Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 578
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(16): e2321498121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38593077

RESUMEN

In recent decades, peptide amphiphiles (PAs) have established themselves as promising self-assembling bioinspired materials in a wide range of medical fields. Herein, we report a dual-therapeutic system constituted by an antimicrobial PA and a cylindrical protease inhibitor (LJC) to achieve broad antimicrobial spectrum and to enhance therapeutic efficacy. We studied two strategies: PA-LJC nanostructures (Encapsulation) and PA nanostructures + free LJC (Combination). Computational modeling using a molecular theory for amphiphile self-assembly captures and explains the morphology of PA-LJC nanostructures and the location of encapsulated LJC in agreement with transmission electron microscopy and two-dimensional (2D) NMR observations. The morphology and release profile of PA-LJC assemblies are strongly correlated to the PA:LJC ratio: high LJC loading induces an initial burst release. We then evaluated the antimicrobial activity of our nanosystems toward gram-positive and gram-negative bacteria. We found that the Combination broadens the spectrum of LJC, reduces the therapeutic concentrations of both agents, and is not impacted by the inoculum effect. Further, the Encapsulation provides additional benefits including bypassing water solubility limitations of LJC and modulating the release of this molecule. The different properties of PA-LJC nanostructures results in different killing profiles, and reduced cytotoxicity and hemolytic activity. Meanwhile, details in membrane alterations caused by each strategy were revealed by various microscopy and fluorescent techniques. Last, in vivo studies in larvae treated by the Encapsulation strategy showed better antimicrobial efficacy than polymyxin B. Collectively, this study established a multifunctional platform using a versatile PA to act as an antibiotic, membrane-penetrating assistant, and slow-release delivery vehicle.


Asunto(s)
Antiinfecciosos , Nanoestructuras , Antibacterianos/farmacología , Antibacterianos/química , Bacterias Gramnegativas , Bacterias Grampositivas , Nanoestructuras/química
2.
Proc Natl Acad Sci U S A ; 121(33): e2405454121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39106310

RESUMEN

Regeneration of hyaline cartilage in human-sized joints remains a clinical challenge, and it is a critical unmet need that would contribute to longer healthspans. Injectable scaffolds for cartilage repair that integrate both bioactivity and sufficiently robust physical properties to withstand joint stresses offer a promising strategy. We report here on a hybrid biomaterial that combines a bioactive peptide amphiphile supramolecular polymer that specifically binds the chondrogenic cytokine transforming growth factor ß-1 (TGFß-1) and crosslinked hyaluronic acid microgels that drive formation of filament bundles, a hierarchical motif common in natural musculoskeletal tissues. The scaffold is an injectable slurry that generates a porous rubbery material when exposed to calcium ions once placed in cartilage defects. The hybrid material was found to support in vitro chondrogenic differentiation of encapsulated stem cells in response to sustained delivery of TGFß-1. Using a sheep model, we implanted the scaffold in shallow osteochondral defects and found it can remain localized in mechanically active joints. Evaluation of resected joints showed significantly improved repair of hyaline cartilage in osteochondral defects injected with the scaffold relative to defects injected with the growth factor alone, including implantation in the load-bearing femoral condyle. These results demonstrate the potential of the hybrid biomimetic scaffold as a niche to favor cartilage repair in mechanically active joints using a clinically relevant large-animal model.


Asunto(s)
Condrogénesis , Andamios del Tejido , Factor de Crecimiento Transformador beta1 , Animales , Andamios del Tejido/química , Ovinos , Factor de Crecimiento Transformador beta1/metabolismo , Condrogénesis/efectos de los fármacos , Polímeros/química , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Cartílago Articular/efectos de los fármacos , Regeneración/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Humanos , Materiales Biocompatibles/química , Condrocitos/efectos de los fármacos , Cartílago Hialino/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(35): e2405877121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39163338

RESUMEN

The advent of drones has revolutionized various aspects of our lives, and in the realm of biological systems, molecular drones hold immense promise as "magic bullets" for major diseases. Herein, we introduce a unique class of fluorinated macromolecular amphiphiles, designed in the shape of jellyfish, serving as exemplary molecular drones for fluorine-19 MRI (19F MRI) and fluorescence imaging (FLI)-guided drug delivery, status reporting, and targeted cancer therapy. Functioning akin to their mechanical counterparts, these biocompatible molecular drones autonomously assemble with hydrophobic drugs to form uniform nanoparticles, facilitating efficient drug delivery into cells. The status of drug delivery can be tracked through aggregation-induced emission (AIE) of FLI and 19F MRI. Furthermore, when loaded with a heptamethine cyanine fluorescent dye IR-780, these molecular drones enable near-infrared (NIR) FL detection of tumors and precise delivery of the photosensitizer. Similarly, when loaded with doxorubicin (DOX), they enable targeted chemotherapy with fluorescence resonance energy transfer (FRET) FL for real-time status updates, resulting in enhanced therapeutic efficacy. Compared to conventional drug delivery systems, molecular drones stand out for their simplicity, precise structure, versatility, and ability to provide instantaneous status updates. This study presents prototype molecular drones capable of executing fundamental drone functions, laying the groundwork for the development of more sophisticated molecular machines with significant biomedical implications.


Asunto(s)
Doxorrubicina , Sistemas de Liberación de Medicamentos , Humanos , Animales , Sistemas de Liberación de Medicamentos/métodos , Doxorrubicina/química , Doxorrubicina/farmacología , Halogenación , Ratones , Nanopartículas/química , Colorantes Fluorescentes/química , Sustancias Macromoleculares/química , Imagen Óptica/métodos , Imagen por Resonancia Magnética con Fluor-19/métodos , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral
4.
Proc Natl Acad Sci U S A ; 120(46): e2312907120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37922331

RESUMEN

Metallosurfactants, defined here as hydrophobic metal-containing groups embedded in hydrophilic units when dispersed in water, emanate in the formation of metallomicelles. This approach continues to attract great interest for its ability to serve as micellar catalysts for various metal-mediated chemical transformations in water. Indeed, relevant to green chemistry, micellar catalysis plays a preeminent function as a replacement for organic solvents in a variety of chemical reactions. There are several methods for the interaction of metal complexes (catalysts or catalyst precursors) and surfactants for producing micellar aggregates. A very effective manner for achieving this involves the direct bonding of the metal center to the amphiphilic polymeric materials. Herein, we describe the synthesis of a metallosurfactant containing a palladium complex covalently incorporated into a CO2-based triblock polycarbonate derived using a dicarboxylic acid chain-transfer agent. This amphiphilic polycarbonate was shown to self-assemble in water to provide uniform and spherical micelles, where the catalytic metal center is located in the hydrophobic portion of the micelle. The resulting metallosurfactant was demonstrated to effectively catalyze carbon-carbon coupling reactions at very low catalyst loadings.

5.
Proc Natl Acad Sci U S A ; 119(43): e2211042119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252006

RESUMEN

Various forms of ecological monitoring and disease diagnosis rely upon the detection of amphiphiles, including lipids, lipopolysaccharides, and lipoproteins, at ultralow concentrations in small droplets. Although assays based on droplets' wettability provide promising options in some cases, their reliance on the measurements of surface and bulk properties of whole droplets (e.g., contact angles, surface tensions) makes it difficult to monitor trace amounts of these amphiphiles within small-volume samples. Here, we report a design principle in which self-assembled monolayer-functionalized microstructured surfaces coated with silicone oil create locally disordered regions within a droplet's contact lines to effectively concentrate amphiphiles within the areas that dominate the droplet static friction. Remarkably, such surfaces enable the ultrasensitive, naked-eye detection of amphiphiles through changes in the droplets' sliding angles, even when the concentration is four to five orders of magnitude below their critical micelle concentration. We develop a thermodynamic model to explain the partitioning of amphiphiles at the contact line by their cooperative association within the disordered, loosely packed regions of the self-assembled monolayer. Based on this local analyte concentrating effect, we showcase laboratory-on-a-chip surfaces with positionally dependent pinning forces capable of both detecting industrially and biologically relevant amphiphiles (e.g., bacterial endotoxins), as well as sorting aqueous droplets into discrete groups based on their amphiphile concentrations. Furthermore, we demonstrate that the sliding behavior of amphiphile-laden aqueous droplets provides insight into the amphiphile's effective length, thereby allowing these surfaces to discriminate between analytes with highly disparate molecular sizes.


Asunto(s)
Micelas , Aceites de Silicona , Lipopolisacáridos , Tensión Superficial , Agua , Humectabilidad
6.
Small ; : e2403720, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169705

RESUMEN

Positional information is key for particles to adapt their behavior based on their position in external concentration gradients, and thereby self-organize into complex patterns. Here, position-dependent behavior of floating surfactant droplets that self-organize in a pH gradient is demonstrated, using the Marangoni effect to translate gradients of surface-active molecules into motion. First, fields of surfactant microliter-droplets are generated, in which droplets floating on water drive local, outbound Marangoni flows upon dissolution of surfactant and concomitantly grow myelin filaments. Next, a competing surfactant based on a hydrolysable amide is introduced, which is more surface active than the myelin surfactant and thereby inhibits the local Marangoni flows and myelin growth from the droplets. Upon introducing a pH gradient, the amide surfactant hydrolyses in the acidic region, so that the local Marangoni flows and myelin growth are reestablished. The resulting combination of local and global surface tension gradients produces a region of myelin-growing droplets and a region where myelin growth is suppressed, separated by a wave front of closely packed droplets, of which the position can be controlled by the pH gradient. Thereby, it is shown how "French flag"-patterns, in synthetic settings typically emerging from reaction-diffusion systems, can also be established via surfactant droplet systems.

7.
Small ; 20(24): e2310234, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38155520

RESUMEN

The development of chiral nanostructures-based supramolecular catalysts with satisfied enantioselectivity remains a significantly more challenging task. Herein, the synthesis and self-assembly of various amino acid amphiphiles as chiral supramolecular catalysts after metal ion coordination is reported and systematically investigate their enantioselectivity in asymmetric Diels-Alder reactions. In particular, the self-assembly of l/d-phenylglycine-based amphiphiles (l/d-PhgC16) and Cu(II) into chiral supramolecular catalysts in the methanol/water solution mixture is described, which features the interesting M/P nanohelices (diameter ≈8 nm) and mostly well-aligned M/P nanoribbons (NRs). The M/P supramolecular catalysts show both high but inverse enantioselectivity (>90% ee) in Diels-Alder reactions, while their monomeric counterparts display nearly racemic products. Analysis of the catalytic results suggests the outstanding enantioselectivities are closely related to the specific stereochemical microenvironment provided by the arrangement of the amphiphiles in the supramolecular assembly. Based on the experimental evidence of chirality transfer from supramolecular nanohelices to coordinated Cu(II) and substrate aza-chalcone and the molecular dynamics simulations, the enantioselective catalytic mechanisms are proposed. Moreover, the relationships between molecular structures of amino acid amphiphiles (the hydrophilic head group and hydrophobic alkyl chain length) in supramolecular catalysts and enantioselectivity in Diels-Alder reactions are elaborated.

8.
Small ; 20(33): e2400063, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38461517

RESUMEN

Most mechanochromic luminescent compounds are crystalline and highly hydrophobic; however, mechanochromic luminescent molecular assemblies comprising amphiphilic molecules have rarely been explored. This study investigated mechanochromic luminescent supramolecular fibers composed of dumbbell-shaped 9,10-bis(phenylethynyl)anthracene-based amphiphiles without any tetraethylene glycol (TEG) substituents or with two TEG substituents. Both amphiphiles formed water-insoluble supramolecular fibers via linear hydrogen bond formation. Both compounds acquired water solubility when solid samples composed of supramolecular fibers are ground. Grinding induces the conversion of 1D supramolecular fibers into micellar assemblies where fluorophores can form excimers, thereby resulting in a large redshift in the fluorescence spectra. Excimer emission from the ground amphiphile without TEG chains is retained after dissolution in water. The micelles are stable in water because hydrophilic dendrons surround the hydrophobic luminophores. By contrast, when water is added to a ground amphiphile having TEG substituents, fragmented supramolecular fibers with the same molecular arrangement as the initial supramolecular fibers are observed, because fragmented fibers are thermodynamically preferable to micelles as the hydrophobic arrays of fluorophores are covered with hydrophilic TEG chains. This leads to the recovery of the initial fluorescent properties for the latter amphiphile. These supramolecular fibers can be used as practical mechanosensors to detect forces at the mesoscale.

9.
Chemistry ; : e202402365, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082377

RESUMEN

The creation of complex hollow nanostructures with precise control over size and shape represents a great challenge in supramolecular soft materials. Here, we have further developed a bioinspired methodology for the formation of aqueous nanotubes of well-defined dimensions and pore coating through the self-assembly of amphiphiles that are chemically programmed with complementary nucleobases. These nanotubes are endowed with a hydrophobic lumen, whose diameter can be expanded as a function of the monomer length, in which apolar dyes can be efficiently encapsulated.

10.
Chemistry ; 30(11): e202303515, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38200652

RESUMEN

We report on the synthesis and characterization of a family of three water-soluble bola-amphiphilic zinc-porphyrin-perylenebisimide triads containing oligo carboxylic-acid capped Newkome dendrons in the periphery. Variations of the perylenebisimide (PBI) core geometry and dendron size (G1 and G2 dendrons with 3- and 9-carboxylic acid groups respectively) allow for tuning the supramolecular aggregation behavior with respect to variation of the molecular architecture. The triads show good solubility in basic aqueous media and aggregation to supramolecular assemblies. Theoretical investigations at the DFT level of theory accompanied by electrochemical measurements unravel the geometric and electronic structure of the amphiphiles. UV/Vis and fluorescence titrations with varying amounts of THF demonstrate disaggregation.

11.
Chemistry ; 30(7): e202303194, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967312

RESUMEN

Developing peptide-based materials with controlled morphology is a critical theme of soft matter research. Herein, we report the formation of a novel, patterned cross-ß structure formed by self-assembled C3 -symmetric peptide amphiphiles based on diphenylalanine and benzene-1,3,5-tricarboxamide (BTA). The cross-ß motif is an abundant structural element in amyloid fibrils and aggregates of fibril-forming peptides, including diphenylalanine. The incorporation of topological constraints on one edge of the diphenylalanine fragment limits the number of ß-strands in ß-sheets and leads to the creation of an unconventional offset-patterned cross-ß structure consisting of short 3×2 parallel ß-sheets stabilized by phenylalanine zippers. In the reported assembly, two patterned cross-ß structures bind parallel arrays of BTA stacks in a superstructure within a single-molecule-thick nanoribbon. In addition to a threefold network of hydrogen bonds in the BTA stack, each molecule becomes simultaneously bound by hydrogen bonds from three ß-sheets and four phenylalanine zippers. The diffuse layer of alkyl chains with terminal polar groups prevents the nanoribbons from merging and stabilizes cross-ß-structure in water. Our results provide a simple approach to the incorporation of novel patterned cross-ß motifs into supramolecular superstructures and shed light on the general mechanism of ß-sheet formation in C3 -symmetric peptide amphiphiles.


Asunto(s)
Amiloide , Péptidos , Estructura Secundaria de Proteína , Péptidos/química , Amiloide/química , Conformación Proteica en Lámina beta , Fenilalanina
12.
Chemistry ; 30(16): e202303555, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38205907

RESUMEN

Compartmentalization protected biomolecules from the fluctuating environments of early Earth. Although contemporary cells mostly use phospholipid-based bilayer membranes, the utility of non-bilayer compartments was not ruled out during the prebiotic and modern eras. In the present study, we demonstrated the prebiotic synthesis of lipidated cationic amino acid-based amphiphiles [lauryl ester of lysine (LysL); ornithine (OrnL); and 2,4-diamino butyric acid (DabL)] using model dry-down reaction. These amphiphiles self-assemble into micellar membranes. However, the OrnL and DabL-based micelles undergo pH-responsive transformation to lipid droplet-like morphologies, a modelcompartment in the prebiotic Earth. These cationic droplets encapsulated prebiotic molecules (isoprene) and assisted electron transfer reaction to synthesize isoprenoid derivatives at primitive Earth conditions. The self-assembly of prebiotic amphiphiles, their transformation to droplet compartments, and droplet-assisted C-C bond formation reaction might have helped the evolution to synthesize various biomolecules required for the origin of life.


Asunto(s)
Aminoácidos , Aminoácidos/química , Sustancias Macromoleculares
13.
Mol Pharm ; 21(9): 4498-4509, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39069731

RESUMEN

Recent emphasis on the design of drug delivery systems typically involves the effective transport of a pharmaceutical substance to the disease site with the desired therapeutic efficacy and minimal cytotoxicity. Organelle-targeted peptides have become an integral part of designing an important class of prodrug/prodrug assemblies for new supramolecular therapeutics owing to their favorable biocompatibility, synthetic ease, tunability of their aggregation behavior, and desired functionalization for site-specificity. However, it is still limited due to the low selectivity. We designed a folic acid-functionalized ß-cyclodextrin (FA-CD) as a delivery platform for specific and selective delivery of organelle-targeted (such as microtubule, lysosome, and mitochondria) peptide chemotherapeutics to the folate receptor (FR) overexpressing cancer cell lines. Low toxicity was found for the FA-CD and organelle-targeted peptide inclusion complex in FR-negative normal cells, but superior inhibition of tumor growth with no in vivo toxicity was found for the inclusion complex in the xenograft tumor model.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ácido Fólico , Péptidos , Ensayos Antitumor por Modelo de Xenoinjerto , beta-Ciclodextrinas , Ácido Fólico/química , Humanos , beta-Ciclodextrinas/química , Animales , Ratones , Sistemas de Liberación de Medicamentos/métodos , Péptidos/química , Péptidos/farmacología , Línea Celular Tumoral , Orgánulos/efectos de los fármacos , Orgánulos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Receptores de Folato Anclados a GPI/metabolismo , Profármacos/química , Profármacos/farmacología , Profármacos/administración & dosificación , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Femenino
14.
Drug Dev Res ; 85(4): e22215, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38837718

RESUMEN

Breast cancer is the second most frequent cancer among women. Out of various subtypes, triple-negative breast cancers (TNBCs) account for 15% of breast cancers and exhibit more aggressive characteristics as well as a worse prognosis due to their proclivity for metastatic progression and limited therapeutic strategies. It has been demonstrated that AMP-activated protein kinase (AMPK) has context-specific protumorigenic implications in breast cancer cells. A set of glucosyltriazole amphiphiles, consisting of acetylated (9a-h) and unmodified sugar hydroxyl groups (10a-h), were synthesized and subjected to in vitro biological evaluation. Among them, 9h exhibited significant anticancer activity against MDA-MB-231, MCF-7, and 4T1 cell lines with IC50 values of 12.5, 15, and 12.55 µM, respectively. Further, compound 9h was evaluated for apoptosis and cell cycle analysis in in vitro models (using breast cancer cells) and antitumour activity in an in vivo model (orthotopic mouse model using 4T1 cells). Annexin-V assay results revealed that treatment with 9h caused 34% and 28% cell death at a concentration of 15 or 7.5 µM, respectively, while cell cycle analysis demonstrated that 9h arrested the cells at the G2/M or G1 phase in MCF-7, MDA-MB-231 and 4T1 cells, respectively. Further, in vivo, investigation showed that compound 9h exhibited equipotent as doxorubicin at 7.5 mg/kg, and superior efficacy than doxorubicin at 15 mg/kg. The mechanistic approach revealed that 9h showed potent anticancer activity in an in vivo orthotopic model (4T1 cells) partly by suppressing the AMPK activation. Therefore, modulating the AMPK activation could be a probable approach for targeting breast cancer and mitigating cancer progression.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Antineoplásicos , Apoptosis , Transducción de Señal , Triazoles , Humanos , Femenino , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Triazoles/farmacología , Transducción de Señal/efectos de los fármacos , Ratones , Antineoplásicos/farmacología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Ratones Endogámicos BALB C , Células MCF-7 , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474005

RESUMEN

Perturbations in bilayer material properties (thickness, lipid intrinsic curvature and elastic moduli) modulate the free energy difference between different membrane protein conformations, thereby leading to changes in the conformational preferences of bilayer-spanning proteins. To further explore the relative importance of curvature and elasticity in determining the changes in bilayer properties that underlie the modulation of channel function, we investigated how the micelle-forming amphiphiles Triton X-100, reduced Triton X-100 and the HII lipid phase promoter capsaicin modulate the function of alamethicin and gramicidin channels. Whether the amphiphile-induced changes in intrinsic curvature were negative or positive, amphiphile addition increased gramicidin channel appearance rates and lifetimes and stabilized the higher conductance states in alamethicin channels. When the intrinsic curvature was modulated by altering phospholipid head group interactions, however, maneuvers that promote a negative-going curvature stabilized the higher conductance states in alamethicin channels but destabilized gramicidin channels. Using gramicidin channels of different lengths to probe for changes in bilayer elasticity, we found that amphiphile adsorption increases bilayer elasticity, whereas altering head group interactions does not. We draw the following conclusions: first, confirming previous studies, both alamethicin and gramicidin channels are modulated by changes in lipid bilayer material properties, the changes occurring in parallel yet differing dependent on the property that is being changed; second, isolated, negative-going changes in curvature stabilize the higher current levels in alamethicin channels and destabilize gramicidin channels; third, increases in bilayer elasticity stabilize the higher current levels in alamethicin channels and stabilize gramicidin channels; and fourth, the energetic consequences of changes in elasticity tend to dominate over changes in curvature.


Asunto(s)
Gramicidina , Membrana Dobles de Lípidos , Octoxinol , Gramicidina/farmacología , Membrana Dobles de Lípidos/metabolismo , Elasticidad , Peptaiboles
16.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39337557

RESUMEN

Cutaneous metastatic melanoma (CMM) is the most aggressive form of skin cancer with a poor prognosis. Drug-induced secondary tumorigenesis and the emergency of drug resistance worsen an already worrying scenario, thus rendering urgent the development of new treatments not dealing with mutable cellular processes. Triphenyl phosphonium salts (TPPSs), in addiction to acting as cytoplasmic membrane disruptors, are reported to be mitochondria-targeting compounds, exerting anticancer effects mainly by damaging their membranes and causing depolarization, impairing mitochondria functions and their DNA, triggering oxidative stress (OS), and priming primarily apoptotic cell death. TPP-based bola amphiphiles are capable of self-forming nanoparticles (NPs) with enhanced biological properties, as commonly observed for nanomaterials. Already employed in several other biomedical applications, the per se selective potent antibacterial effects of a TPP bola amphiphile have only recently been demonstrated on 50 multidrug resistant (MDR) clinical superbugs, as well as its exceptional and selective anticancer properties on sensitive and MDR neuroblastoma cells. Here, aiming at finding new molecules possibly developable as new treatments for counteracting CMM, the effects of this TPP-based bola amphiphile (BPPB) have been investigated against two BRAF mutants CMM cell lines (MeOV and MeTRAV) with excellent results (even IC50 = 49 nM on MeOV after 72 h treatment). With these findings and considering the low cytotoxicity of BPPB against different mammalian non-tumoral cell lines and red blood cells (RBCs, selectivity indexes up to 299 on MeOV after 72 h treatment), the possible future development of BPPB as topical treatment for CMM lesions was presumed. With this aim, a biodegradable hyaluronic acid (HA)-based hydrogel formulation (HA-BPPB-HG) was prepared without using any potentially toxic crosslinking agents simply by dispersing suitable amounts of the two ingredients in water and sonicating under gentle heating. HA-BPPB-HA was completely characterized, with promising outcomes such as high swelling capability, high porosity, and viscous elastic rheological behavior.


Asunto(s)
Proliferación Celular , Ácido Hialurónico , Hidrogeles , Melanoma , Proteínas Proto-Oncogénicas B-raf , Especies Reactivas de Oxígeno , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Hidrogeles/química , Hidrogeles/farmacología , Melanoma/tratamiento farmacológico , Melanoma/patología , Melanoma/metabolismo , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Mutación , Nanopartículas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología
17.
Molecules ; 29(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38792147

RESUMEN

The organization of modifiable and functional building components into various superstructures is of great interest due to their broad applications. Supramolecular self-assembly, based on rationally designed building blocks and appropriately utilized driving forces, is a promising and widely used strategy for constructing superstructures with well-defined nanostructures and diverse morphologies across multiple length scales. In this study, two homogeneous organohydrogels with distinct appearances were constructed by simply mixing polyoxometalate (phosphomolybdic acid, HPMo) and a double-tailed zwitterionic quaternary ammonium amphiphile in a binary solvent of water and dimethyl sulfoxide (DMSO). The delicate balance between electrostatic attraction and repulsion of anionic HPMo clusters and zwitterionic structures drove them to co-assemble into homogeneous organohydrogels with diverse microstructures. Notably, the morphologies of the organohydrogels, including unilamellar vesicles, onion-like vesicles, and spherical aggregates, can be controlled by adjusting the ionic interactions between the zwitterionic amphiphiles and phosphomolybdic acid clusters. Furthermore, we observed an organohydrogel fabricated with densely stacked onion-like structures (multilamellar vesicles) consisting of more than a dozen layers at certain proportions. Additionally, the relationships between the self-assembled architectures and the intermolecular interactions among the polyoxometalate, zwitterionic amphiphile, and solvent molecules were elucidated. This study offers valuable insights into the mechanisms of polyoxometalate-zwitterionic amphiphile co-assembly, which are essential for the development of materials with specific structures and emerging functionalities.

18.
Molecules ; 29(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38893538

RESUMEN

Protocell models play a pivotal role in the exploration of the origin of life. Vesicles are one type of protocell model that have attracted much attention. Simple single-chain amphiphiles (SACs) and organic small molecules (OSMs) possess primitive relevance and were most likely the building blocks of protocells on the early Earth. OSM@SAC vesicles have been considered to be plausible protocell models. Pyrite (FeS2), a mineral with primitive relevance, is ubiquitous in nature and plays a crucial role in the exploration of the origin of life in the mineral-water interface scenario. "How do protocell models based on OSM@SAC vesicles interact with a mineral-water interface scenario that simulates a primitive Earth environment" remains an unresolved question. Hence, we select primitive relevant sodium monododecyl phosphate (SDP), isopentenol (IPN) and pyrite (FeS2) mineral particles to build a protocell model. The model investigates the basic physical and chemical properties of FeS2 particles and reveals the effects of the size, content and duration of interaction of FeS2 particles on IPN@SDP vesicles. This deepens the understanding of protocell growth mechanisms in scenarios of mineral-water interfaces in primitive Earth environments and provides new information for the exploration of the origin of life.

19.
Molecules ; 29(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39274851

RESUMEN

A surfactant's equilibrium spreading pressure (ESP) is the maximum decrease in surface tension achievable at equilibrium below the Krafft point. Difficulties in measuring the ESP have been noted previously but no well-established experimental protocols to overcome them exist. We present a case study of three solid amphiphiles with different propensities to spread on the air-water interface. Starting with the partially water soluble n-dodecanol (C12H25OH), which spreads instantaneously. The strong Marangoni flows associated with the spreading result in the dislocating of the Wilhelmy plate or crystals attaching to it. A temporary mechanical barrier in front of the spreading crystals mitigates the flows disturbing the plate. Presaturating the subphase with the amphiphile prevents the establishment of dynamic steady states, reduces the standard error by a factor of three and causes faster equilibration. The perfluoroalkylated analog of dodecanol (11:1 fluorotelomer alcohol, C11F23CH2OH) is slow spreading. With surfactant crystals on the interface, the surface pressure reaches a pre-equilibrium plateau within an hour, followed by equilibration on day-long timescales. We show that it is better to estimate the ESP by averaging the values of multiple pre-equilibrium plateaus rather than waiting for equilibrium to be established. Finally, the nonspreading amphiphile DPPC exhibits a large barrier for the mass transfer from the DPPC crystal to the aqueous surface. This was overcome by introducing a volatile, water-immiscible solvent deposited on the surface next to the crystals to facilitate the spreading process and leave behind a monolayer.

20.
Angew Chem Int Ed Engl ; 63(2): e202314960, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37992201

RESUMEN

Herein, we report a novel enzymatic dimerization-induced self-assembly (e-DISA) procedure that converts alanine-tyramine conjugates into highly uniform enzyme-loaded nanoparticles (NPs) or nanocontainers by the action of horseradish peroxidase (HRP) in an aqueous medium under ambient conditions. The NP formation was possible with both enantiomers of alanine, and the average diameter could be varied from 150 nm to 250 nm (with a 5-12 % standard deviation of as-prepared samples) depending on the precursor concentration. About 60 % of the added HRP enzyme was entrapped within the NPs and was subsequently utilized for post-synthetic modification of the NPs with phenolic compounds such as tyramine or tannic acid. One-pot multi-enzyme entrapment of glucose oxidase (GOx) and peroxidase (HRP) within the NPs was also achieved. These GOx-HRP loaded NPs allowed multimodal detection of glucose, including that present in human saliva, with a limit of detection (LoD) of 740 nM through fluorimetry. The NPs exhibited good cytocompatibility and were stable to changes in pH (acidic to basic), temperature, ultrasonication, and even the presence of organic solvent (EtOH) to a certain extent, since they are stabilized by intermolecular hydrogen bonding, π-π, and CH-π interactions. The proposed e-DISA procedure can be widely expanded through the design of diverse enzyme-responsive precursors.


Asunto(s)
Nanopartículas , Tiramina , Humanos , Tiramina/química , Dimerización , Glucosa , Peroxidasa de Rábano Silvestre/química , Glucosa Oxidasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA