemiology, and End Results 17 Registries were used, which included 47,704 individuals diagnosed with AML between 2001 and 2018. Multivariable Cox proportional hazards regression was used to compare AML-specific survival between sAML and dnAML. Trends in 5-year age-standardized relative survival were examined via the Joinpoint survival model. RESULTS: Overall, individuals with sAML had an 8% higher risk of dying from AML (hazard ratio [HR], 1.08; 95% confidence interval [CI], 1.05-1.11) compared to those with dnAML. Disparities widened with younger age at diagnosis, particularly in those who received chemotherapy for AML (HR, 1.14; 95% CI, 1.10-1.19). In persons aged 20-64 years and who received chemotherapy, HRs were greatest for those with antecedent myelodysplastic syndrome (HR, 2.04; 95% CI, 1.83-2.28), ovarian cancer (HR, 1.91; 95% CI, 1.19-3.08), head and neck cancer (HR, 1.55; 95% CI, 1.02-2.36), leukemia (HR, 1.45; 95% CI, 1.12-1.89), and non-Hodgkin lymphoma (HR, 1.42; 95% CI, 1.20-1.69). Among those aged ≥65 years and who received chemotherapy, HRs were highest for those with antecedent cervical cancer (HR, 2.42; 95% CI, 1.15-5.10) and myelodysplastic syndrome (HR, 1.28; 95% CI, 1.19-1.38). The 5-year relative survival improved 0.3% per year for sAML slower than 0.86% per year for dnAML. Consequently, the survival gap widened from 7.2% (95% CI, 5.4%-9.0%) during the period 2001-2003 to 14.3% (95% CI, 12.8%-15.8%) during the period 2012-2014. CONCLUSIONS: Significant survival disparities exist between sAML and dnAML on the basis of age at diagnosis, chemotherapy receipt, and antecedent cancer, which highlights opportunities to improve outcomes among those diagnosed with sAML.


Asunto(s)
Leucemia Mieloide Aguda , Programa de VERF , Humanos , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/epidemiología , Persona de Mediana Edad , Femenino , Masculino , Adulto , Anciano , Adulto Joven , Factores de Edad , Neoplasias Primarias Secundarias/mortalidad , Neoplasias Primarias Secundarias/epidemiología , Anciano de 80 o más Años , Adolescente , Modelos de Riesgos Proporcionales , Estados Unidos/epidemiología , Linfoma no Hodgkin/mortalidad , Linfoma no Hodgkin/tratamiento farmacológico , Linfoma no Hodgkin/epidemiología , Neoplasias/mortalidad , Neoplasias/tratamiento farmacológico , Neoplasias/epidemiología
5.
Clin Exp Immunol ; 215(2): 148-159, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-37971356

RESUMEN

To investigate the relationship between immune dynamic and graft-versus-host-disease (GVHD) risk, 111 initial diagnostic acute myeloid leukemia patients were reviewed. The flow cytometry data of 12 major lymphocyte subsets in bone marrow (BM) from 60 transplant patients at four different time points were analyzed. Additionally, 90 immune subsets in peripheral blood (PB) of 11 post-transplantation on day 100 were reviewed. Our results demonstrated that transplant patients had longer OS compared to non-transplant patients (P < 0.001). Among transplant patients, those who developed GVHD showed longer OS than those without GVHD (P < 0.05). URD donors and CMV-negative status donors were associated with improved OS in transplant patients (P < 0.05). Importantly, we observed a decreased Th/Tc ratio in BM at initial diagnostic in patients with GVHD compared to those without GVHD (P = 0.034). Receiver operating characteristic analysis indicated that a low Th/Tc ratio predicted an increased risk of GVHD with a sensitivity of 44.44% and specificity of 87.50%. Moreover, an increased T/NK ratio in BM of post-induction chemotherapy was found to be associated with GVHD, with a sensitivity of 75.76% and specificity of 65.22%. Additionally, we observed a decreased percentage of NK1 (CD56-CD16+NK) in PB on day 100 post-transplantation in the GVHD group (P < 0.05). These three indicators exhibit promising potential as specific and useful biomarkers for predicting GVHD. These findings provide valuable insights for the early identification and management of GVHD risk, thereby facilitating the possibility of improving patient outcomes.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Humanos , Trasplante de Médula Ósea/efectos adversos , Trasplante de Médula Ósea/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Trasplante Homólogo , Estudios Retrospectivos
6.
Cell Tissue Res ; 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39436449

RESUMEN

Hematopoietic stem cells (HSCs) drive cellular turnover in the hematopoietic system by balancing self-renewal and differentiation. In the adult bone marrow (BM), these cells are regulated by a complex cellular microenvironment known as "niche," which involves dynamic interactions between diverse cellular and non-cellular elements. During blood cell maturation, lineage branching is guided by clusters of genes that interact or counteract each other, forming complex networks of lineage-specific transcription factors. Disruptions in these networks can lead to obstacles in differentiation, lineage reprogramming, and ultimately malignant transformation, including acute myeloid leukemia (AML). Zinc Finger Protein 521 (Znf521/Zfp521), a conserved transcription factor enriched in HSCs in both human and murine hematopoiesis, plays a pivotal role in regulating HSC self-renewal and differentiation. Its enforced expression preserves progenitor cell activity, while inhibition promotes differentiation toward the lymphoid and myeloid lineages. Transcriptomic analysis of human AML patient samples has revealed upregulation of ZNF521 in AMLs with the t(9;11) fusion gene MLL-AF9. In vitro studies have shown that ZNF521 collaborates with MLL-AF9 to enhance the growth of transformed leukemic cells, increase colony formation, and activate MLL target genes. Conversely, inhibition of ZNF521 using short-hairpin RNA (shRNA) results in decreased leukemia proliferation, reduced colony formation, and induction of cell cycle arrest in MLL-rearranged AML cell lines. In vivo experiments have demonstrated that mZFP521-deficient mice transduced with MLL-AF9 experience a delay in leukemia development. This review provides an overview of the regulatory network involving ZNF521, which plays a crucial role in controlling both HSC self-renewal and differentiation pathways. Furthermore, we examine the impact of ZNF521 on the leukemic phenotype and consider it a potential marker for MLL-AF9+ AML.

7.
Cytokine ; 182: 156730, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39133967

RESUMEN

Acute myeloid leukemia (AML) is one of the most common and fatal malignancies that affect adults, which can quickly become aggressive if left untreated, and leukemia cells invade the bone marrow. TLR-9 is an innate immune cell receptor sensitive to various PAMPs and encoded by the TLR-9 gene. As is often known, genetic polymorphisms in any gene can help the development of the disease, and these three polymorphisms, rs187084, rs5743836, and rs352140 of TLR-9, have been studied in many different cancer disorders. Therefore, this study aimed to discover the multiple forms of a TLR-9 gene in a sample of Iraqi AML patients. A total of 120 participants in a case-control study were enrolled in the current study. Using CBC, some hematological parameters were evaluated, and the serum level of TLR-9 was assessed using the ELISA technique. DNA was extracted directly from blood, and a high-resolution melting (HRM) analysis was then carried out. The results revealed a significant difference in some blood parameters among patients and healthy control, while WBC and lymphocytes were without an evident difference between the two groups of the current investigation. The serum concentration of TLR-9 showed an elevated level in patients (P value < 0.01). Nonetheless, this increase was not affected by the genotype patterns of polymorphisms. According to the P-value, there was a significant difference in wild genotypes of the three polymorphisms (rs187084, rs5743836, and rs352140). At the same time, the odds ratio revealed the association with the disease as a protective factor. In contrast, there was a significant difference in the heterozygous and mutant genotypes of TLR-9 polymorphisms, though the odds ratio confirmed the association with the AML as a risk factor. The results of rs352140 were compatible with H.W.E since there were no significant differences between the observed and expected values for either patients or healthy controls. In contrast, the result of rs5743836 was not consistent with the HWE. Furthermore, although it corresponds with the healthy one, the finding of rs187084 conflicted with H.W.E. in the patient group. In conclusion, High serum levels of TLR-9 in patients could act as biomarkers for AML. The TLR-9 gene polymorphisms (rs187084, rs5743836, and rs352140) have been linked to an increased risk of AML and may impact the disease progression in the Iraqi population.


Asunto(s)
Leucemia Mieloide Aguda , Polimorfismo de Nucleótido Simple , Receptor Toll-Like 9 , Adulto , Femenino , Humanos , Masculino , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/sangre , Polimorfismo de Nucleótido Simple/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Toll-Like 9/genética
8.
Toxicol Appl Pharmacol ; 483: 116841, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38290668

RESUMEN

Cytarabine (Ara-C) is widely used in the induction chemotherapy for acute myeloid leukemia (AML). Association between LncRNA GAS5 genetic polymorphism and the recovery of hematopoietic function after Ara-C-based chemotherapy is observed. This study aimed to identify whether intervention of GAS5 expression and GAS5 genotype affect Ara-C-induced inhibition of hematopoietic stem cells (HSCs) differentiation. In this study, cord blood-derived CD34+ cells were cultured in vitro, and a cell model of myelosuppression was established by treatment of CD34+ cells with Ara-C. The effect of GAS5 overexpression, Ara-C treatment, and GAS5 rs55829688 genotype on the hematopoietic colony-forming ability of CD34+ cells was assessed using methylcellulose-based colony forming unit assay. GAS5 overexpression slowed down the proliferation of cord blood-derived CD34+ cells significantly (p < 0.05) and decreased their ability to form hematopoietic colonies in vitro. Ara-C significantly reduced the hematopoietic colony-forming ability of CD34+ cells in vitro (p < 0.0001), and overexpressing GAS5 further decreased the number of hematopoietic colonies. GAS5 expression was higher in CD34+ cells than in CD34- cells, and positively correlated with GATA1 mRNA expression in CD34+ cells in vitro culture. However, GAS5 genotype had no effect on the total number of hematopoietic colonies formed from cord blood-derived CD34+ cells. In conclusion, our study highlights that GAS5 inhibited the in vitro proliferation and reduced the hematopoietic colony-forming ability of cord blood-derived CD34+ cells, with the most pronounced effect observed on CFU-GEMM formation. GAS5 also enhanced the inhibitory effect of Ara-C on the in vitro hematopoietic ability of CD34+ HSCs.


Asunto(s)
Citarabina , Leucemia Mieloide Aguda , Humanos , Citarabina/toxicidad , Citarabina/metabolismo , Células Madre Hematopoyéticas , Hematopoyesis , Antígenos CD34 , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Diferenciación Celular
9.
Cancer Cell Int ; 24(1): 66, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336746

RESUMEN

Acute myeloid leukemia (AML) is a malignant hematologic disease caused by gene mutations and genomic rearrangements in hematologic progenitors. The PHF6 (PHD finger protein 6) gene is highly conserved and located on the X chromosome in humans and mice. We found that PHF6 was highly expressed in AML cells with MLL rearrangement and was related to the shortened survival time of AML patients. In our study, we knocked out the Phf6 gene at different disease stages in the AML mice model. Moreover, we knocked down PHF6 by shRNA in two AML cell lines and examined the cell growth, apoptosis, and cell cycle. We found that PHF6 deletion significantly inhibited the proliferation of leukemic cells and prolonged the survival time of AML mice. Interestingly, the deletion of PHF6 at a later stage of the disease displayed a better anti-leukemia effect. The expressions of genes related to cell differentiation were increased, while genes that inhibit cell differentiation were decreased with PHF6 knockout. It is very important to analyze the maintenance role of PHF6 in AML, which is different from its tumor-suppressing function in T-cell acute lymphoblastic leukemia (T-ALL). Our study showed that inhibiting PHF6 expression may be a potential therapeutic strategy targeting AML patients.

10.
Cancer Cell Int ; 24(1): 106, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38481242

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) is a highly heterogeneous hematologic malignancy and the most frequently acute leukemia of stem cell precursors and the myeloid derivatives in adult. Longitudinal studies have indicated the therapeutic landscape and drug resistance for patients with AML are still intractable, which largely attribute to the deficiency of detailed information upon the pathogenesis. METHODS: In this study, we compared the cellular phenotype of resident NK cells (rAML-NKs, rHD-NKs) and expanded NK cells (eAML-NKs, eHD-NKs) from bone marrow of AML patients (AML) and healthy donors (HD). Then, we took advantage of the co-culture strategy for the evaluation of the in vitro cytotoxicity of NK cells upon diverse tumor cell lines (e.g., K562, Nalm6, U937). With the aid of RNA-sequencing (RNA-SEQ) and bioinformatics analyses (e.g., GOBP analysis, KEGG analysis, GSEA, volcano plot), we verified the similarities and differences of the omics features between eAML-NKs and eHD-NKs. RESULTS: Herein, we verified the sharp decline in the content of total resident NK cells (CD3-CD56+) in rAML-NKs compared to rHD-NKs. Differ from the expanded eHD-NKs, eAML-NKs revealed decline in diverse NK cell subsets (NKG2D+, CD25+, NKp44+, NKp46+) and alterations in cellular vitality but conservations in cytotoxicity. According to transcriptomic analysis, AML-NKs and HD-NKs showed multifaceted distinctions in gene expression profiling and genetic variations. CONCLUSIONS: Collectively, our data revealed the variations in the cytobiological and transcriptomic features between AML-NKs and HD-NKs in bone marrow environment. Our findings would benefit the further development of novel biomarkers for AML diagnosis and NK cell-based cytotherapy in future.

11.
BMC Cancer ; 24(1): 125, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267906

RESUMEN

BACKGROUND: T cell immunoglobulin and mucin-domain containing-3 (TIM-3) is a cell surface molecule that was first discovered on T cells. However, recent studies revealed that it is also highly expressed in acute myeloid leukemia (AML) cells and it is related to AML progression. As, Glutamine appears to play a prominent role in malignant tumor progression, especially in their myeloid group, therefore, in this study we aimed to evaluate the relation between TIM-3/Galectin-9 axis and glutamine metabolism in two types of AML cell lines, HL-60 and THP-1. METHODS: Cell lines were cultured in RPMI 1640 which supplemented with 10% FBS and 1% antibiotics. 24, 48, and 72 h after addition of recombinant Galectin-9 (Gal-9), RT-qPCR analysis, RP-HPLC and gas chromatography techniques were performed to evaluate the expression of glutaminase (GLS), glutamate dehydrogenase (GDH) enzymes, concentration of metabolites; Glutamate (Glu) and alpha-ketoglutarate (α-KG) in glutaminolysis pathway, respectively. Western blotting and MTT assay were used to detect expression of mammalian target of rapamycin complex (mTORC) as signaling factor, GLS protein and cell proliferation rate, respectively. RESULTS: The most mRNA expression of GLS and GDH in HL-60 cells was seen at 72 h after Gal-9 treatment (p = 0.001, p = 0.0001) and in THP-1 cell line was observed at 24 h after Gal-9 addition (p = 0.001, p = 0.0001). The most mTORC and GLS protein expression in HL-60 and THP-1 cells was observed at 72 and 24 h after Gal-9 treatment (p = 0.0001), respectively. MTT assay revealed that Gal-9 could promote cell proliferation rate in both cell lines (p = 0.001). Glu concentration in HL-60 and α-KG concentration in both HL-60 (p = 0.03) and THP-1 (p = 0.0001) cell lines had a decreasing trend. But, Glu concentration had an increasing trend in THP-1 cell line (p = 0.0001). CONCLUSION: Taken together, this study suggests TIM-3/Gal-9 interaction could promote glutamine metabolism in HL-60 and THP-1 cells and resulting in AML development.


Asunto(s)
Glutamina , Leucemia Mieloide Aguda , Humanos , Ácido Glutámico , Receptor 2 Celular del Virus de la Hepatitis A , Células HL-60
12.
Ann Hematol ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078434

RESUMEN

Acute myeloid leukemia (AML) is the most prevalent form of leukemia among adults, characterized by aggressive behavior and significant genetic diversity. Despite decades of reliance on conventional chemotherapy as the mainstay treatment, patients often struggle with achieving remission, experience rapid relapses, and have limited survival prospects. While intensified induction chemotherapy and allogeneic stem cell transplantation have enhanced patient outcomes, these benefits are largely confined to younger AML patients capable of tolerating intensive treatments. DNMT3A, a crucial enzyme responsible for establishing de novo DNA methylation, plays a pivotal role in maintaining the delicate balance between hematopoietic stem cell differentiation and self-renewal, thereby influencing gene expression programs through epigenetic regulation. DNMT3A mutations are the most frequently observed genetic abnormalities in AML, predominantly in older patients, occurring in approximately 20-30% of adult AML cases and over 30% of AML with a normal karyotype. Consequently, the molecular underpinnings and potential therapeutic targets of DNMT3A mutations in AML are currently being thoroughly investigated. This article provides a comprehensive summary and the latest insights into the structure and function of DNMT3A, examines the impact of DNMT3A mutations on the progression and prognosis of AML, and explores potential therapeutic approaches for AML patients harboring DNMT3A mutations.

13.
Ann Hematol ; 103(7): 2355-2364, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38710877

RESUMEN

Acute myeloid leukemia (AML) shows multiple chromosomal translocations & point mutations which can be used to refine risk-adapted therapy in AML patients. Ecotropic viral integration site-1 (EVI-1) & myocyte enhancer factor 2 C gene (MEF2C) are key regulatory transcription factors in hematopoiesis and leukemogenesis & both drive immune escape. This prospective study involved 80 adult de novo AML patients recruited from Oncology Center, Mansoura University, between March 2019 and July 2021. The MEF2C and EVI1 expression were measured using a Taqman probe-based qPCR assay. The results revealed that EVI1 and MEF2C expression were significantly elevated in AML patients as compared to control subjects (p = 0.001. 0.007 respectively). Aberrant expressions of EVI1 and MEF2C showed a significant negative correlation with hemoglobin levels (p = 0.034, 0.025 respectively), & bone marrow blasts (p = 0.007, 0.002 respectively). 11q23 translocation was significantly associated with EVI1 and MEF2C (p = 0.004 and 0.02 respectively). Also, t (9;22) was significantly associated with EVI1 and MEF2C (p = 0.01 and 0.03 respectively), higher expression of EVI1 and MEF2C were significantly associated with inferior outcome after induction therapy (p = 0.001 and 0.018 respectively) and shorter overall survival (p = 0.001, 0.014 respectively). In conclusion, EVI1 & MEF2C were significantly expressed in AML cases. EVI1 & MEF2C overexpression were significantly associated with 11q23 rearrangements and t (9;22) and were indicators for poor outcome in adult AML patients; These results could be a step towards personalized therapy in those patients.


Asunto(s)
Leucemia Mieloide Aguda , Proteína del Locus del Complejo MDS1 y EV11 , Factores de Transcripción MEF2 , Translocación Genética , Humanos , Factores de Transcripción MEF2/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Masculino , Proteína del Locus del Complejo MDS1 y EV11/genética , Femenino , Adulto , Persona de Mediana Edad , Anciano , Cromosomas Humanos Par 11/genética , Estudios Prospectivos , Adulto Joven , Reordenamiento Génico , Adolescente
14.
Bioorg Chem ; 153: 107887, 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39423771

RESUMEN

Class I HDACs are considered promising targets for cancer due to their role in epigenetic modifications. The main challenges in developing a new, potent and non-toxic class I HDAC inhibitor are selectivity and appropriate pharmacokinetics. The PROTAC technique (Proteolysis Targeting Chimera) is a new method in drug development for the production of active substances that can degrade a protein of interest (POI) instead of inhibiting it. This technique will open the era to produce selective and potent drugs with a high margin of safety. Previously, we reported different inhibitors targeting class I HDACs functionalized with aminobenzamide or hydroxamate groups. In the current research work, we will employ PROTAC technique to develop class I HDAC degraders based on our previously reported inhibitors. We synthesized two series of aminobenzamide-based PROTACs and hydroxamate-based PROTACs and tested them in vitro against class I HDACs. To ensure their degradation, all of them were screened against HDAC2 as representative example of class I. The best candidates were evaluated at different concentrations at various HDAC subtypes. This resulted in the PROTAC (32a) (HI31.1) that degrades HDAC8 with a DC50 of 8.9 nM with a proper margin of selectivity against other isozymes. Moreover, PROTAC 32a is able to degrade HDAC6 with DC50 = 14.3 nM. Apoptotic study on leukemic cells (MV-4-11) displayed more than 50 % apoptosis took place at 100 nM. PROTAC 32a (HI31.1) showed a good margin of safety against normal cell line and proper chemical stability.

15.
Int J Med Sci ; 21(13): 2430-2436, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39439464

RESUMEN

Loss of heterozygosity (LOH) on chromosome 6p, where the HLA genes are located, can result in incorrect homozygosity findings during HLA genotyping in patients with hematologic malignancies. The degree of HLA compatibility between donor and recipient is crucial in hematopoietic stem cell transplantation. Therefore, we present a case of false homozygosity in HLA genotyping due to LOH on chromosome 6p in a patient diagnosed with acute myeloid leukemia (AML). HLA molecular typing was conducted on both peripheral blood and buccal swab samples. The analysis included sequence-based typing (SBT) and next-generation sequencing-based typing. Additionally, chromosomal microarray analysis (CMA) was performed. A 68-year-old male presented with anemia and thrombocytopenia. Subsequent bone marrow examination confirmed AML. High-resolution HLA genotyping of Peripheral blood during blast crisis revealed homozygosity at the -A, -B, and -C loci. Conventional karyotyping showed a normal karyotype, 46,XY[20]. Retesting of HLA genotyping one week later confirmed the homozygous results. Subsequently, HLA typing was repeated using buccal swab specimens, confirming heterozygosity at all 4 HLA loci. CMA on peripheral blood samples during blast crisis revealed a large terminal region of copy-neutral LOH spanning approximately 43.5 Mb in the chromosome region 6p25.3p21.1. LOH at the HLA gene locus can significantly impact donor selection, potentially leading to the selection of mistakenly identified homozygous donors. Clinicians and laboratory personnel should be aware of these issues to prevent erroneous HLA typing results in patients with hematologic malignancies. It is advisable to confirm the HLA typing of recipients with hematologic malignancies whenever homozygosity is detected at any locus. This can be achieved through careful interpretation of low peaks in SBT, and by using buccal swab samples or peripheral blood collected after achieving remission.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Prueba de Histocompatibilidad , Homocigoto , Leucemia Mieloide Aguda , Pérdida de Heterocigocidad , Humanos , Masculino , Anciano , Prueba de Histocompatibilidad/métodos , Pérdida de Heterocigocidad/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/sangre , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/sangre , Cromosomas Humanos Par 6/genética , Antígenos HLA/genética , Genotipo
16.
Neurol Sci ; 45(7): 3297-3304, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38351359

RESUMEN

BACKGROUND: Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) present intricate challenges due to their diverse clinical manifestations and thrombotic complications. Thromboembolism (TE) incidence in newly diagnosed AML patients is noteworthy, with arterial TE linked to poorer overall survival. Ischemic strokes, although relatively low in prevalence, carry significant clinical implications. CASE DESCRIPTION: We report the case of an 84-year-old male with Type 2 Diabetes, Hypertension, and Chronic Kidney Disease, presenting with seizures, focal neurological deficits, and pancytopenia. An unexpected diagnosis of AML or MDS emerged during the investigation. Despite interventions, the patient's condition deteriorated, leading to a fatal outcome weeks later. CONCLUSION: This case underscores the intricate relationship between hematologic malignancies and ischemic stroke. The rarity of this complication emphasizes the importance of understanding the multifaceted mechanisms at play, including hyperleukocytosis, pro-inflammatory cytokine release, coagulation cascade activation, and direct interactions with endothelial cells. In our literature review, analysis of 15 cases, including ours, revealed a wide age range (3-87 years) and a gender bias towards females. AML diagnosis was predominant, with uniformly low platelet counts. Cortical infarctions, especially in the anterior circulation, were common. Hyperleukocytosis, disseminated intravascular coagulation (DIC), and fatal outcomes were observed in a subset of cases. Despite the grim statistics and often poor prognosis, the identification of specific risk factors, such as thrombocytopenia and cytogenetic abnormalities, offers avenues for targeted prevention and management.


Asunto(s)
Accidente Cerebrovascular Isquémico , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Masculino , Anciano de 80 o más Años , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/etiología , Accidente Cerebrovascular Isquémico/diagnóstico , Síndromes Mielodisplásicos/complicaciones , Síndromes Mielodisplásicos/fisiopatología , Síndromes Mielodisplásicos/diagnóstico , Leucemia Mieloide Aguda/complicaciones , Resultado Fatal
17.
BMC Pediatr ; 24(1): 547, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182032

RESUMEN

OBJECTIVE: Patients who carry NUP98::NSD1 or FLT3/ITD mutations are reported to have poor prognosis. Previous studies have confidently reported that the poor outcome in younger AML patients is owning to dual NUP98::NSD1 and FLT3/ITD positivity, with a high overlap for those two genetic lesions. In this study, we assessed the prognostic value of the presence of both NUP98::NSD1 and FLT3/ITD in pediatric AML patients. METHODS: We screened a large cohort of 885 pediatric cases from the COG-National Cancer Institute (NCI) TARGET AML cohort and found 57 AML patients with NUP98 rearrangements. RESULTS: The frequency of NUP98 gene fusion was 10.8% in 529 patients. NUP98::NSD1 fusion was the most common NUP98 rearrangement, with a frequency of 59.6%(34 of 57). NUP98::NSD1 -positive patients who carried FLT3/ITD mutations had a decreased CR1 or CR2 rate than those patients carried FLT3/ITD mutation alone (P = 0.0001). Moreover, patients harboring both NUP98::NSD1 fusion and FLT3/ITD mutation exhibited inferior event-free survival (EFS, P < 0.001) and overall survival (OS, P = 0.004) than patients who were dual negative for these two genetic lesions. The presence of only NUP98::NSD1 fusion had no significant impact on EFS or OS. We also found that cases with high FLT3/ITD AR levels ( > = 0.5) with or without NUP98::NSD1 had inferior prognosis. Multivariate analysis demonstrated that the presence of both NUP98::NSD1 and FLT3/ITD was an independent prognostic factors for EFS (hazard ratio: 3.2, P = 0.001) in patients with pediatric AML. However, there was no obvious correlation with OS (hazard ratio: 1.3, P = 0.618). Stem cell transplantation did not improve the survival rate of cases with NUP98 fusion or NUP98::NSD1 AML in terms of EFS or OS. CONCLUSION: Presence of both NUP98::NSD1 and FLT3/ITD was found to be an independent factor for dismal prognosis in pediatric AML patients. Notably, lack of FLT3/ITD mutations in NUP98::NSD1 -positive patients did not retain its prognostic value.


Asunto(s)
Leucemia Mieloide Aguda , Mutación , Proteínas de Complejo Poro Nuclear , Tirosina Quinasa 3 Similar a fms , Humanos , Tirosina Quinasa 3 Similar a fms/genética , Niño , Femenino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Masculino , Pronóstico , Preescolar , Proteínas de Complejo Poro Nuclear/genética , Adolescente , Lactante , Proteínas de Fusión Oncogénica/genética , N-Metiltransferasa de Histona-Lisina/genética , Proteínas Nucleares/genética , Péptidos y Proteínas de Señalización Intracelular/genética
18.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273395

RESUMEN

FMS-like tyrosine kinase 3 (FLT3) mutations are genetic changes found in approximately thirty percent of patients with acute myeloid leukemia (AML). FLT3 mutations in AML represent a challenging clinical scenario characterized by a high rate of relapse, even after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The advent of FLT3 tyrosine kinase inhibitors (TKIs), such as midostaurin and gilteritinib, has shown promise in achieving complete remission. However, a substantial proportion of patients still experience relapse following TKI treatment, necessitating innovative therapeutic strategies. This review critically addresses the current landscape of TKI treatments for FLT3+ AML, with a particular focus on gilteritinib. Gilteritinib, a highly selective FLT3 inhibitor, has demonstrated efficacy in targeting the mutant FLT3 receptor, thereby inhibiting aberrant signaling pathways that drive leukemic proliferation. However, monotherapy with TKIs may not be sufficient to eradicate AML blasts. Specifically, we provide evidence for integrating gilteritinib with mammalian targets of rapamycin (mTOR) inhibitors and interleukin-15 (IL-15) complexes. The combination of gilteritinib, mTOR inhibitors, and IL-15 complexes presents a compelling strategy to enhance the eradication of AML blasts and enhance NK cell killing, offering a potential for improved patient outcomes.


Asunto(s)
Leucemia Mieloide Aguda , Inhibidores de Proteínas Quinasas , Tirosina Quinasa 3 Similar a fms , Humanos , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Pirazinas/uso terapéutico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Mutación , Transducción de Señal/efectos de los fármacos , Compuestos de Anilina/uso terapéutico , Compuestos de Anilina/farmacología
19.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928225

RESUMEN

Acute myeloid leukemia (AML) is an aggressive blood cancer. With low survival rates, new drug targets are needed to improve treatment regimens and patient outcomes. Pseudolaric acid B (PAB) is a plant-derived bioactive compound predicted to interact with cluster of differentiation 147 (CD147/BSG). CD147 is a transmembrane glycoprotein overexpressed in various malignancies with suggested roles in regulating cancer cell survival, proliferation, invasion, and apoptosis. However, the detailed function of PAB in AML remains unknown. In this study, AML cell lines and patient-derived cells were used to show that PAB selectively targeted AML (IC50: 1.59 ± 0.47 µM). Moreover, proliferation assays, flow cytometry, and immunoblotting confirmed that PAB targeting of CD147 resulted in AML cell apoptosis. Indeed, the genetic silencing of CD147 significantly suppressed AML cell growth and attenuated PAB activity. Overall, PAB imparts anti-AML activity through transmembrane glycoprotein CD147.


Asunto(s)
Apoptosis , Basigina , Proliferación Celular , Diterpenos , Leucemia Mieloide Aguda , Humanos , Basigina/metabolismo , Basigina/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Diterpenos/farmacología , Supervivencia Celular/efectos de los fármacos
20.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39125785

RESUMEN

Limited data on treosulfan pharmacokinetics in adults, particularly regarding autologous stem cell transplantation (ASCT) in acute myeloid leukemia (AML), is available to date. Furthermore, correlations between treosulfan exposure, toxicity, and clinical outcome remain understudied. In this single-center retrospective study, we analyzed data from 55 AML patients who underwent HDCT with treosulfan (14 g/m2) and melphalan (140 mg/m2 or 200 mg/m2) (TreoMel) between August 2019 and November 2023 at the University Hospital of Bern. We assessed treosulfan pharmacokinetics and correlations with several physiological parameters with potential impact on its interpatient variability. We further analyzed how treosulfan exposure correlates with toxicity and clinical outcomes. Women above 55 years showed higher area under the curve (AUC) levels (median: 946 mg*h/L, range: 776-1370 mg*h/L), as compared to women under 55 (median: 758 mg*h/L, range: 459-1214 mg*h/L, p = 0.0487). Additionally, women above 55 showed higher peak levels (median: 387 mg/L, range: 308-468 mg/L), as compared to men of the same age range (median: 326 mg/L, range: 264-395 mg/L, p = 0.0159). Treosulfan levels varied significantly with body temperature, liver enzymes, hemoglobin/hematocrit., and treosulfan exposure correlated with diarrhea severity in women over 55 (p = 0.0076). Our study revealed age- and gender-related variability in treosulfan pharmacokinetics, with higher plasma levels observed in female patients above 55. Moreover, our data suggest that treosulfan plasma levels may vary with several physiological parameters and that higher treosulfan exposure may impact toxicity. Our study underlines the need for further research on treosulfan pharmacokinetics, especially in older patients undergoing HDCT in the ASCT setting.


Asunto(s)
Busulfano , Leucemia Mieloide Aguda , Trasplante Autólogo , Humanos , Busulfano/análogos & derivados , Busulfano/farmacocinética , Busulfano/uso terapéutico , Femenino , Leucemia Mieloide Aguda/terapia , Masculino , Persona de Mediana Edad , Adulto , Anciano , Estudios Retrospectivos , Trasplante de Células Madre Hematopoyéticas/métodos , Antineoplásicos Alquilantes/farmacocinética , Antineoplásicos Alquilantes/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA