Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Purinergic Signal ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329708

RESUMEN

Retinopathy of prematurity (ROP) continues to pose a significant threat to the vision of numerous children worldwide, primarily owing to the increased survival rates of premature infants. The pathologies of ROP are mainly linked to impaired vascularization as a result of hyperoxia, leading to subsequent neovascularization. Existing treatments, including anti-vascular endothelial growth factor (VEGF) therapies, have thus far been limited to addressing pathological angiogenesis at advanced ROP stages, inevitably leading to adverse side effects. Intervention to promote physiological angiogenesis during the initial stages could hold the potential to prevent ROP. Adenosine A2A receptors (A2AR) have been identified in various ocular cell types, exhibiting distinct densities and functionally intricate connections with oxygen metabolism. In this review, we discuss experimental evidence that strongly underscores the pivotal role of A2AR in ROP. In particular, A2AR blockade may represent an effective treatment strategy, mitigating retinal vascular loss by reversing hyperoxia-mediated cellular proliferation inhibition and curtailing hypoxia-mediated neovascularization in oxygen-induced retinopathy (OIR). These effects stem from the interplay of endothelium, neuronal and glial cells, and novel molecular pathways (notably promoting TGF-ß signaling) at the hyperoxia phase. We propose that pharmacological targeting of A2AR signaling may confer an early intervention for ROP with distinct therapeutic benefits and mechanisms than the anti-VEGF therapy.

2.
Int J Eat Disord ; 57(7): 1433-1446, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38650547

RESUMEN

OBJECTIVE: Binge-eating disorder is an eating disorder characterized by recurrent binge-eating episodes, during which individuals consume excessive amounts of highly palatable food (HPF) in a short time. This study investigates the intricate relationship between repeated binge-eating episode and the transcriptional regulation of two key genes, adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R), in selected brain regions of rats. METHOD: Binge-like eating behavior on HPF was induced through the combination of food restrictions and frustration stress (15 min exposure to HPF without access to it) in female rats, compared to control rats subjected to only restriction or only stress or none of these two conditions. After chronic binge-eating episodes, nucleic acids were extracted from different brain regions, and gene expression levels were assessed through real-time quantitative PCR. The methylation pattern on genes' promoters was investigated using pyrosequencing. RESULTS: The analysis revealed A2AAR upregulation in the amygdala and in the ventral tegmental area (VTA), and D2R downregulation in the nucleus accumbens in binge-eating rats. Concurrently, site-specific DNA methylation alterations at gene promoters were identified in the VTA for A2AAR and in the amygdala and caudate putamen for D2R. DISCUSSION: The alterations on A2AAR and D2R genes regulation highlight the significance of epigenetic mechanisms in the etiology of binge-eating behavior, and underscore the potential for targeted therapeutic interventions, to prevent the development of this maladaptive feeding behavior. These findings provide valuable insights for future research in the field of eating disorders. PUBLIC SIGNIFICANCE: Using an animal model with face, construct, and predictive validity, in which cycles of food restriction and frustration stress evoke binge-eating behavior, we highlight the significance of epigenetic mechanisms on adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R) genes regulation. They could represent new potential targets for the pharmacological management of eating disorders characterized by this maladaptive feeding behavior.


Asunto(s)
Trastorno por Atracón , Bulimia , Receptor de Adenosina A2A , Receptores de Dopamina D2 , Recompensa , Animales , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Femenino , Ratas , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo , Bulimia/metabolismo , Bulimia/genética , Trastorno por Atracón/genética , Trastorno por Atracón/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Metilación de ADN , Área Tegmental Ventral/metabolismo , Conducta Alimentaria , Núcleo Accumbens/metabolismo , Ratas Sprague-Dawley
3.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38892324

RESUMEN

SARS-CoV-2 infection ranges from mild to severe presentations, according to the intensity of the aberrant inflammatory response. Purinergic receptors dually control the inflammatory response: while adenosine A2A receptors (A2ARs) are anti-inflammatory, ATP P2X7 receptors (P2X7Rs) exert pro-inflammatory effects. The aim of this study was to assess if there were differences in allelic and genotypic frequencies of a loss-of-function SNP of ADORA2A (rs2298383) and a gain-of-function single nucleotide polymorphism (SNP) of P2RX7 (rs208294) in the severity of SARS-CoV-2-associated infection. Fifty-five individuals were enrolled and categorized according to the severity of the infection. Endpoint genotyping was performed in blood cells to screen for both SNPs. The TT genotype (vs. CT + CC) and the T allele (vs. C allele) of P2RX7 SNP were found to be associated with more severe forms of COVID-19, whereas the association between ADORA2A SNP and the severity of infection was not significantly different. The T allele of P2RX7 SNP was more frequent in people with more than one comorbidity and with cardiovascular conditions and was associated with colorectal cancer. Our findings suggest a more prominent role of P2X7R rather than of A2AR polymorphisms in SARS-CoV-2 infection, although larger population-based studies should be performed to validate our conclusions.


Asunto(s)
COVID-19 , Polimorfismo de Nucleótido Simple , Receptores Purinérgicos P2X7 , Humanos , Masculino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Receptor de Adenosina A2A/genética , Gravedad del Paciente , COVID-19/complicaciones , COVID-19/genética , COVID-19/patología , Genotipo , Frecuencia de los Genes , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/genética , Neoplasias del Colon/complicaciones , Neoplasias del Colon/genética
4.
Molecules ; 29(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474602

RESUMEN

Tozadenant (4-hydroxy-N-(4-methoxy-7-morpholinobenzo[d]thiazol-2-yl)-4-methylpiperidine-1-carboxamide) is a highly selective adenosine A2A receptor (A2AR) antagonist and a promising lead structure for the development of A2AR-selective positron emission tomography (PET) probes. Although several 18F-labelled tozadenant derivatives showed favorable in vitro properties, recent in vivo PET studies observed poor brain penetration and lower specific binding than anticipated from the in vitro data. While these findings might be attributable to the structural modification associated with 18F-labelling, they could also reflect inherent properties of the parent compound. However, PET studies with radioisotopologues of tozadenant to evaluate its cerebral pharmacokinetics and brain distribution are still lacking. In the present work, we applied N-Boc-O-desmethyltozadenant as a suitable precursor for the preparation of [O-methyl-11C]tozadenant ([11C]tozadenant) by O-methylation with [11C]methyl iodide followed by acidic deprotection. This approach afforded [11C]tozadenant in radiochemical yields of 18 ± 2%, with molar activities of 50-60 GBq/µmol (1300-1600 mCi/µmol) and radiochemical purities of 95 ± 3%. In addition, in vitro autoradiography in pig and rat brain slices demonstrated the expected striatal accumulation pattern and confirmed the A2AR specificity of the radioligand, making it a promising tool for in vivo PET studies on the cerebral pharmacokinetics and brain distribution of tozadenant.


Asunto(s)
Encéfalo , Receptor de Adenosina A2A , Ratas , Animales , Porcinos , Receptor de Adenosina A2A/metabolismo , Encéfalo/metabolismo , Benzotiazoles/metabolismo , Tomografía de Emisión de Positrones/métodos , Radiofármacos
5.
Neurol Ther ; 13(2): 323-338, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38227133

RESUMEN

INTRODUCTION: A higher levodopa dose is a risk factor for motor complications in Parkinson's disease (PD). Istradefylline (IST) is used as adjunctive treatment to levodopa in PD patients with off episodes, but its impact on levodopa dose titration remains unclear. The objective of this study was to investigate the effect of IST on levodopa dose escalation in PD patients with wearing-off. METHODS: This was a multicenter, open-label, randomized, parallel-group controlled study (ISTRA ADJUST PD) in which PD patients experiencing wearing-off (n = 114) who were receiving levodopa 300-400 mg/day were randomized to receive IST or no IST (control). Levodopa dose was escalated according to clinical severity. The primary endpoint was cumulative additional levodopa dose, and secondary endpoints were changes in symptom rating scales, motor activity determined by a wearable device, and safety outcomes. RESULTS: The cumulative additional levodopa dose throughout 37 weeks and dose increase over 36 weeks were significantly lower in the IST group than in the control group (both p < 0.0001). The Movement Disorder Society Unified Parkinson's Disease Rating Scale Part I and device-evaluated motor activities improved significantly from baseline to 36 weeks in the IST group only (all p < 0.05). Other secondary endpoints were comparable between the groups. Adverse drug reactions (ADRs) occurred in 28.8% and 13.2% of patients in the IST and control groups, respectively, with no serious ADRs in either group. CONCLUSION: IST treatment reduced levodopa dose escalation in PD patients, resulting in less cumulative levodopa use. Adjunctive IST may improve motor function more objectively than increased levodopa dose in patients with PD. TRIAL REGISTRATION: Japan Registry of Clinical Trials: jRCTs031180248.

6.
Neurosci Lett ; 826: 137610, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157926

RESUMEN

BACKGROUND: Protein misfolding and inclusion body aggregation caused by α-Syn mutations in the brain often cause neurodegeneration and cognitive impairment, among which the A53T point mutation is more common. Inhibition of adenosine A2A receptor (A2AR) can alleviate the pathological symptoms of brain dysfunction caused by A53T-α-Syn protofibrils, but the mechanism of action is still unclear. AIM: This studies aimed to investigate the potential therapeutic role of the A2AR inhibitor KW6002 in a mouse model of brain synucleinopathy. METHODS: A53T-α-Syn fibre precursor cell nuclear protein was injected into the bilateral prefrontal cortex of mice to establish a synucleinopathy animal model, and the A2AR inhibitor KW6002 (5 mg/kg) was injected intraperitoneally to intervene. RESULT: The intracerebral injection of A53T-α-Syn protofibrils triggers the formation of inclusion bodies in the brain, leading to astrocyte activation, an increased number of apoptotic cells, and suppression of autophagic flux. The administration of KW6002 significantly reversed these phenomena. In vitro experiments revealed that A53T-α-Syn protofibrils inhibited HT-22 autophagy in mouse hippocampal neuronal cells, whereas KW6002 increased cellular autophagic flux, upregulated the expression of LAMP2A and Hsc70 proteins and inhibited the expression of SQSTM1 protein. The present study suggests that KW6002 reduces the level of α-Syn phosphorylation by inhibiting A2AR protein, at the same time, enhances the autophagic flux of neuronal cells, resulting in the degradation of A53T-α-Syn protofibrils and thus reducing the neuronal toxicity and apoptosis induced by A53T-α-Syn protofibrils. CONCLUSION: KW6002 has a significant protective effect on neuronal injury induced by A53T-α-Syn.


Asunto(s)
Lesiones Encefálicas , Enfermedad de Parkinson , Purinas , Ratones , Animales , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo , Encéfalo/metabolismo , Apoptosis , Autofagia
7.
Clin Pharmacol Drug Dev ; 13(5): 549-559, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38178727

RESUMEN

KW-6356 is a selective antagonist and inverse agonist of the adenosine A2A receptor. The primary aim of the present analysis was to characterize the pharmacokinetics (PK) of KW-6356 and its active metabolite M6 in healthy subjects and patients with Parkinson's disease (PD). We pooled concentration-time data from healthy subjects and patients with PD who were administered KW-6356. Using these data, we developed a population PK model by sequentially fitting the KW-6356 parameters followed by the M6 parameters. A first-order absorption with a 1-compartment model for KW-6356 and a 1-compartment model for M6 best described the profiles. The covariates included in the final models were food status (fed/fasted/unknown) on first-order absorption rate constant, baseline serum albumin level on apparent clearance of KW-6356, and baseline body weight on apparent volume of distribution of KW-6356 and apparent clearance of M6. No covariate had a clinically meaningful impact on KW-6356 or M6 exposure.


Asunto(s)
Antagonistas del Receptor de Adenosina A2 , Voluntarios Sanos , Modelos Biológicos , Enfermedad de Parkinson , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Agonistas del Receptor de Adenosina A2/farmacocinética , Agonistas del Receptor de Adenosina A2/administración & dosificación , Agonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/farmacocinética , Antagonistas del Receptor de Adenosina A2/administración & dosificación , Antagonistas del Receptor de Adenosina A2/farmacología , Administración Oral , Antiparkinsonianos/farmacocinética , Antiparkinsonianos/administración & dosificación , Esquema de Medicación , Enfermedad de Parkinson/tratamiento farmacológico , Receptor de Adenosina A2A/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-38717958

RESUMEN

Aims: Adenosine, an important endogenous neuromodulator, contributes to a broad set of several neurodegenerative diseases. The adenosine A2A receptor (A2AR) is the most involved in neuropathological effects and plays an important role in the pathogenesis of Alzheimer's disease (AD). However, the effect of A2AR antagonist and the underlying mechanism in AD model mice remains unclear. Results: The amyloid beta (Aß)1-42-induced mice AD models were used in this study. Several behavioral experiments were performed to evaluate the improvement of AD mice treated with A2AR antagonist. For mechanism analysis, autophagy-related proteins, Kelch-like ECH-associated protein1 (Keap1)-nuclear factor erythroid-derived factor 2-related factor (Nrf2) pathway activation, and synaptic function were studied using Western blot, immunofluorescence, immunohistochemistry, transmission electron microscope, real-time quantitative PCR, and patch clamp. Pharmacological blockade of adenosine A2AR by SCH58261 (SCH) ameliorated cognitive deficits and decreased expression levels of several AD biomarkers, including Aß and hyperphosphorylation of Tau. Moreover, SCH activated the Nrf2 pathway through autophagy mediated Keap1 degradation, resulting in the improvement of neuron autophagy dysfunction, synaptic plasticity, and synaptic transmission. Innovation: Our data clarified that the SCH (an antagonist of A2AR) could increase the level of autophagy, promote the ability of antioxidative stress by the activation of Keap1-Nrf2 pathway, and improve the synaptic function in Aß1-42-induced AD mice or cell model, which provided a potential therapeutic strategy for AD. Conclusion: A2AR antagonism represents a promising strategy for the anti-AD agent development through autophagy-dependent pathway.

9.
Sleep Biol Rhythms ; 22(3): 385-394, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38962793

RESUMEN

A significant proportion of the world's population suffers from insomnia, a disorder characterized by complications in initiating and maintaining sleep. Many medications used to treat insomnia target the γ-aminobutyric acid (GABA) neurotransmitter system. However, these substances, such as benzodiazepines, induce significant adverse consequences, including dependence and memory impairment, after prolonged use. Thus, current studies are aimed at developing therapeutic hypnotics derived from natural sources that may cause less severe side effects. Heukharang is a variety of lettuce from Korea that was discovered to contain sleep-promoting compounds. Therefore, we investigated the potential effects of sub-chronic administration of Heukharang extract (FSD-LS) on sleep behavior (pentobarbital-induced sleeping test), brain wave activity and sleep architecture (electroencephalography), and physiological behavior (open-field test and rota-rod) in mice, along with radioligand binding assays (GABAA, adenosine A1 and A2A receptors). We found that FSD-LS prolonged the total sleep duration and reduced the onset time of sleep, and enhanced delta wave power and non-rapid eye movement (NREM) sleep duration, all indicating persistent sleep-enhancing effects. FSD-LS lacked adverse effects on the spontaneous locomotor activity and motor coordination of mice, unlike diazepam. Pharmacological blocking using caffeine and bicuculline supported the possible involvement of adenosine receptors in the sleep-promoting effects of FSD-LS, with partial contribution from GABA receptor activity. Overall, our study recommends FSD-LS as a potential source for the development of sleep-aiding therapeutics.

10.
ACS Chem Neurosci ; 15(6): 1286-1297, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38457777

RESUMEN

By modifying the structures of targeted A2AR antagonists and tracers, novel compounds 3, 7a, 9, 12c, and BIBD-399 were designed and synthesized. In vitro inhibition experiments demonstrated that 3, 12c, and BIBD-399 have high affinity for A2AR. [18F]3 and [18F]BIBD-399 were successfully synthesized. In terms of biological distribution, the brain uptake of [18F]MNI-444 exhibits greater than that of [18F]3 and [18F]BIBD-399. PET imaging shows that [18F]3 is off-target in the brain, while [18F]BIBD-399 and [18F]MNI-444 can be specifically imaged in regions with high A2AR expression. Differently, [18F]BIBD-399 could quickly reach equilibrium in the targeted region within 10 min after administration, while [18F]MNI-444 shows a slowly increasing trend within 2 h of administration. [18F]BIBD-399 is mainly metabolized by the liver and kidney, and there is no obvious defluorination in vivo. Additional in vitro autoradiography showed that the striatal signals of [18F]BIBD-399 and [18F]MNI-444 were inhibited by the A2AR antagonist SCH442416 but not by the A1R antagonist DPCPX, demonstrating the high A2AR binding specificity of [18F]BIBD-399. Molecular docking further confirms the high affinity of MNI-444 and BIBD-399 for A2AR. Further tMCAo imaging showed that [18F]BIBD-399 can sensitively distinguish between infarcted and noninfarcted sides, a capability not observed with [18F]MNI-444. Given its pharmacokinetic properties and the ability to identify lesion regions, [18F]BIBD-399 has potential advantages in monitoring A2AR changes, meriting further clinical investigation.


Asunto(s)
Adenosina , Receptor de Adenosina A2A , Receptor de Adenosina A2A/metabolismo , Adenosina/metabolismo , Simulación del Acoplamiento Molecular , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
11.
Front Endocrinol (Lausanne) ; 15: 1410370, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872963

RESUMEN

Background: The involvement of ATP and cAMP in sperm function has been extensively documented, but the understanding of the role of adenosine and adenosine receptors remains incomplete. This study aimed to examine the presence of adenosine A2A receptor (A2AR) and study the functional role of A2AR in human sperm. Methods: The presence and localization of A2AR in human sperm were examined by western blotting and immunofluorescence assays. The functional role of A2AR in sperm was assessed by incubating human sperm with an A2AR agonist (regadenoson) and an A2AR antagonist (SCH58261). The sperm level of A2AR was examined by western blotting in normozoospermic and asthenozoospermic men to evaluate the association of A2AR with sperm motility and in vitro fertilization (IVF) outcomes. Results: A2AR with a molecular weight of 43 kDa was detected in the tail of human sperm. SCH58261 decreased the motility, penetration ability, intracellular Ca2+ concentration, and CatSper current of human sperm. Although regadenoson did not affect these sperm parameters, it alleviated the adverse effects of SCH58261 on these parameters. In addition, the mean level of A2AR in sperm from asthenozoospermic men was lower than that in sperm from normozoospermic men. The sperm level of A2AR was positively correlated with progressive motility. Furthermore, the fertilization rate during IVF was lower in men with decreased sperm level of A2AR than in men with normal sperm level of A2AR. Conclusions: These results indicate that A2AR is important for human sperm motility and is associated with IVF outcome.


Asunto(s)
Fertilización In Vitro , Receptor de Adenosina A2A , Motilidad Espermática , Espermatozoides , Humanos , Masculino , Motilidad Espermática/efectos de los fármacos , Receptor de Adenosina A2A/metabolismo , Espermatozoides/metabolismo , Espermatozoides/efectos de los fármacos , Fertilización In Vitro/métodos , Adulto , Astenozoospermia/metabolismo , Femenino , Pirazoles/farmacología , Agonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/farmacología , Pirimidinas/farmacología , Triazoles/farmacología
12.
Br J Pharmacol ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877785

RESUMEN

BACKGROUND AND PURPOSE: The adenosine A2A receptor (A2AR) is involved in various physiological and pathological processes in the eye; however, the role of the A2AR signalling in corneal epithelial wound healing is not known. Here, the expression, therapeutic effects and signalling mechanism of A2AR in corneal epithelial wound healing were investigated using the A2AR agonist CGS21680. EXPERIMENTAL APPROACH: A2AR localization and expression during wound healing in the murine cornea were determined by immunofluorescence staining, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting. The effect of CGS21680 on corneal epithelial wound healing in the lesioned corneal and cultured human corneal epithelial cells (hCECs) by modulating cellular proliferation and migration was critically evaluated. The role of Hippo-YAP signalling in mediating the CGS21680 effect on wound healing by pharmacological inhibition of YAP signalling was explored. KEY RESULTS: A2AR expression was up-regulated after corneal epithelial injury. Topical administration of CGS21680 dose-dependently promoted corneal epithelial wound healing in the injured corneal epithelium by promoting cellular proliferation. Furthermore, CGS21680 accelerated the cellular proliferation and migration of hCECs in vitro. A2AR activation promoted early up-regulation and later down-regulation of YAP signalling molecules, and pharmacological inhibition of YAP signalling reverted CGS21680-mediated wound healing effect in vivo and in vitro. CONCLUSION AND IMPLICATIONS: A2AR activation promotes wound healing by enhancing cellular proliferation and migration through the YAP signalling pathway. A2ARs play an important role in the maintenance of corneal epithelium integrity and may represent a novel therapeutic target for facilitating corneal epithelial wound healing.

13.
Behav Brain Res ; : 115210, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159786

RESUMEN

The potential role of adenosine, a natural neuroprotective agent, and its receptors in the pathogenesis of Alzheimer's disease has been proposed. The present study aims to examine the effect of administering both an A1 receptor agonist and an A2A adenosine receptor antagonist simultaneously on memory, inflammatory factors, and PSD-95 in an LPS-induced Alzheimer's disease model in rats. Fifty-six male Wistar rats were randomly divided into seven groups: Saline, LPS, Saline + Vehicle, LPS + Vehicle, LPS + SCH58261 (A2A receptor antagonist), LPS + CPA (A1 receptor agonist), LPS + SCH58261+CPA. LPS (3mg/kg/ip) was used to cause memory impairment. Treatment was performed by intraventricular injection of CPA at a dose of 700µg and SCH-58261 at 40µg for ten days. Passive avoidance and Y-maze tests were performed to examine animals' memories. IL-10, TNF-α, and PSD-95 levels were measured in the brain using ELISA and western blot, respectively. Compared to the groups receiving each medication separately, the simultaneous administration of CPA and SCH58261 improved memory (P<0.05). Additionally, compared to the single medication groups, there was a significant increase in IL-10, PSD-95, and a significant decrease in TNF-α in the brain tissue (P<0.05). These findings suggest that the activation of A1 receptors along with A2A receptor inhibition could be a potential therapeutic strategy for Alzheimer's disease. These findings suggest that A1 receptor activation combined with A2A receptor inhibition may be a promising therapeutic approach for Alzheimer's disease.

14.
Mitochondrion ; 78: 101934, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992856

RESUMEN

A hallmark of neuroinflammatory disorders is mitochondrial dysfunction. Nevertheless, the transcriptional changes underlying this alteration are not well-defined. Microglia activation, a decrease in mitochondrion biogenesis and a subsequent alteration of the redox are common factors in diseases coursing with neuroinflammation. In the last two decades, components of the adenosinergic system have been proposed as potential therapeutic targets to combat neuroinflammation. In this research, we analyzed by RNAseq the gene expression in activated microglia treated with an adenosine A2A receptor antagonist, SCH 582561, and/or an A3 receptor agonist, 2-Cl-IB-MECA, since these receptors are deeply related to neurodegeneration and inflammation. The analysis was focused on genes related to inflammation and REDOX homeostasis. It was detected that in the three conditions (microglia treated with 2-Cl-IB-MECA, SCH 582561, and their combination) more than 40 % of the detected genes codified by the mitochondrial genome were differentially expressed (FDR < 0.05) (14/34, 16/34, and 13/34) respectively, being almost all of them (>85 %) upregulated in the microglia treated with adenosinergic compounds. Also, we analyzed the differential expression of genes related to mitochondrial function and oxidative stress codified by the nuclear genome. Additionally, we evaluated the oxygen consumption rate (OCR) of mitochondria in microglia treated with LPS and IFN-γ, both alone and in combination with adenosinergic compounds. The data showed an improvement in mitochondrial function with the antagonist of the adenosine A2A receptor, compared to the effects of pro-inflammatory stimulus, confirming a functional effect consistent with the RNAseq data.

15.
Protein J ; 43(2): 225-242, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38616227

RESUMEN

Natural G-protein-coupled receptors (GPCRs) rarely have an additional transmembrane (TM) helix, such as an artificial TM-linker that can unite two class A GPCRs in tandem as a single-polypeptide chain (sc). Here, we report that three groups of TM-linkers exist in the intervening regions of natural GPCR fusions from vertebrates: (1) the original consensus (i.e., consensus 1) and consensus 2~4 (related to GPCR itself or its receptor-interacting proteins); (2) the consensus but GPCR-unrelated ones, 1~7; and (3) the inability to apply 1/2 that show no similarity to any other proteins. In silico analyses indicated that all natural GPCR fusions from Amphibia lack a TM-linker, and reptiles have no GPCR fusions; moreover, in either the GPCR-GPCR fusion or fusion protein of (GPCR monomer) and non-GPCR proteins from vertebrates, excluding tetrapods, i.e., so-called fishes, TM-linkers differ from previously reported mammalian and are avian sequences and are classified as Groups 2 and 3. Thus, previously reported TM-linkers were arranged: Consensus 1 is [T(I/A/P)(A/S)-(L/N)(I/W/L)(I/A/V)GL(L/G)(A/T)(S/L/G)(I/L)] first identified in invertebrate sea anemone Exaiptasia diaphana (LOC110241027) and (330-SPSFLCI-L-SLL-340) identified in a tropical bird Opisthocomus hoazin protein LOC104327099 (XP_009930279.1); GPCR-related consensus 2~4 are, respectively, (371-prlilyavfc fgtatg-386) in the desert woodrat Neotoma lepida A6R68_19462 (OBS78147.1), (363-lsipfcll yiaallgnfi llfvi-385) in Gavia stellate (red-throated loon) LOC104264164 (XP_009819412.1), and (479-ti vvvymivcvi glvgnflvmy viir-504) in a snailfish GPCR (TNN80062.1); In Mammals Neotoma lepida, Aves Erythrura gouldiae, and fishes protein (respectively, OBS83645.1, RLW13346.1 and KPP79779.1), the TM-linkers are Group 2. Here, we categorized, for the first time, natural TM-linkers as rare evolutionary events among all vertebrates.


Asunto(s)
Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/clasificación , Receptores Acoplados a Proteínas G/metabolismo , Vertebrados/genética , Vertebrados/clasificación , Simulación por Computador , Secuencia de Aminoácidos , Humanos
16.
Cancer Drug Resist ; 6(4): 748-767, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38263981

RESUMEN

Tumors survive by creating a tumor microenvironment (TME) that suppresses antitumor immunity. The TME suppresses the immune system by limiting antigen presentation, inhibiting lymphocyte and natural killer (NK) cell activation, and facilitating T cell exhaustion. Checkpoint inhibitors like anti-PD-1 and anti-CTLA4 are immunostimulatory antibodies, and their blockade extends the survival of some but not all cancer patients. Extracellular adenosine triphosphate (ATP) is abundant in inflamed tumors, and its metabolite, adenosine (ADO), is a driver of immunosuppression mediated by adenosine A2A receptors (A2AR) and adenosine A2B receptors (A2BR) found on tumor-associated lymphoid and myeloid cells. This review will focus on adenosine as a key checkpoint inhibitor-like immunosuppressive player in the TME and how reducing adenosine production or blocking A2AR and A2BR enhances antitumor immunity.

17.
Acta cir. bras ; 31(2): 133-137, Feb. 2016. graf
Artículo en Inglés | LILACS | ID: lil-775559

RESUMEN

PURPOSE: To investigate the role of adenosine A2A receptors on 6-OHDA-induced motor disorder in rat. METHODS: In order to induce experimental model of Parkinson's disease, 6-hydoxydopamine (8 μg/rat) was injected unilaterally into the SNc. After three weeks as a recovery period, 6-OHDA-induced bradykinesia and balance disturbances were assessed by using beam traversal test 10, 30 and 60 minutes after intraperitoneal injections of the drugs (caffeine, SCH58261). RESULTS: The results showed that 6-OHDA (8 μg/rat, Intra-SNc) induced motor disorders of Parkinson's disease and increased elapsed time in the beam test (p<0.001). Injection of caffeine (30 mg/kg, i.p.) and SCH58261 (2 mg/kg, i.p.) attenuated elapsed time on beam (p<0.01 and p<0.001). We showed that acute administration of caffeine and SCH 58261 can improve the 6-OHDA-induced bradykinesia and motor disturbance. CONCLUSION: Adenosine A2AR antagonists improve 6-OHDA-motor deficit and this effect seems to be mediated by the inhibition of A2A presynaptic receptors in substantia nigra pars compacta.


Asunto(s)
Animales , Masculino , Enfermedad de Parkinson Secundaria/inducido químicamente , Cafeína/farmacología , Oxidopamina/efectos adversos , Antagonistas de Receptores Purinérgicos P1/farmacología , Antagonistas del Receptor de Adenosina A2/farmacología , Estudios de Tiempo y Movimiento , Ratas Wistar , Hipocinesia/inducido químicamente , Modelos Animales de Enfermedad , Trastornos Motores/inducido químicamente , Actividad Motora/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA