Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Ecol Appl ; 33(1): e2720, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36173257

RESUMEN

Agri-environment schemes (AESs), ecological focus areas (EFAs), and organic farming are the main tools of the common agricultural policy (CAP) to counteract the dramatic decline of farmland biodiversity in Europe. However, their effectiveness is repeatedly doubted because it seems to vary when measured at the field-versus-landscape level and to depend on the regional environmental and land-use context. Understanding the heterogeneity of their effectiveness is thus crucial to developing management recommendations that maximize their efficacy. Using ensemble species distribution models and spatially explicit field-level information on crops grown, farming practice (organic/conventional), and applied AES/EFA from the Integrated Administration and Control System, we investigated the contributions of five groups of measures (buffer areas, cover crops, extensive grassland management, fallow land, and organic farming) to habitat suitability for 15 farmland bird species in the Mulde River Basin, Germany. We used a multiscale approach to identify the scale of effect of the selected measures. Using simulated land-use scenarios, we further examined how breeding habitat suitability would change if the measures were completely removed and if their adoption by farmers increased to meet conservation-informed targets. Buffer areas, fallow land, and extensive grassland were beneficial measures for most species, but cover crops and organic farming had contrasting effects across species. While different measures acted at different spatial scales, our results highlight the importance of land-use management at the landscape level-at which most measures had the strongest effect. We found that the current level of adoption of the measures delivers only modest gains in breeding habitat suitability. However, habitat suitability improved for the majority of species when the implementation of the measures was increased, suggesting that they could be effective conservation tools if higher adoption levels were reached. The heterogeneity of responses across species and spatial scales indicated that a mix of different measures, applied widely across the agricultural landscape, would likely maximize the benefits for biodiversity. This can only be achieved if the measures in the future CAP will be cooperatively designed in a regionally targeted way to improve their attractiveness for farmers and widen their uptake.


Asunto(s)
Ecosistema , Fitomejoramiento , Animales , Granjas , Biodiversidad , Agricultura/métodos , Aves/fisiología , Productos Agrícolas , Conservación de los Recursos Naturales/métodos
2.
Agric Ecosyst Environ ; 323: 107648, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34980933

RESUMEN

Insect-pollinated legumes are rich in plant-based proteins making them a vital constituent of sustainable healthy diets for people and livestock. Furthermore, they deliver or support a range of ecosystem services that underpin agricultural production and their prevalence in agricultural landscapes is likely to increase. Under typical implementation and management, the value of legumes to pollinators has, however, been questioned. Through exploring a range of legume crops, grown as monocultures and mixtures, this study aims to identify multifunctional legume cropping systems that optimise forage availability for a diversity of wild pollinators whilst delivering a wide range of agronomic and environmental benefits. This study innovatively explores legume mixtures concurrently with monocultures of the component species using replicated small-plot field trials established in two geographical locations. Observational plots assessed the richness and abundance of floral resources, and wild pollinators (i.e. bumblebees and hoverflies) throughout the peak flowering period. Densely flowering, highly profitable legumes (e.g. Trifolium incarnatum and Trifolium mixes) supported abundant and rich pollinator assemblages. The functional makeup of floral visitors was strongly influenced by flower structure and hoverflies, with their shorter proboscises, were largely constrained to legumes with shallower corolla and open weed species. Floral richness was not a key driver of pollinator assemblages; however, clear intra-specific differences were observed in flowering phenology. Combining functionally distinct legumes with respect to flower structure and phenology, will support a wider suite of pollinating insects and help stabilise the temporal availability of forage. For highly competitive legumes (e.g. Vicia faba and Vicia sativa), planting in discrete patches is recommended to reduce the risk of less competitive species failing in mixtures. Legumes can provide valuable forage for pollinators; however, they fail to meet all resource requirements. They should therefore be used in combination with agri-environmental measures targeted to promote early-season forage (e.g. hedgerows and farm woodlands), open flowers for hoverflies, saprophytic hoverfly larval resources (e.g. ditches and ponds) and nesting habitats (e.g. undisturbed field margins).

3.
J Environ Manage ; 307: 114484, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35078067

RESUMEN

Realising the carbon (C) sequestration capacity of agricultural soils is needed to reach Paris Climate Agreement goals; thus, quantifying hedgerow planting potential to offset anthropogenic CO2 emissions is crucial for accurate climate mitigation modelling. Although being a widespread habitat in England and throughout Europe, the potential of hedgerows to contribute to net-zero targets is unclear. This is the first study to quantify the soil organic carbon (SOC) sequestration rate associated with planting hedgerows. We derived SOC stocks beneath hedgerows based on two estimation methods to assess differences from adjacent intensively managed grassland fields and how these may be affected by sampling depth and hedgerow age, as well as the SOC estimation method used. Twenty-six hedgerows on five dairy farms in Cumbria, England, were classified based on the time since their planting. We measured SOC stocks in 10 cm depth intervals in the top 50 cm of soil beneath hedgerows and in adjacent grassland fields. SOC beneath hedgerows was on average 31.3% higher than in the fields, 3.3% for 2-4 year old hedgerows, 14.4% for 10 year old, 45.2% for 37 year old, and 57.2% for older ones. We show that SOC sequestration rate beneath 37 year old hedgerows was 1.48 Mg C ha-1 yr-1 in the top 50 cm of soil. If England reaches its goal of a 40% increase in hedgerow length, 6.3 Tg CO2 will be stored in the soil over 40 years, annually offsetting 4.7%-6.4% of present-day agricultural CO2 emissions. However, the current rate of planting funded by agri-environment schemes, which today reaches only 0.02% of emissions, is too slow. Private-sector payments for ecosystem services initiatives (e.g., 'Milk Plan') show much higher rates of planting and are needed alongside agri-environment schemes to ensure hedgerow planting contributes to net-zero targets.


Asunto(s)
Secuestro de Carbono , Suelo , Agricultura , Carbono , Ecosistema
4.
Ecol Appl ; 31(5): e02322, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33655588

RESUMEN

Land protection efforts represent large societal investments and are critical to biodiversity conservation. Land protection involves a complex mosaic of areas managed by multiple organizations, using a variety of mechanisms to achieve different levels of protection. We develop an approach to synthesize, describe, and map this land protection diversity over large spatial scales. We use cluster analysis to find distinct "communities" of land protection based on the organizations involved, the strictness of land protection, and the protection mechanisms used. We also associate identified land protection communities with socioenvironmental variables. Applying these methods to describe land protection communities in counties across the coterminous United States, we recognize five different land protection communities. Two land protection communities occur in areas with low human population size at higher elevations and include a large amount of protected land primarily under federal management. These two community types are differentiated from one another by the particular federal agencies involved, the relative contributions of smaller actors, and the amount of protection by designations vs. conservation easements or covenants. Three remaining land protection communities have less overall protection. Land in one community is primarily protected by federally managed rental contracts and government managed easements; another is managed by a diversity of non-federal actors through fee-ownership and easements; and the third stands out for having the lowest amount of formally recorded protection overall. High elevation and poor quality soils are over-represented in U.S. protected lands. Rental contracts help fill in gaps in counties with high productivity soil while the U.S. Fish and Wildlife Service fills in gaps in low-elevation counties. Counties with large numbers of threatened species have more and stricter protection, particularly by regional entities like water management districts. The ability to synthesize and map land protection communities can help conservation planners tailor interventions to local contexts, position local agencies to approach collaborations more strategically, and suggest new hypotheses for researchers regarding interactions among different protection mechanisms.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Animales , Especies en Peligro de Extinción , Humanos , Propiedad , Suelo , Estados Unidos
5.
J Environ Manage ; 292: 112826, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34033986

RESUMEN

The agri-food sector is under increased pressure from consumers to improve on the sustainability of production processes. Policies that incentivise farmers to improve environmental performance, such as agri-environment schemes (AES), are increasingly important. Understanding the choice to participate in these programmes aids policymakers in designing schemes that meet participation and environmental goals. While a number of studies have investigated the decision using cross-sectional data on one or multiple locations, very few have used longitudinal data to investigate the impact of institutional changes over time. Using Ireland as a case study, this paper uses a nationally representative panel of data spanning 23 years to model the impact of scheme and policy changes on the type of farms participating in AES. This paper argues that environmental issues surrounding intensive farms (such as the loss of nutrients and sediment to water and greenhouse gas emissions) are not being optimally addressed in scheme design and further development of such programmes is needed to reduce negative environmental impacts.


Asunto(s)
Agricultura , Agricultores , Estudios Transversales , Granjas , Humanos , Irlanda
6.
Ecol Lett ; 23(10): 1488-1498, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32808477

RESUMEN

Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services. However, a comprehensive assessment of the effectiveness of different floral plantings, their characteristics and consequences for crop yield is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control (18 studies) and pollination services (17 studies) in adjacent crops in North America, Europe and New Zealand. Flower strips, but not hedgerows, enhanced pest control services in adjacent fields by 16% on average. However, effects on crop pollination and yield were more variable. Our synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively. These findings provide promising pathways to optimise floral plantings to more effectively contribute to ecosystem service delivery and ecological intensification of agriculture in the future.


Asunto(s)
Ecosistema , Polinización , Agricultura , Abejas , Biodiversidad , Europa (Continente) , Flores , Nueva Zelanda , América del Norte , Control de Plagas
7.
Agric Ecosyst Environ ; 270-271: 55-64, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31007322

RESUMEN

Hedgerows provide valuable habitats and corridors for many species in farmland, yet a lack of appropriate management may threaten their benefits to biodiversity. Although agri-environment scheme (AES) prescriptions on hedgerow management have the potential to reverse the detrimental effect of over-trimming on wildlife, their effectiveness has rarely been addressed. The aims of the study were to (i) assess moth responses to trimming regimes; and (ii) investigate the influence of the surrounding landscape on moth assemblages. We specifically tested the effectiveness of the trimming regime recommended by the targeted AES that was implemented on farms near greater horseshoe bat (Rhinolophus ferrumequinum) colonies since it represented the most sympathetic hedgerow management option among English AES options. We sampled adult micro- and macro-moths along 64 hedgerows located within 20 English farms using light traps, and classified moths into two guilds reflecting their larval food preferences, namely grass/herb- and shrub/tree-feeders. Our results suggest that reducing trimming has a positive impact on macro-moth species richness as well as on shrub/tree-feeder abundance and species richness. It also benefited four moth species that are significantly declining in Britain. Furthermore, while the proportion of woodland at a large spatial scale (3.0 km radius around the sampling sites) was positively associated with the abundance of macro-moths and grass/herb-feeders, woodland connectivity had a positive effect on the species richness of grass/herb- and shrub/tree-feeders at large and medium (1.5 km radius) scales, respectively. Both the abundance and species richness of macro-moths and the abundance of shrub/tree-feeders were negatively affected by the presence of arable fields adjacent to hedgerows. Overall, these findings reveal the wider biodiversity benefits of targeted AESs focusing on habitat improvement for R. ferrumequinum, and the importance of woodland in the wider landscape. We therefore strongly recommend implementing a multi-scale management approach (i.e. from field to landscape) through the use of adequate AES prescriptions to conserve moths in agricultural landscapes.

8.
Environ Manage ; 63(5): 647-657, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30868313

RESUMEN

Wildflower strips (WS) are proposed in many European countries as a strategy to enhance biodiversity and ecosystem services in arable fields. To create and maintain WS on nutrient-rich cultivated soils reveals challenging. Flowered species may be outcompeted by grasses due to high phosphorus content in soil. We studied during 5 years seed mixture (grass density in the seed mix) and mowing regime influenced the ability of WS to provide environmental benefits (flower provision for insects and landscape purposes, reduction of soil nutrient load) and respond to farmer concerns (noxious weed promotion, forage production). Lowered grass density increased flower abundance, but not diversity, only in the first 3 years. In the last 2 years mowing effects became determinant. Flower cover and richness were the highest under the twice-a-year mowing regime. This regime also increased forage quantity and quality. Flower colour diversity was conversely the highest where mowing occurred every two years. Potassium in the soil decreased under the twice-a-year mowing regime. Other nutrients were not affected. No management option kept noxious weed to an acceptable level after 5 years. This supports the need to test the efficacy of specific management practices such as selective clipping or spraying. Mowing WS twice a year was retained as the most favourable treatment to maintain species-rich strips with an abundant flower provision. It however implies to mow in late June, i.e. at the peak of insect abundance. It is therefore suggested to keep an unmown refuge zone when applying this management regime.


Asunto(s)
Poaceae , Suelo , Animales , Ecosistema , Europa (Continente) , Pradera , Nutrientes
9.
Agric Ecosyst Environ ; 249: 112-122, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29104334

RESUMEN

The effectiveness of organic farming for promoting biodiversity has been widely documented, yet most studies have been undertaken in temperate agroecosystems with a focus on birds, insects and plants. Despite the Mediterranean basin being a biodiversity hotspot for conservation priorities, the potential benefits of organic farming for biodiversity there has received little attention. Here, we assessed the effect of farming system, landscape characteristics and habitat structure on biodiversity in Mediterranean vineyards using two taxa with different functional traits (in terms of mobility, dispersal ability and home range size): bats and arachnids. We also tested the "intermediate landscape-complexity" hypothesis, which predicts that local conservation measures have greatest success in landscapes of intermediate complexity. Our study design involved pairs of matched organic and conventional vineyard plots in the south of France situated along a landscape complexity gradient. Abundance of arachnids were higher in organic vineyards, although arachnid species richness was positively associated with the amount of ground vegetation cover. Organic farming was ineffective on its own to enhance bat activity and species richness regardless of the landscape context. Rather, our results suggested that landscape features were more important for bats than vineyard management, with significantly higher bat activity recorded on vineyard plots located at close proximity to hedgerows and rivers. When designing conservation strategies in Mediterranean farmlands, we strongly recommend the implementation of a multi-scale approach to assure benefits for a wide range of species.

10.
Ecol Lett ; 19(10): 1228-36, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27531385

RESUMEN

Mass-flowering crops (MFCs) are increasingly cultivated and might influence pollinator communities in MFC fields and nearby semi-natural habitats (SNHs). Across six European regions and 2 years, we assessed how landscape-scale cover of MFCs affected pollinator densities in 408 MFC fields and adjacent SNHs. In MFC fields, densities of bumblebees, solitary bees, managed honeybees and hoverflies were negatively related to the cover of MFCs in the landscape. In SNHs, densities of bumblebees declined with increasing cover of MFCs but densities of honeybees increased. The densities of all pollinators were generally unrelated to the cover of SNHs in the landscape. Although MFC fields apparently attracted pollinators from SNHs, in landscapes with large areas of MFCs they became diluted. The resulting lower densities might negatively affect yields of pollinator-dependent crops and the reproductive success of wild plants. An expansion of MFCs needs to be accompanied by pollinator-supporting practices in agricultural landscapes.


Asunto(s)
Abejas/fisiología , Productos Agrícolas/fisiología , Dípteros/fisiología , Flores/fisiología , Polinización/fisiología , Animales , Europa (Continente) , Densidad de Población
11.
Proc Biol Sci ; 282(1816): 20151740, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26423846

RESUMEN

Ecological intensification has been promoted as a means to achieve environmentally sustainable increases in crop yields by enhancing ecosystem functions that regulate and support production. There is, however, little direct evidence of yield benefits from ecological intensification on commercial farms growing globally important foodstuffs (grains, oilseeds and pulses). We replicated two treatments removing 3 or 8% of land at the field edge from production to create wildlife habitat in 50-60 ha patches over a 900 ha commercial arable farm in central England, and compared these to a business as usual control (no land removed). In the control fields, crop yields were reduced by as much as 38% at the field edge. Habitat creation in these lower yielding areas led to increased yield in the cropped areas of the fields, and this positive effect became more pronounced over 6 years. As a consequence, yields at the field scale were maintained--and, indeed, enhanced for some crops--despite the loss of cropland for habitat creation. These results suggested that over a 5-year crop rotation, there would be no adverse impact on overall yield in terms of monetary value or nutritional energy. This study provides a clear demonstration that wildlife-friendly management which supports ecosystem services is compatible with, and can even increase, crop yields.


Asunto(s)
Agricultura/métodos , Animales Salvajes/fisiología , Biodiversidad , Conservación de los Recursos Naturales , Productos Agrícolas/crecimiento & desarrollo , Animales , Inglaterra
12.
Mol Ecol ; 24(8): 1668-80, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25753513

RESUMEN

Changes in agricultural practice across Europe and North America have been associated with range contractions and local extinction of bumblebees (Bombus spp.). A number of agri-environment schemes have been implemented to halt and reverse these declines, predominantly revolving around the provision of additional forage plants. Although it has been demonstrated that these schemes can attract substantial numbers of foraging bumblebees, it remains unclear to what extent they actually increase bumblebee populations. We used standardized transect walks and molecular techniques to compare the size of bumblebee populations between Higher Level Stewardship (HLS) farms implementing pollinator-friendly schemes and Entry Level Stewardship (ELS) control farms. Bumblebee abundance on the transect walks was significantly higher on HLS farms than ELS farms. Molecular analysis suggested maximum foraging ranges of 566 m for Bombus hortorum, 714 m for B. lapidarius, 363 m for B. pascuorum and 799 m for B. terrestris. Substantial differences in maximum foraging range were found within bumblebee species between farm types. Accounting for foraging range differences, B. hortorum (47 vs 13 nests/km(2) ) and B. lapidarius (45 vs 22 nests/km(2) ) were found to nest at significantly greater densities on HLS farms than ELS farms. There were no significant differences between farm type for B. terrestris (88 vs 38 nests/km(2) ) and B. pascuorum (32 vs 39 nests/km(2) ). Across all bumblebee species, HLS management had a significantly positive effect on bumblebee nest density. These results show that targeted agri-environment schemes that increase the availability of suitable forage can significantly increase the size of wild bumblebee populations.


Asunto(s)
Agricultura/métodos , Abejas , Conservación de los Recursos Naturales/métodos , Densidad de Población , Animales , Conducta Apetitiva , Abejas/genética , Inglaterra
13.
J Environ Manage ; 136: 94-102, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24576670

RESUMEN

In landscapes where private land tenure is prevalent, public funds for ecological landscape restoration are sometimes spent subsidising the revegetation of cleared land, and the protection of remnant vegetation from livestock. However, the total area treated may be unclear because such projects are not always recorded, and landholders may undertake similar activities without subsidisation. In the absence of empirical data, in the state of Victoria, Australia, a reporting assumption has been employed that suggests that wholly privately funded sites match publicly subsidised sites on a hectare for hectare basis (a so-called "x2" assumption). Conversely, the "crowding out" theory of investment in public goods such as environmental benefits suggests that public investment may supplant private motivation. Using aerial photography we mapped the extent of revegetation, native vegetation fencing and restoration on 71 representative landholdings in rural south-eastern Australia. We interviewed each landholder and recorded the age and funding model of each site. Contrary to the local "x2" reporting assumption, about 75% of the total area of the 412 sites was from subsidised sites, and that proportion was far higher for the period after 1997. However, rather than displacing unsubsidised activity, our modelling showed that landholders who had recently been subsidised for a project were more likely to have subsequently completed unsubsidised work. This indicates that, at least in terms of medium-term economic impact, the large increase in public subsidies did not diminish privately funded activity, as might be expected according to the theory of crowding out.


Asunto(s)
Conservación de los Recursos Naturales/economía , Ambiente , Inversiones en Salud/economía , Australia , Modelos Económicos , Motivación , Factores Socioeconómicos
14.
Sci Total Environ ; 948: 174509, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38986697

RESUMEN

Agri-environment and forest schemes can support landowners to conserve and enhance agricultural and forest ecosystems. The effectiveness of these schemes is often debated due to discrepancies that occur between the application of such measures and the delivery of Ecosystem Services (ES). We simulated the application of a suite of farmland and forest measures within a range of biophysical contexts in known High Nature Value landscapes across the Republic of Ireland. Three high resolution geospatial scenarios simulated the anticipated effects of the measures: i) a Baseline Scenario of current conditions, ii) an Enhanced Scenario simulated the application of measures, and iii) using the new 'Restoration Planner' freeware, an Enhanced + Connectivity Scenario simulated the application of additional targeted measures for ecosystem connectivity. Across all scenarios, we modelled and compared the responses of a range of ES including: habitat quality, carbon storage, production income and ecosystem connectivity. Multivariate analyses were used to ordinate and determine eight bundles of measures and their associated effect on ES and connectivity. These bundles were subsequently contextualised by examining unique landscape characteristics in which they occurred. The results show that measures applied under the Enhanced Scenario resulted in weak gains to carbon storage (2 %), strong gains to habitat quality (28 %), and weak losses to production income (-7 %) and ecosystem connectivity (-2 %). Similarities were observed under the Enhanced + Connectivity Scenario, though with comparably stronger gains to ecosystem connectivity (15 %). This study is the first to demonstrate the potential synergies and trade-offs to ES that can result from the integrated and targeted application of both farmland and forest measures within a variety of landscape characteristics.


Asunto(s)
Agricultura , Conservación de los Recursos Naturales , Ecosistema , Agricultura Forestal , Bosques , Agricultura Forestal/métodos , Conservación de los Recursos Naturales/métodos , Agricultura/métodos , Irlanda , Modelos Teóricos , Monitoreo del Ambiente/métodos
15.
Philos Trans R Soc Lond B Biol Sci ; 378(1873): 20220004, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36744563

RESUMEN

Insects are under pressure from agricultural intensification. To protect pollinators, conservation measures such as the EU agri-environment schemes (AES) promote planting wildflowers along fields. However, this can potentially alter disease ecology by serving as transmission hubs or by diluting infections. We tested this by measuring plant-pollinator interactions and virus infections (DWV-A, DWV-B and ABPV) across pollinator communities in agricultural landscapes over a year. AES had a direct effect on DWV-B, reducing prevalence and load in honeybees, with a tentative general dilution effect on load in early summer. DWV-A prevalence was reduced both under AES and with increasing niche overlap between competent hosts, likely via a dilution effect. By contrast, AES had no impact on ABPV, its prevalence driven by the proportion of bumblebees in the community. Epidemiological differences were also reflected in the virus phylogenies, with DWV-B showing recent rapid expansion, while DWV-A and ABPV showed slower growth rates and geographical population structure. Phylogenies indicate that all three viruses freely circulate across their host populations. Our study illustrates how complex interactions between environmental, ecological and evolutionary factors may influence wildlife disease dynamics. Supporting pollinator nutrition can mitigate the transmission of important bee diseases, providing an unexpected boost to pollinator conservation. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.


Asunto(s)
Polinización , Virus ARN , Animales , Abejas , Prevalencia , Animales Salvajes , Insectos , Agricultura
16.
J Appl Ecol ; 60(10): 2167-2176, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38505688

RESUMEN

The effectiveness of organic farming on biodiversity has been widely documented especially for plants, arthropods and birds; however, the effects of the transition period required to become an organic farm on wildlife remain poorly understood.We assessed the effects of organic farming on insectivorous bats in citrus orchards in the Republic of Cyprus employing two matched designs (conventional vs. 3-year organic-transitional and conventional vs. organic-certified) and a third unmatched design (3-year organic-transitional vs. organic-certified). We specifically investigated whether the transition period prior to full organic certification influenced bat activity with a special focus on any moderation effects from surrounding semi-natural areas.The activity of three (Pipistrellus kuhlii, Hypsugo savii and Miniopterus schreibersii) of four bat species was significantly lower in farms undergoing the transitional period than in conventional farms, and P. kuhlii and H. savii were significantly less active in organic transitional farming systems that in organic-certified ones. Furthermore, the activity of the most dominant species (P. kuhlii) was significantly higher on organic than transitional and conventional citrus orchards, thus suggesting a time-lag effect. Landscape complexity measured as the amount of semi-natural areas did not moderate the effects of farming system for any study species. Synthesis and application. The transition to organic farming had persistent detrimental effects on bats and potentially on the pest suppression services they provide. Future agri-environmental policy should consider the transition period and implement measures to mitigate any negative effects on biodiversity, alongside promoting asynchronous transition of nearby farms. Our findings further highlight the crucial need to consider the time since transition to organic farming when assessing potential benefits of organic management on biodiversity.

17.
Sci Total Environ ; 892: 164482, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37257619

RESUMEN

Agroforestry practices, such as hedgerow planting, are widely encouraged for climate change mitigation and there is an urgent need to assess their contribution to national 'net-zero' targets. This study examined the impact that planting hedgerows at different rates could make to UK net-zero goals over the next 40 years, with a focus on 2050. We analysed the carbon (C) content of native hedgerow species and determined hedge aboveground biomass (AGB) C stock via destructive sampling of hedges of known ages. AGB C stocks ranged from 8.34 Mg C ha-1 in the youngest hedges, to 40.42 Mg C ha-1 in old ones. Knowing the age of the hedgerows, we calculated their annual average AGB C sequestration rate, which was highest in young hedges (2.09 Mg C ha-1 yr-1), and lowest in 39 year old mature, regularly trimmed hedgerows (0.86 Mg C ha-1 yr-1). We present a time series of the annual AGB C sequestration rate change between hedge age categories, which increases from 2.09 Mg C ha-1 yr-1 in the first 6 years after planting, to 2.26 Mg C ha-1 yr-1 in the next 6 years, and then decreases to 0.43 Mg C ha-1 yr-1 between years 13 and 40. Our results indicate that, if encouraged widely, hedgerow planting can be a valuable tool for atmospheric CO2 capture and storage, contributing towards net-zero targets. However, current planting rates (1778.8 km yr-1) are too low to reach the net-zero goal set by the UK Climate Change Committee of increasing hedgerow length by 40 % by 2050. An increased planting rate of 7148.1 km yr-1 will achieve this goal by 2050, and, over 40 years, store 3.41 Tg CO2 in hedge AGB, or 10.13 Tg CO2 in hedge total biomass and in the soil, annually offsetting 1.5 %-4.5 % of UK annual agricultural CO2 emissions.


Asunto(s)
Dióxido de Carbono , Secuestro de Carbono , Biomasa , Dióxido de Carbono/análisis , Agricultura , Suelo , Plantas , Carbono
18.
Insects ; 14(4)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37103162

RESUMEN

European agri-environment schemes include the use of flower-rich field margins to promote on-farm biodiversity, but species mixtures rarely include Brassicaceae. As pests of oilseed rape (OSR; Brassica napus) and their parasitoids are mostly brassica specialists, including brassica 'banker plants' in the mixtures would help support these important biocontrol agents and improve pest control throughout the crop rotation. We assessed the potential of six brassicaceous plants (replicated plots grown in the field) to enhance populations of parasitoids of OSR pests whilst minimising proliferation of their pest hosts. Fodder radish (Raphanus sativus) facilitated high production of parasitoids of the pollen beetle pest (Brassicogethes aeneus) but may proliferate Ceutorhynchus weevil pests due to low parasitism. Turnip rape (B. rapa) and the B. rapa hybrid 'Tyfon' showed potential to perform a trap cropping function for pests, but their early flowering phenology resulted in B. aeneus larvae escaping parasitisation, potentially assisting proliferation of this pest. Forage rape B. napus exhibited similarly high B. aeneus parasitoid production characteristics to R. sativus but did not potentiate problems with other pests, indicating that it would be a favourable banker plant option. Careful selection of plants in field margin mixtures is therefore needed to maximise their benefits and ideally the whole crop pest-beneficial complex needs to be studied, as focus on a single major pest risks unintended consequences with other pest problems.

19.
Insects ; 13(3)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35323602

RESUMEN

Integrated pest management (IPM) has been practiced by the fruit industry for at least 30 years. Naturally occurring beneficial insects have been encouraged to thrive alongside introduced predatory insects. However, Conservation Biological Control (CBC) and augmented biocontrol through the release of large numbers of natural enemies is normally only widely adopted when a pest has become resistant to available conventional pesticides and control has begun to break down. In addition, the incorporation of wild pollinator management, essential to fruit production, has, in the past, not been a priority but is now increasingly recognized through integrated pest and pollinator management (IPPM). This review focuses on the impacts on pest regulation and pollination services in fruit crops through the delivery of natural enemies and pollinating insects by provisioning areas of fruiting crops with floral resources. Most of the studies in this review highlighted beneficial or benign impacts of floral resource prevision to fruit crops. However, placement in the landscape and spill-over of beneficial arthropods into the crop can be influential and limiting. This review also highlights the need for longer-term ecological studies to understand the impacts of changing arthropod communities over time and the opportunity to tailor wildflower mixes to specific crops for increased pest control and pollination benefits, ultimately impacting fruit growers bottom-line with less reliance on pesticides.

20.
PeerJ ; 10: e13185, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356474

RESUMEN

Background: Crop farming contributes to one of the most extensive land use activities in the world, and cropland areas continue to rise. Many vertebrate species feed on crops, which has caused an increase in human-wildlife conflicts in croplands. Crop-feeding damages the economy of local communities and causes retaliation against the responsible vertebrates in several forms, including lethal practices such as hunting and poisoning. Lethal control may cause the local extirpation of some species, affecting ecological processes and patterns. Therefore, it is necessary to find non-lethal alternatives that can protect both local economies and wildlife. Research has been conducted in Africa and Asia, focusing on elephants and primates, and the effectiveness of some non-lethal alternatives, such as chili-based repellents and beehives, is being investigated. However, there has been very little research on this topic in Central and South America. The goal of this review is to assess the current knowledge on crop damage by vertebrates in Central and South America and indicate future research directions. Survey methodology: We reviewed the available scientific literature reporting crop damage by vertebrates in Central and South America, and the Caribbean, published between 1980 and 2020, through systematic searches on Web of Science, Scopus, and Google Scholar. We analyzed the temporal and geographical distributions of the studies, the crops and vertebrate species these studies considered, the crop protection techniques used, and their effectiveness. Results: We retrieved only 113 studies on crop damage by vertebrates in Latin America, but there was an increasing trend in the number of studies published over time. Most of the studies were conducted in Brazil, Argentina, Mexico, and Costa Rica. Four orders of mammals (Rodentia, Carnivora, Artiodactyla, and Primates) and four orders of birds (Passeriformes, Columbiformes, Psittaciformes, and Anseriformes) were the most common groups of crop-feeding vertebrates. The most prominent crop was corn, which was featured in 49% of the studies. Other notable crops include rice, sorghum, and sugarcane. The most reported method for protecting crops was lethal control through hunting or poisoning. Non-lethal techniques were found to be less prevalent. Less than half of the studies that mentioned the use of protection techniques indicated their effectiveness, and only 10 studies evaluated it by performing scientific experiments and reporting their results. Conclusions: Central and South America is still underrepresented in research on vertebrate crop-feeding. There is a need for experimentation-based robust research to find crop protection techniques that minimize harm to vertebrates while effectively reducing damage to crops. While this is being studied, habitat loss and fragmentation need to be halted to prevent the native vertebrates from turning to crops for food.


Asunto(s)
Conservación de los Recursos Naturales , Vertebrados , Animales , Humanos , América Latina/epidemiología , México , Animales Salvajes , Productos Agrícolas , Brasil , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA