Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.220
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908367

RESUMEN

Insufficient telomerase activity, stemming from low telomerase reverse transcriptase (TERT) gene transcription, contributes to telomere dysfunction and aging pathologies. Besides its traditional function in telomere synthesis, TERT acts as a transcriptional co-regulator of genes pivotal in aging and age-associated diseases. Here, we report the identification of a TERT activator compound (TAC) that upregulates TERT transcription via the MEK/ERK/AP-1 cascade. In primary human cells and naturally aged mice, TAC-induced elevation of TERT levels promotes telomere synthesis, blunts tissue aging hallmarks with reduced cellular senescence and inflammatory cytokines, and silences p16INK4a expression via upregulation of DNMT3B-mediated promoter hypermethylation. In the brain, TAC alleviates neuroinflammation, increases neurotrophic factors, stimulates adult neurogenesis, and preserves cognitive function without evident toxicity, including cancer risk. Together, these findings underscore TERT's critical role in aging processes and provide preclinical proof of concept for physiological TERT activation as a strategy to mitigate multiple aging hallmarks and associated pathologies.

2.
Annu Rev Cell Dev Biol ; 32: 127-141, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27298094

RESUMEN

The brain constantly changes to store memories and adapt to new conditions. One type of plasticity that has gained increasing interest during the last years is the generation of new cells. The generation of both new neurons and glial cells contributes to neural plasticity and to some neural repair. There are substantial differences between mammalian species with regard to the extent of and mechanisms behind cell exchange in neural plasticity. Both neurogenesis and gliogenesis have several specific features in humans, which may contribute to the unique plasticity of the human brain.


Asunto(s)
Regeneración Nerviosa/fisiología , Neurogénesis , Neuroglía/citología , Plasticidad Neuronal/fisiología , Animales , Encéfalo/citología , Humanos , Oligodendroglía/citología
3.
Genes Dev ; 36(1-2): 23-37, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34916302

RESUMEN

The regenerative potential of neural stem cells (NSCs) declines during aging, leading to cognitive dysfunctions. This decline involves up-regulation of senescence-associated genes, but inactivation of such genes failed to reverse aging of hippocampal NSCs. Because many genes are up-regulated or down-regulated during aging, manipulation of single genes would be insufficient to reverse aging. Here we searched for a gene combination that can rejuvenate NSCs in the aged mouse brain from nuclear factors differentially expressed between embryonic and adult NSCs and their modulators. We found that a combination of inducing the zinc finger transcription factor gene Plagl2 and inhibiting Dyrk1a, a gene associated with Down syndrome (a genetic disorder known to accelerate aging), rejuvenated aged hippocampal NSCs, which already lost proliferative and neurogenic potential. Such rejuvenated NSCs proliferated and produced new neurons continuously at the level observed in juvenile hippocampi, leading to improved cognition. Epigenome, transcriptome, and live-imaging analyses indicated that this gene combination induces up-regulation of embryo-associated genes and down-regulation of age-associated genes by changing their chromatin accessibility, thereby rejuvenating aged dormant NSCs to function like juvenile active NSCs. Thus, aging of NSCs can be reversed to induce functional neurogenesis continuously, offering a way to treat age-related neurological disorders.


Asunto(s)
Células-Madre Neurales , Rejuvenecimiento , Animales , Hipocampo , Ratones , Neurogénesis/genética , Neuronas
4.
Annu Rev Genet ; 55: 45-69, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34310194

RESUMEN

Neurodegenerative diseases, characterized by progressive neural loss, have been some of the most challenging medical problems in aging societies. Treatment strategies such as symptom management have little impact on disease progression, while intervention with specific disease mechanisms may only slow down disease progression. One therapeutic strategy that has the potential to reverse the disease phenotype is to replenish neurons and rebuild the pathway lost to degeneration. Although it is generally believed that the central nervous system has lost the capability to regenerate, increasing evidence indicates that the brain is more plastic than previously thought, containing perhaps the biggest repertoire of cells with latent neurogenic programs in the body. This review focuses on key advances in generating new neurons through in situ neuronal reprogramming, which is tied to fundamental questions regarding adult neurogenesis, cell source, and mechanisms for neuronal reprogramming, as well as the ability of new neurons to integrate into the existing circuitry.


Asunto(s)
Enfermedades Neurodegenerativas , Neuronas , Encéfalo , Humanos , Enfermedades Neurodegenerativas/metabolismo , Neurogénesis/genética , Neuronas/metabolismo
5.
EMBO J ; 43(3): 317-338, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177500

RESUMEN

Lifelong hippocampal neurogenesis is maintained by a pool of multipotent adult neural stem cells (aNSCs) residing in the subgranular zone of the dentate gyrus (DG). The mechanisms guiding transition of NSCs from the developmental to the adult state remain unclear. We show here, by using nestin-based reporter mice deficient for cyclin D2, that the aNSC pool is established through cyclin D2-dependent proliferation during the first two weeks of life. The absence of cyclin D2 does not affect normal development of the dentate gyrus until birth but prevents postnatal formation of radial glia-like aNSCs. Furthermore, retroviral fate mapping reveals that aNSCs are born on-site from precursors located in the dentate gyrus shortly after birth. Taken together, our data identify the critical time window and the spatial location of the precursor divisions that generate the persistent population of aNSCs and demonstrate the central role of cyclin D2 in this process.


Asunto(s)
Células-Madre Neurales , Neuronas , Animales , Ratones , Ciclina D2/genética , Giro Dentado , Hipocampo , Neurogénesis
6.
EMBO J ; 42(22): e113524, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37743770

RESUMEN

For decades, the mammalian hippocampus has been the focus of cellular, anatomical, behavioral, and computational studies aimed at understanding the fundamental mechanisms underlying cognition. Long recognized as the brain's seat for learning and memory, a wealth of knowledge has been accumulated on how the hippocampus processes sensory input, builds complex associations between objects, events, and space, and stores this information in the form of memories to be retrieved later in life. However, despite major efforts, our understanding of hippocampal cognitive function remains fragmentary, and models trying to explain it are continually revisited. Here, we review the literature across all above-mentioned domains and offer a new perspective by bringing attention to the most distinctive, and generally neglected, feature of the mammalian hippocampal formation, namely, the structural separability of the two blades of the dentate gyrus into "supra-pyramidal" and "infra-pyramidal". Next, we discuss recent reports supporting differential effects of adult neurogenesis in the regulation of mature granule cell activity in these two blades. We propose a model for how differences in connectivity and adult neurogenesis in the two blades can potentially provide a substrate for subtly different cognitive functions.


Asunto(s)
Giro Dentado , Hipocampo , Animales , Giro Dentado/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Aprendizaje , Memoria/fisiología , Neurogénesis/fisiología , Mamíferos
7.
EMBO J ; 42(6): e112647, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36740997

RESUMEN

Neurogenesis in the developing and adult brain is intimately linked to remodeling of cellular metabolism. However, it is still unclear how distinct metabolic programs and energy sources govern neural stem cell (NSC) behavior and subsequent neuronal differentiation. Here, we found that adult mice lacking the mitochondrial urea metabolism enzyme, Arginase-II (Arg-II), exhibited NSC overactivation, thereby leading to accelerated NSC pool depletion and decreased hippocampal neurogenesis over time. Mechanistically, Arg-II deficiency resulted in elevated L-arginine levels and induction of a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) caused by impaired attachment of hexokinase-I to mitochondria. Notably, selective inhibition of OXPHOS ameliorated NSC overactivation and restored abnormal neurogenesis in Arg-II deficient mice. Therefore, Arg-II-mediated intracellular L-arginine homeostasis directly influences the metabolic fitness of neural stem cells that is essential to maintain neurogenesis with age.


Asunto(s)
Células-Madre Neurales , Ratones , Animales , Proliferación Celular , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Glucólisis , Homeostasis , Arginina/metabolismo
8.
Development ; 151(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38063486

RESUMEN

Cholinergic signaling plays a crucial role in the regulation of adult hippocampal neurogenesis; however, the mechanisms by which acetylcholine mediates neurogenic effects are not completely understood. Here, we report the expression of muscarinic acetylcholine receptor subtype M4 (M4 mAChR) on a subpopulation of neural precursor cells (NPCs) in the adult mouse hippocampus, and demonstrate that its pharmacological stimulation promotes their proliferation, thereby enhancing the production of new neurons in vivo. Using a targeted ablation approach, we also show that medial septum (MS) and the diagonal band of Broca (DBB) cholinergic neurons support both the survival and morphological maturation of adult-born neurons in the mouse hippocampus. Although the systemic administration of an M4-selective allosteric potentiator fails to fully rescue the MS/DBB cholinergic lesion-induced decrease in hippocampal neurogenesis, it further exacerbates the impairment in the morphological maturation of adult-born neurons. Collectively, these findings reveal stage-specific roles of M4 mAChRs in regulating adult hippocampal neurogenesis, uncoupling their positive role in enhancing the production of new neurons from the M4-induced inhibition of their morphological maturation, at least in the context of cholinergic signaling dysfunction.


Asunto(s)
Células-Madre Neurales , Receptor Muscarínico M4 , Ratones , Animales , Receptor Muscarínico M4/metabolismo , Células-Madre Neurales/metabolismo , Hipocampo/metabolismo , Neurogénesis/genética , Colinérgicos/metabolismo , Colinérgicos/farmacología , Proliferación Celular
9.
Proc Natl Acad Sci U S A ; 121(28): e2400213121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38954546

RESUMEN

The brain's neuroreparative capacity after injuries such as ischemic stroke is partly contained in the brain's neurogenic niches, primarily the subventricular zone (SVZ), which lies in close contact with the cerebrospinal fluid (CSF) produced by the choroid plexus (ChP). Despite the wide range of their proposed functions, the ChP/CSF remain among the most understudied compartments of the central nervous system (CNS). Here, we report a mouse genetic tool (the ROSA26iDTR mouse line) for noninvasive, specific, and temporally controllable ablation of CSF-producing ChP epithelial cells to assess the roles of the ChP and CSF in brain homeostasis and injury. Using this model, we demonstrate that ChP ablation causes rapid and permanent CSF volume loss in both aged and young adult brains, accompanied by disruption of ependymal cilia bundles. Surprisingly, ChP ablation did not result in overt neurological deficits at 1 mo postablation. However, we observed a pronounced decrease in the pool of SVZ neuroblasts (NBs) following ChP ablation, which occurs due to their enhanced migration into the olfactory bulb. In the middle cerebral artery occlusion model of ischemic stroke, NB migration into the lesion site was also reduced in the CSF-depleted mice. Thus, our study establishes an important role of ChP/CSF in regulating the regenerative capacity of the adult brain under normal conditions and after ischemic stroke.


Asunto(s)
Plexo Coroideo , Ventrículos Laterales , Neurogénesis , Animales , Plexo Coroideo/metabolismo , Neurogénesis/fisiología , Ratones , Ventrículos Laterales/metabolismo , Ventrículos Laterales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología , Masculino , Movimiento Celular , Ventrículos Cerebrales/metabolismo
10.
Proc Natl Acad Sci U S A ; 121(28): e2400596121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968119

RESUMEN

In adult songbirds, new neurons are born in large numbers in the proliferative ventricular zone in the telencephalon and migrate to the adjacent song control region HVC (acronym used as proper name) [A. Reiner et al., J. Comp. Neurol. 473, 377-414 (2004)]. Many of these new neurons send long axonal projections to the robust nucleus of the arcopallium (RA). The HVC-RA circuit is essential for producing stereotyped learned song. The function of adult neurogenesis in this circuit has not been clear. A previous study suggested that it is important for the production of well-structured songs [R. E. Cohen, M. Macedo-Lima, K. E. Miller, E. A. Brenowitz, J. Neurosci. 36, 8947-8956 (2016)]. We tested this hypothesis by infusing the neuroblast migration inhibitor cyclopamine into HVC of male Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) to block seasonal regeneration of the HVC-RA circuit. Decreasing the number of new neurons in HVC prevented both the increase in spontaneous electrical activity of RA neurons and the improved structure of songs that would normally occur as sparrows enter breeding condition. These results show that the incorporation of new neurons into the adult HVC is necessary for the recovery of both electrical activity and song behavior in breeding birds and demonstrate the value of the bird song system as a model for investigating adult neurogenesis at the level of long projection neural circuits.


Asunto(s)
Neurogénesis , Prosencéfalo , Vocalización Animal , Animales , Neurogénesis/fisiología , Prosencéfalo/fisiología , Prosencéfalo/citología , Vocalización Animal/fisiología , Masculino , Gorriones/fisiología , Neuronas/fisiología , Regeneración Nerviosa/fisiología
11.
Proc Natl Acad Sci U S A ; 121(8): e2318030121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346182

RESUMEN

The circadian clock throughout the day organizes the activity of neural stem cells (NSCs) in the dentate gyrus (DG) of adult hippocampus temporally. However, it is still unclear whether and how circadian signals from the niches contribute to daily rhythmic variation of NSC activation. Here, we show that norepinephrinergic (NEergic) projections from the locus coeruleus (LC), a brain arousal system, innervate into adult DG, where daily rhythmic release of norepinephrine (NE) from the LC NEergic neurons controlled circadian variation of NSC activation through ß3-adrenoceptors. Disrupted circadian rhythmicity by acute sleep deprivation leads to transient NSC overactivation and NSC pool exhaustion over time, which is effectively ameliorated by the inhibition of the LC NEergic neuronal activity or ß3-adrenoceptors-mediated signaling. Finally, we demonstrate that NE/ß3-adrenoceptors-mediated signaling regulates NSC activation through molecular clock BMAL1. Therefore, our study unravels that adult NSCs precisely coordinate circadian neural circuit and intrinsic molecular circadian clock to adapt their cellular behavior across the day.


Asunto(s)
Relojes Circadianos , Células-Madre Neurales , Humanos , Adulto , Ritmo Circadiano/fisiología , Hipocampo , Relojes Circadianos/fisiología , Receptores Adrenérgicos
12.
EMBO J ; 41(11): e110409, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35451150

RESUMEN

Astrocytes are highly abundant in the mammalian brain, and their functions are of vital importance for all aspects of development, adaption, and aging of the central nervous system (CNS). Mounting evidence indicates the important contributions of astrocytes to a wide range of neuropathies. Still, our understanding of astrocyte development significantly lags behind that of other CNS cells. We here combine immunohistochemical approaches with genetic fate-mapping, behavioural paradigms, single-cell transcriptomics, and in vivo two-photon imaging, to comprehensively assess the generation and the proliferation of astrocytes in the dentate gyrus (DG) across the life span of a mouse. Astrogenesis in the DG is initiated by radial glia-like neural stem cells giving rise to locally dividing astrocytes that enlarge the astrocyte compartment in an outside-in-pattern. Also in the adult DG, the vast majority of astrogenesis is mediated through the proliferation of local astrocytes. Interestingly, locally dividing astrocytes were able to adapt their proliferation to environmental and behavioral stimuli revealing an unexpected plasticity. Our study establishes astrocytes as enduring plastic elements in DG circuits, implicating a vital contribution of astrocyte dynamics to hippocampal plasticity.


Asunto(s)
Células-Madre Neurales , Neurogénesis , Animales , Astrocitos/fisiología , Giro Dentado , Hipocampo/fisiología , Mamíferos , Ratones , Células-Madre Neurales/fisiología , Neurogénesis/fisiología
13.
J Cell Sci ; 137(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38305737

RESUMEN

Tight control over transcription factor activity is necessary for a sensible balance between cellular proliferation and differentiation in the embryo and during tissue homeostasis by adult stem cells, but mechanistic details have remained incomplete. The homeodomain transcription factor MEIS2 is an important regulator of neurogenesis in the ventricular-subventricular zone (V-SVZ) adult stem cell niche in mice. We here identify MEIS2 as direct target of the intracellular protease calpain-2 (composed of the catalytic subunit CAPN2 and the regulatory subunit CAPNS1). Phosphorylation at conserved serine and/or threonine residues, or dimerization with PBX1, reduced the sensitivity of MEIS2 towards cleavage by calpain-2. In the adult V-SVZ, calpain-2 activity is high in stem and progenitor cells, but rapidly declines during neuronal differentiation, which is accompanied by increased stability of MEIS2 full-length protein. In accordance with this, blocking calpain-2 activity in stem and progenitor cells, or overexpression of a cleavage-insensitive form of MEIS2, increased the production of neurons, whereas overexpression of a catalytically active CAPN2 reduced it. Collectively, our results support a key role for calpain-2 in controlling the output of adult V-SVZ neural stem and progenitor cells through cleavage of the neuronal fate determinant MEIS2.


Asunto(s)
Células-Madre Neurales , Factores de Transcripción , Animales , Ratones , Calpaína/genética , Calpaína/metabolismo , Diferenciación Celular , Proliferación Celular , Endopeptidasas/metabolismo , Ventrículos Laterales/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Péptido Hidrolasas/metabolismo , Factores de Transcripción/metabolismo
14.
EMBO Rep ; 25(1): 351-377, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177913

RESUMEN

Hypothalamic Adult Neurogenesis (hAN) has been implicated in regulating energy homeostasis. Adult-generated neurons and adult Neural Stem Cells (aNSCs) in the hypothalamus control food intake and body weight. Conversely, diet-induced obesity (DIO) by high fat diets (HFD) exerts adverse influence on hAN. However, the effects of anti-obesity compounds on hAN are not known. To address this, we administered a lipidized analogue of an anti-obesity neuropeptide, Prolactin Releasing Peptide (PrRP), so-called LiPR, to mice. In the HFD context, LiPR rescued the survival of adult-born hypothalamic neurons and increased the number of aNSCs by reducing their activation. LiPR also rescued the reduction of immature hippocampal neurons and modulated calcium dynamics in iPSC-derived human neurons. In addition, some of these neurogenic effects were exerted by another anti-obesity compound, Liraglutide. These results show for the first time that anti-obesity neuropeptides influence adult neurogenesis and suggest that the neurogenic process can serve as a target of anti-obesity pharmacotherapy.


Asunto(s)
Neuropéptidos , Obesidad , Ratones , Humanos , Animales , Hormona Liberadora de Prolactina/farmacología , Hormona Liberadora de Prolactina/uso terapéutico , Obesidad/tratamiento farmacológico , Peso Corporal , Neurogénesis , Hipotálamo
15.
J Neurosci ; 44(15)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38413230

RESUMEN

Adult-born granule cells (abGCs) exhibit a transient period of elevated synaptic plasticity that plays an important role in hippocampal function. Various mechanisms have been implicated in this critical period for enhanced plasticity, including minimal GABAergic inhibition and high intrinsic excitability conferred by T-type Ca2+ channels. Here we assess the contribution of synaptic inhibition and intrinsic excitability to long-term potentiation (LTP) in abGCs of adult male and female mice using perforated patch recordings. We show that the timing of critical period plasticity is unaffected by intact GABAergic inhibition such that 4-6-week-old abGCs exhibit LTP that is absent by 8 weeks. Blocking GABAA receptors, or partial blockade of GABA release from PV and nNos-expressing interneurons by a µ-opioid receptor agonist, strongly enhances LTP in 4-week-old GCs, suggesting that minimal inhibition does not underlie critical period plasticity. Instead, the closure of the critical period coincides with a reduction in the contribution of T-type Ca2+ channels to intrinsic excitability, and a selective T-type Ca2+ channel antagonist prevents LTP in 4-week-old but not mature GCs. Interestingly, whole-cell recordings that facilitate T-type Ca2+ channel activity in mature GCs unmasks LTP (with inhibition intact) that is also sensitive to a T-type Ca2+ channel antagonist, suggesting T-type channel activity in mature GCs is suppressed by native intracellular signaling. Together these results show that abGCs use T-type Ca2+ channels to overcome inhibition, providing new insight into how high intrinsic excitability provides young abGCs a competitive advantage for experience-dependent synaptic plasticity.


Asunto(s)
Potenciación a Largo Plazo , Neuronas , Ratones , Animales , Masculino , Femenino , Neuronas/fisiología , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Hipocampo/fisiología , Ácido gamma-Aminobutírico/farmacología
16.
EMBO J ; 40(18): e107100, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34337766

RESUMEN

Adult neurogenesis enables the life-long addition of functional neurons to the hippocampus and is regulated by both cell-intrinsic molecular programs and behavioral activity. De novo DNA methylation is crucial for embryonic brain development, but its role during adult hippocampal neurogenesis has remained unknown. Here, we show that de novo DNA methylation is critical for maturation and functional integration of adult-born neurons in the mouse hippocampus. Bisulfite sequencing revealed that de novo DNA methyltransferases target neuronal enhancers and gene bodies during adult hippocampal neural stem cell differentiation, to establish neuronal methylomes and facilitate transcriptional up-regulation of neuronal genes. Inducible deletion of both de novo DNA methyltransferases Dnmt3a and Dnmt3b in adult neural stem cells did not affect proliferation or fate specification, but specifically impaired dendritic outgrowth and synaptogenesis of newborn neurons, thereby hampering their functional maturation. Consequently, abolishing de novo DNA methylation modulated activation patterns in the hippocampal circuitry and caused specific deficits in hippocampus-dependent learning and memory. Our results demonstrate that proper establishment of neuronal methylomes during adult neurogenesis is fundamental for hippocampal function.


Asunto(s)
Diferenciación Celular/genética , Metilación de ADN , Hipocampo/fisiología , Neurogénesis/genética , Células Piramidales/citología , Células Piramidales/metabolismo , Animales , Células Cultivadas , Epigénesis Genética , Regulación de la Expresión Génica , Ratones
17.
Annu Rev Neurosci ; 40: 251-272, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28441118

RESUMEN

The past two decades have seen remarkable progress in our understanding of the multifactorial drivers of hippocampal aging and cognitive decline. Recent findings have also raised the possibility of functional rejuvenation in the aged hippocampus. In this review, we aim to synthesize the mechanisms that drive hippocampal aging and evaluate critically the potential for rejuvenation. We discuss the functional changes in synaptic plasticity and regenerative potential of the aged hippocampus, followed by mechanisms of microglia aging, and assess the cross talk between these proaging processes. We then examine proyouth interventions that demonstrate significant promise in reversing age-related impairments in the hippocampus and, finally, attempt to look ahead toward novel therapeutics for brain aging.


Asunto(s)
Envejecimiento/fisiología , Hipocampo/fisiología , Rejuvenecimiento/fisiología , Animales , Humanos , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología
18.
Development ; 149(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35147186

RESUMEN

The mammalian main olfactory bulb is a crucial processing centre for the sense of smell. The olfactory bulb forms early during development and is functional from birth. However, the olfactory system continues to mature and change throughout life as a target of constitutive adult neurogenesis. Our Review synthesises current knowledge of prenatal, postnatal and adult olfactory bulb development, focusing on the maturation, morphology, functions and interactions of its diverse constituent glutamatergic and GABAergic cell types. We highlight not only the great advances in the understanding of olfactory bulb development made in recent years, but also the gaps in our present knowledge that most urgently require addressing.


Asunto(s)
Bulbo Olfatorio/crecimiento & desarrollo , Animales , Axones/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Neurogénesis , Bulbo Olfatorio/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Transducción de Señal , Sinapsis/metabolismo
19.
Development ; 149(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35132995

RESUMEN

Distinct neural stem cells (NSCs) reside in different regions of the subventricular zone (SVZ) and generate multiple olfactory bulb (OB) interneuron subtypes in the adult brain. However, the molecular mechanisms underlying such NSC heterogeneity remain largely unknown. Here, we show that the basic helix-loop-helix transcription factor Olig2 defines a subset of NSCs in the early postnatal and adult SVZ. Olig2-expressing NSCs exist broadly but are most enriched in the ventral SVZ along the dorsoventral axis complementary to dorsally enriched Gsx2-expressing NSCs. Comparisons of Olig2-expressing NSCs from early embryonic to adult stages using single cell transcriptomics reveal stepwise developmental changes in their cell cycle and metabolic properties. Genetic studies further show that cross-repression contributes to the mutually exclusive expression of Olig2 and Gsx2 in NSCs/progenitors during embryogenesis, but that their expression is regulated independently from each other in adult NSCs. Finally, lineage-tracing and conditional inactivation studies demonstrate that Olig2 plays an important role in the specification of OB interneuron subtypes. Altogether, our study demonstrates that Olig2 defines a unique subset of adult NSCs enriched in the ventral aspect of the adult SVZ.


Asunto(s)
Interneuronas/metabolismo , Ventrículos Laterales/crecimiento & desarrollo , Ventrículos Laterales/metabolismo , Células-Madre Neurales/metabolismo , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Animales , Ciclo Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Femenino , Técnicas de Inactivación de Genes , Ventrículos Laterales/embriología , Masculino , Ratones , Ratones Noqueados , Neurogénesis/genética , Bulbo Olfatorio/embriología , Factor de Transcripción 2 de los Oligodendrocitos/genética , Transducción de Señal/genética , Transcriptoma/genética
20.
FASEB J ; 38(5): e23501, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38411462

RESUMEN

In the adult mammalian brain, new neurons are continuously generated from neural stem cells (NSCs) in the subventricular zone (SVZ)-olfactory bulb (OB) pathway. YAP, a transcriptional co-activator of the Hippo pathway, promotes cell proliferation and inhibits differentiation in embryonic neural progenitors. However, the role of YAP in postnatal NSCs remains unclear. Here, we showed that YAP was present in NSCs of the postnatal mouse SVZ. Forced expression of Yap promoted NSC maintenance and inhibited differentiation, whereas depletion of Yap by RNA interference or conditional knockout led to the decline of NSC maintenance, premature neuronal differentiation, and collapse of neurogenesis. For the molecular mechanism, thyroid hormone receptor-interacting protein 6 (TRIP6) recruited protein phosphatase PP1A to dephosphorylate LATS1/2, therefore inducing YAP nuclear localization and activation. Moreover, TRIP6 promoted NSC maintenance, cell proliferation, and inhibited differentiation through YAP. In addition, YAP regulated the expression of the Sonic Hedgehog (SHH) pathway effector Gli2 and Gli1/2 mediated the effect of YAP on NSC maintenance. Together, our findings demonstrate a novel TRIP6-YAP-SHH axis, which is critical for regulating postnatal neurogenesis in the SVZ-OB pathway.


Asunto(s)
Proteínas Hedgehog , Células-Madre Neurales , Animales , Ratones , Neuronas , Neurogénesis , Encéfalo , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA