Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 23(8)2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35457228

RESUMEN

Collagen VI-related disorders are the second most common congenital muscular dystrophies for which no treatments are presently available. They are mostly caused by dominant-negative pathogenic variants in the genes encoding α chains of collagen VI, a heteromeric network forming collagen; for example, the c.877G>A; p.Gly293Arg COL6A1 variant, which alters the proper association of the tetramers to form microfibrils. We tested the potential of CRISPR/Cas9-based genome editing to silence or correct (using a donor template) a mutant allele in the dermal fibroblasts of four individuals bearing the c.877G>A pathogenic variant. Evaluation of gene-edited cells by next-generation sequencing revealed that correction of the mutant allele by homologous-directed repair occurred at a frequency lower than 1%. However, the presence of frameshift variants and others that provoked the silencing of the mutant allele were found in >40% of reads, with no effects on the wild-type allele. This was confirmed by droplet digital PCR with allele-specific probes, which revealed a reduction in the expression of the mutant allele. Finally, immunofluorescence analyses revealed a recovery in the collagen VI extracellular matrix. In summary, we demonstrate that CRISPR/Cas9 gene-edition can specifically reverse the pathogenic effects of a dominant negative variant in COL6A1.


Asunto(s)
Sistemas CRISPR-Cas , Colágeno Tipo VI , Alelos , Sistemas CRISPR-Cas/genética , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Mutación
2.
Mol Ther Nucleic Acids ; 35(2): 102178, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38617974

RESUMEN

Collagen VI-related dystrophies (COL6-RDs) are a group of severe, congenital-onset muscular dystrophies for which there is no effective causative treatment. Dominant-negative mutations are common in COL6A1, COL6A2, and COL6A3 genes, encoding the collagen α1, α2, and α3 (VI) chains. They act by incorporating into the hierarchical assembly of the three α (VI) chains and consequently produce a dysfunctional collagen VI extracellular matrix, while haploinsufficiency for any of the COL6 genes is not associated with disease. Hence, allele-specific transcript inactivation is a valid therapeutic strategy, although selectively targeting a pathogenic single nucleotide variant is challenging. Here, we develop a small interfering RNA (siRNA) that robustly, and in an allele-specific manner, silences a common glycine substitution (G293R) caused by a single nucleotide change in COL6A1 gene. By intentionally introducing an additional mismatch into the siRNA design, we achieved enhanced specificity toward the mutant allele. Treatment of patient-derived fibroblasts effectively reduced the levels of mutant transcripts while maintaining unaltered wild-type transcript levels, rescuing the secretion and assembly of collagen VI matrix by reducing the dominant-negative effect of mutant chains. Our findings establish a promising treatment approach for patients with the recurrent dominantly negative acting G293R glycine substitution.

3.
Mol Ther Nucleic Acids ; 35(3): 102237, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38993932

RESUMEN

Gapmer antisense oligonucleotides (ASOs) hold therapeutic promise for allele-specific silencing, but face challenges in distinguishing between mutant and wild-type transcripts. This study explores new design strategies to enhance ASO specificity, focusing on a common dominant mutation in COL6A3 gene associated with Ullrich congenital muscular dystrophy. Initial gapmer ASO design exhibited high efficiency but poor specificity for the mutant allele. We then adopted a mixmer design, incorporating additional RNA bases based on computational predictions of secondary structures for both mutant and wild-type alleles, aiming to enhance ASO accessibility to mutant transcripts. The mixmer ASO design demonstrated up to a 3-fold increase in specificity compared with the classical gapmer design. Further refinement involved introducing a nucleotide mismatch as a structural modification, resulting in a 10-fold enhancement in specificity compared with the gapmer design and a 3-fold over the mixmer design. Additionally, we identified for the first time a potential role of the RNA-induced silencing complex (RISC), alongside RNase H1, in gapmer-mediated silencing, in contrast with what was observed with mixmer ASOs, where only RNase H1 was involved. In conclusion, this study presents a novel design concept for allele-specific ASOs leveraging mRNA secondary structures and nucleotide mismatching and suggests a potential involvement of RISC in gapmer-mediated silencing.

4.
Brain Commun ; 4(6): fcac315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36751500

RESUMEN

Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by the degeneration of motor neurons. There is no treatment for this disease that affects the ability to move, eat, speak and finally breathe, causing death. In an Italian family, a heterozygous pathogenic missense variant has been previously discovered in Exon 6 of the gene TARDBP encoding the TAR DNA-binding protein 43 protein. Here, we developed a potential therapeutic tool based on allele-specific small interfering RNAs for familial amyotrophic lateral sclerosis with the heterozygous missense mutation c.1127G>A. We designed a small interfering RNA that was able to diminish specifically the expression of the exogenous Green Fluorescent Protein (TAR DNA-binding protein 43G376D mutant protein) in HEK-293T cells but not that of the Green Fluorescent Protein (TAR DNA-binding protein 43 wild-type). Similarly, this small interfering RNA silenced the mutated allele in fibroblasts derived from patients with amyotrophic lateral sclerosis but did not silence the wild-type gene in control fibroblasts. In addition, we established that silencing the mutated allele was able to strongly reduce the pathological cellular phenotypes induced by TAR DNA-binding protein 43G376D expression, such as the presence of cytoplasmic aggregates. Thus, we have identified a small interfering RNA that could be used to silence specifically the mutated allele to try a targeted therapy for patients carrying the p.G376D TAR DNA-binding protein 43 mutation.

5.
Mol Ther Nucleic Acids ; 27: 1179-1190, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35282416

RESUMEN

Dominant dynamin 2 (DNM2) mutations are responsible for the autosomal dominant centronuclear myopathy (AD-CNM), a rare progressive neuromuscular disorder ranging from severe neonatal to mild adult forms. We previously demonstrated that mutant-specific RNA interference is an efficient therapeutic strategy to rescue the muscle phenotype at the onset of the symptoms in the AD-CNM knockin-Dnm2 R465W/+ mouse model. Our objective was to evaluate the long-term benefit of the treatment along with the disease time course. We demonstrate here that the complete rescue of the muscle phenotype is maintained for at least 1 year after a single injection of adeno-associated virus expressing the mutant-specific short hairpin RNA (shRNA). This was achieved by a maintained reduction of the mutant Dnm2 transcript. Moreover, this long-term study uncovers a pathological accumulation of DNM2 protein occurring with age in the mouse model and prevented by the treatment. Conversely, a physiological DNM2 protein decrease with age was observed in muscles from wild-type mice. Therefore, this study highlights a new potential pathophysiological mechanism linked to mutant protein accumulation and underlines the importance of DNM2 protein expression level for proper muscle function. Overall, these results strengthen the allele-specific silencing approach as a robust, safe, and efficient therapy for AD-CNM.

6.
Mol Ther Nucleic Acids ; 29: 733-748, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36090755

RESUMEN

Dominant centronuclear myopathy (CNM) is a rare form of congenital myopathy associated with a wide clinical spectrum, from severe neonatal to milder adult forms. There is no available treatment for this disease due to heterozygous mutations in the DNM2 gene encoding Dynamin 2 (DNM2). Dominant DNM2 mutations also cause rare forms of Charcot-Marie-Tooth disease and hereditary spastic paraplegia, and deleterious DNM2 overexpression was noticed in several diseases. The proof of concept for therapy by allele-specific RNA interference devoted to silence the mutated mRNA without affecting the normal allele was previously achieved in a mouse model and patient-derived cells, both expressing the most frequent DNM2 mutation in CNM. In order to have versatile small interfering RNAs (siRNAs) usable regardless of the mutation, we have developed allele-specific siRNAs against two non-pathogenic single-nucleotide polymorphisms (SNPs) frequently heterozygous in the population. In addition, allele-specific siRNAs against the p.S619L DNM2 mutation, a mutation frequently associated with severe neonatal cases, were developed. The beneficial effects of these new siRNAs are reported for a panel of defects occurring in patient-derived cell lines. The development of these new molecules allows targeting the large majority of the patients harboring DNM2 mutations or overexpression by only a few siRNAs.

7.
Methods Mol Biol ; 2176: 221-230, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32865794

RESUMEN

Allele-specific gene silencing by antisense oligonucleotide (ASO) or small interference RNA (siRNA) has been used as a therapeutic approach for conditions caused by dominant gain-of-function mutations. We here present an antisense approach using gapmer ASO to diminish the dominant-negative effect in Ullrich congenital muscular dystrophy (UCMD) caused by dominant mutation in one of the COL6A genes. We provide the details of methods that our lab has used. The methods comprise the design of gapmer ASOs and the in vitro evaluation of gapmer ASOs on the specific silencing of the mutant allele at mRNA levels, and functional assessment at protein levels. A fibroblast cell line cultured from a UCMD patient carrying a dominant mutation in one of the COL6A genes is used as a cellular model.


Asunto(s)
Colágeno Tipo VI/genética , Distrofias Musculares/genética , Mutación , Oligonucleótidos/genética , Esclerosis/genética , Transfección/métodos , Alelos , Fibroblastos , Técnica del Anticuerpo Fluorescente/métodos , Genes Dominantes , Terapia Genética/métodos , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
8.
EMBO Mol Med ; 10(2): 239-253, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29246969

RESUMEN

Rapid advances in allele-specific silencing by RNA interference established a strategy of choice to cure dominant inherited diseases by targeting mutant alleles. We used this strategy for autosomal-dominant centronuclear myopathy (CNM), a rare neuromuscular disorder without available treatment due to heterozygous mutations in the DNM2 gene encoding Dynamin 2. Allele-specific siRNA sequences were developed in order to specifically knock down the human and murine DNM2-mRNA harbouring the p.R465W mutation without affecting the wild-type allele. Functional restoration was achieved in muscle from a knock-in mouse model and in patient-derived fibroblasts, both expressing the most frequently encountered mutation in patients. Restoring either muscle force in a CNM mouse model or DNM2 function in patient-derived cells is an essential breakthrough towards future gene-based therapy for dominant centronuclear myopathy.


Asunto(s)
Dinamina II/genética , Terapia Genética , Miopatías Estructurales Congénitas , ARN Interferente Pequeño/uso terapéutico , Alelos , Animales , Células Cultivadas , Humanos , Ratones , Mutación , Miopatías Estructurales Congénitas/tratamiento farmacológico , Miopatías Estructurales Congénitas/enzimología , Miopatías Estructurales Congénitas/fisiopatología
9.
Mol Ther Nucleic Acids ; 8: 416-427, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28918041

RESUMEN

Dominant-negative mutations in the genes that encode the three major α chains of collagen type VI, COL6A1, COL6A2, and COL6A3, account for more than 50% of Ullrich congenital muscular dystrophy patients and nearly all Bethlem myopathy patients. Gapmer antisense oligonucleotides (AONs) are usually used for gene silencing by stimulating RNA cleavage through the recruitment of an endogenous endonuclease known as RNase H to cleave the RNA strand of a DNA-RNA duplex. In this study, we exploited the application of the allele-specific silencing approach by gapmer AON as a potential therapy for Collagen-VI-related congenital muscular dystrophy (COL6-CMD). A series of AONs were designed to selectively target an 18-nt heterozygous genomic deletion in exon 15 of COL6A3 at the mRNA and pre-mRNA level. We showed that gapmer AONs can selectively suppress the expression of mutant transcripts at both pre-mRNA and mRNA levels, and that the latter strategy had a far stronger efficiency than the former. More importantly, we found that silencing of the mutant transcripts by gapmer AONs increased the deposition of collagen VI protein into the extracellular matrix, thus restoring functional protein production. Our findings provide a clear proof of concept for AON allele-specific silencing as a therapeutic approach for COL6-CMD.

10.
J RNAi Gene Silencing ; 1(1): 32-7, 2005 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-19771202

RESUMEN

Many dominantly inherited disorders are caused by missense amino acid substitutions resulting from a single nucleotide exchange in the encoding gene. For these disorders, where proteins expressed from the mutant alleles are often pathogenic and present throughout life, gene silencing, through intervention at the mRNA level, holds promise as a therapeutic approach. We have used mutations that underlie the slow channel congenital myasthenic syndrome (SCCMS) as a model system to study allele-specific gene silencing of RNA transcripts by DNAzymes. We tested the ability of DNAzymes to give allele-specific cleavage for i) mutations that create cleavage sites, and ii) mutations located close to a DNAzyme cleavage site that create a potential mismatch in the binding arms. For both we demonstrate selective cleavage of mutant transcripts under simulated physiological conditions. For DNAzymes with binding arm mismatches the degree of selectivity for mutant over wild type may be enhanced by optimising the mismatch position as well as the binding arm length. The optimal sites for mismatches are 1.1 and 1.2 in arm I, and 16.2 in arm II. Asymmetric binding arm DNAzymes with a shorter arm I are more discriminative. Our results show it should be possible to apply DNAzyme-mediated cleavage of mutant alleles even when the mutant does not itself create a putative cleavage site. This therapeutic approach may be well suited to dominantly inherited disorders such as SCCMS, where loss of some wild type transcripts is unlikely to have pathogenic consequences.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA