Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474612

RESUMEN

Layers of TiO2 nanotubes formed by the anodization process represent an area of active research in the context of innovative energy conversion and storage systems. Titanium nanotubes (TNTs) have attracted attention because of their unique properties, especially their high surface-to-volume ratio, which makes them a desirable material for various technological applications. The anodization method is widely used to produce TNTs because of its simplicity and relative cheapness; the method enables precise control over the thickness of TiO2 nanotubes. Anodization can also be used to create decorative and colored coatings on titanium nanotubes. In this study, a combined structure including anodic TiO2 nanotubes and SrTiO3 particles was fabricated using chemical synthesis techniques. TiO2 nanotubes were prepared by anodizing them in ethylene glycol containing NH4F and H2O while applying a voltage of 30 volts. An anode nanotube array heat-treated at 450 °C was then placed in an autoclave filled with dilute SrTiO3 solution. Scanning electron microscopy (SEM) analysis showed that the TNTs were characterized by clear and open tube ends, with an average outer diameter of 1.01 µm and an inner diameter of 69 nm, and their length is 133 nm. The results confirm the successful formation of a structure that can be potentially applied in a variety of applications, including hydrogen production by the photocatalytic decomposition of water under sunlight.

2.
Environ Res ; 220: 115221, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36610538

RESUMEN

The efficient catalytic activity and strong durability possibility of carbon-based three-dimensional fiber materials remains an important challenge in Electro-Fenton advanced oxidation technology. Graphite felt (GF) is a promising electrode material for 2-electron oxygen reduction reaction but with higher catalytic inertia. Anodizing modification of GF has been proved to enhance it electro-catalytic property, but the disadvantages of excessive or insufficient oxidation of GF need further improved. Herein, the surface reconstituted graphite felt by anodizing and HNO3 ultrasonic integrated treatment was used as cathode to degrade norfloxacin (NOR) and the substantial role of different modification processes was essentially investigated. Compared with the single modification process, the synergistic interaction between these two methods can generate more defective active sites (DASs) on GF surface and greatly improved 2-electron ORR activity. The H2O2 can be further co-activated by Fe2+ and DASs into •OH(ads and free) and •O2- to efficiently degrade NOR. The treated GF with 20 min anodizing and 1 h HNO3 ultrasound had the highest electrocatalytic activity in a wide electric potential (-0.4 V to -0.8 V) and pH range (3-9) in system and the efficient removal rate of NOR was basically maintained after 5 cycles. Under optimal reaction conditions, 50 mg L-1 NOR achieved 93% degradation and almost 63% of NOR was completely mineralized within 120 min. The possible NOR degradation pathways and ecotoxicity of intermediates were analyzed by LC-MS and T.E.S.T. theoretical calculation. This paper provided the underlying insights into designing a high-efficiency carbon-based cathode materials for commercial antibiotic wastewater treatment.


Asunto(s)
Grafito , Contaminantes Químicos del Agua , Grafito/química , Norfloxacino , Peróxido de Hidrógeno/química , Hierro/química , Dominio Catalítico , Carbono , Oxidación-Reducción , Electrodos , Antibacterianos , Contaminantes Químicos del Agua/química
3.
Sci Technol Adv Mater ; 24(1): 2162324, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36818310

RESUMEN

The need for integrated passive devices (IPDs) emerges from the increasing consumer demand for electronic product miniaturization. Metal-insulator-metal (MIM) capacitors are vital components of IPD systems. Developing new materials and technologies is essential for advancing capacitor characteristics and co-integrating with other electronic passives. Here we present an innovative electrochemical technology joined with the sputter-deposition of Al and Zr layers to synthesize novel planar nanocomposite metal-oxide dielectrics consisting of ZrO2 nanorods self-embedded into the nanoporous Al2O3 matrix such that its pores are entirely filled with zirconium oxide. The technology is utilized in MIM capacitors characterized by modern surface and interface analysis techniques and electrical measurements. In the 95-480 nm thickness range, the best-achieved MIM device characteristics are the one-layer capacitance density of 112 nF·cm-2, the loss tangent of 4·10-3 at frequencies up to 1 MHz, the leakage current density of 40 pA·cm-2, the breakdown field strength of up to 10 MV·cm-1, the energy density of 100 J·cm-3, the quadratic voltage coefficient of capacitance of 4 ppm·V-2, and the temperature coefficient of capacitance of 480 ppm·K-1 at 293-423 K at 1 MHz. The outstanding performance, stability, and tunable capacitors' characteristics allow for their application in low-pass filters, coupling/decoupling/bypass circuits, RC oscillators, energy-storage devices, ultrafast charge/discharge units, or high-precision analog-to-digital converters. The capacitor technology based on the non-porous planar anodic-oxide dielectrics complements the electrochemical conception of IPDs that combined, until now, the anodized aluminum interconnection, microresistors, and microinductors, all co-related in one system for use in portable electronic devices.

4.
J Environ Manage ; 326(Pt A): 116683, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36370610

RESUMEN

Water stress is a current environmental menace mainly driven by over exploitation of aquifers, which is triggering poor water quality with high concentration of minerals in extracted groundwater. Particularly, silica is widespread in natural water supplies due to weathering processes of silicates occurring in contact with water, light, air, and other factors. However, due to groundwater over extraction the concentration of silica has increased during the last years in aquifer reservoirs from Aguascalientes State (México). In this context, it is very important to note that the removal of silica compounds from water is challenging and different methods can be used to avoid embedding problems in different industries. In the present work, the removal of reactive silica from synthetic solutions as well as from real wastewaters from an industrial anodizing process was studied using adsorption and chemical precipitation methods. Twelve commercial materials of different nature were used for adsorption tests, while seven precipitant agents were applied in the precipitation experiments. Adsorption tests were performed in batch systems with constant stirring at 30 °C and at different pH values (7 and 9). Precipitation experiments were carried out in batch systems and the best conditions for silica removal were found using an L9 orthogonal array of the Taguchi method employing molar ratio, pH of wastewater, stirring time and temperature as experimental factors. Adsorption results showed that Ferrolox (Iron (III) hydroxide-base adsorbent) was the most efficient sorbent for reactive silica removal from synthetic solutions and the anodizing wastewater. Also, the reactive silica adsorption was higher at pH 9 as compared to that measured at pH 7 and the adsorbed quantity at pH 9 was 16.22 and 11.25 mg/g for the synthetic solution and anodizing wastewater, respectively. According to molecular simulation, the main interaction between Ferrolox and silica species was related to the formation of hydroxo-complexes and to the interaction of Fe with oxygen of silica species. Additionally, magnesium chloride was the best precipitating reagent for reactive silica achieving up to 87% removal. According to ANOVA analysis of Taguchi method, pH was the most influential factor during the precipitation of reactive silica with a variance value of 81.42, while values lower than 3 were obtained for the rest of parameters. Overall, the present work is reporting for the first time the removal of reactive silica from anodizing wastewaters with promising results that can be implemented at full scale for water reclamation, which may significantly contribute to manage water reservoir in the region sustainably.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Aguas Residuales/análisis , Purificación del Agua/métodos , Dióxido de Silicio/química , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Cinética
5.
Philos Trans A Math Phys Eng Sci ; 377(2138): 20180273, 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30967067

RESUMEN

Titanium is an important material having a high tensile strength-to-density ratio and high corrosion resistance. It has found applications in the aerospace, marine, automotive and biomedical industries. In some of the applications, it is important to have it as a highly liquid repellent, anti-icing and self-cleaning. There have been several attempts to make titanium superliquiphobic. The common pathways include chemical etching and anodizing. However, important characteristics such as self-cleaning, anti-icing and durability have not been investigated. If any durability data were reported, it was poor. In the current study, various superliquiphilic/phobic surfaces were fabricated using three pathways which include chemical etching, anodizing and nanoparticle-binder coating. Each surface was characterized for wettability, self-cleaning, anti-icing, self-cleaning properties and durability. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology'.

6.
J Nanosci Nanotechnol ; 17(1): 761-65, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29634158

RESUMEN

Anodic Aluminum Oxide (AAO) is one of the most favorable candidates for fabrication of nano-meshed membrane for various applications due to its controllable pore size and self-ordered structure. The mechanism of AAO membrane is a simple and has been studied by many research groups, however the actual fabrication of membrane has several difficulties owing to its sensitivity of ordering, long anodizing time and unclearness of the pore. In this work, we have demonstrated enhanced process of fabrication symmetric AAO membrane by using "hybrid anodizing" (Hyb-A) method which include mild anodization (MA) followed by hard anodization (HA). This Hyb-A process can give highly ordered membrane with more vivid pore than two-step anodizing process. HA was implemented on the Al plate which has been already textured by MA for more ordered structure and HA plays a key role for formation of more obvious pore in Hyb-A. Our experimental results indicate that Hyb-A with proper process sequence would be one of the fast and useful fabrication methods for the AAO membrane.

7.
Chemphyschem ; 15(14): 3116-24, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25164094

RESUMEN

Electrochemical oscillations accompanying the formation of anodic silica have been shown in the past to be correlated with rather abrupt changes in the mechanical stress state of the silica film, commonly associated with some kind of fracture or porosification of the oxide. To advance the understanding on the origin of such oscillations in fluoride-free electrolytes, we have revisited a seminal experiment reported by Lehmann almost two decades ago. We thereby demonstrate that the oscillations are not stress-induced, and do not originate from a morphological transformation of the oxide in the course of anodisation. Alternatively, the mechanical features accompanying the oscillations can be explained by a partial relaxation of the field-induced electrostrictive stress. Furthermore, our observations suggest that the oscillation mechanism more likely results from a periodic depolarisation of the anodic silica.

8.
Materials (Basel) ; 17(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274675

RESUMEN

Hard anodizing is used to improve the anodic films' mechanical qualities and aluminum alloys' corrosion resistance. Applications for anodic oxide coatings on aluminum alloys include the space environment. In this work, the aluminum alloys 2024-T3 (Al-Cu), 6061-T6 (Al-Mg-Si), and 7075-T6 (Al-Zn) were prepared by hard anodizing electrochemical treatment using citric and sulfur acid baths at different concentrations. The aim of the work is to observe the effect of citric acid on the microstructure of the substrate, the mechanical properties, the corrosion resistance, and the morphology of the hard anodic layers. Hard anodizing was performed on three different aluminum alloys using three citric-sulfuric acid mixtures for 60 min and using current densities of 3.0 and 4.5 A/dm2. Vickers microhardness (HV) measurements and scanning electron microscopy (SEM) were utilized to determine the mechanical characteristics and microstructure of the hard anodizing material, and electrochemical techniques to understand the corrosion kinetics. The result indicates that the aluminum alloy 6061-T6 (Al-Mg-Si) has the maximum hard-coat thickness and hardness. The oxidation of Zn and Mg during the anodizing process found in the 7075-T6 (Al-Zn) alloy promotes oxide formation. Because of the high copper concentration, the oxide layer that forms on the 2024-T6 (Al-Cu) Al alloy has the lowest thickness, hardness, and corrosion resistance. Citric and sulfuric acid solutions can be used to provide hard anodizing in a variety of aluminum alloys that have corrosion resistance and mechanical qualities on par with or better than traditional sulfuric acid anodizing.

9.
Materials (Basel) ; 17(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38998427

RESUMEN

This paper reports on the coating of heterostructured TiO2 nanopores/nanotubes on Ti substrates by anodizing at high voltages to design surfaces for biomedical implants. As the anodized voltage from 50 V to 350 V was applied, the microstructure of the coating shifted from regular TiO2 nanotubes to heterostructured TiO2 nanopores/nanotubes. In addition, the dimension of the heterostructured TiO2 nanopores/nanotubes was a function of voltage. The electrochemical characteristics of TiO2 nanotubes and heterostructured TiO2 nanopores/nanotubes were evaluated in simulated body fluid (SBF) solution. The creation of heterostructured TiO2 nanopores/nanotubes on Ti substrates resulted in a significant increase in BHK cell attachment compared to that of the Ti substrates and the TiO2 nanotubes.

10.
Materials (Basel) ; 17(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38930307

RESUMEN

Aluminum technical alloys are well known for their outstanding mechanical properties, especially after heat treatment. However, quenching and aging, which improve the mechanical properties, by the formation of Cu-rich zones and phases that are coherent with the matrix and block the dislocation motion, cause uneven distribution of the elements in the alloy and consequently make it prone to corrosion. One method providing satisfactory corrosion protection of aluminum alloys is anodizing. On an industrial scale, it is usually carried out in electrolytes containing chromates that were found to be cancerogenic and toxic. Therefore, much effort has been undertaken to find substitutions. Currently, there are many Cr(VI)-free substitutes like tartaric-sulfuric acid anodizing or citric-sulfuric acid anodizing. Despite using such approaches even on the industrial scale, Cr(VI)-based anodizing still seems to be superior; therefore, there is an urge to find more complex but more effective approaches in anodizing. The incorporation of anions into anodic alumina from the electrolytes is a commonly known effect. Researchers used this phenomenon to entrap various other anions and organic compounds into anodic alumina to change their properties. In this review paper, the impact of the incorporation of various corrosion inhibitors into anodic alumina on the corrosion performance of the alloys is discussed. It is shown that Mo compounds are promising, especially when combined with organic acids.

11.
Materials (Basel) ; 17(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39124417

RESUMEN

Preventing or treating infections at implantation sites where the risk of bacterial contamination is high requires the development of intelligent drug delivery systems. The objective of this work was to develop a production method and characterization of fourth-generation oxide nanotubes on titanium grade 4 surface as a potential drug carrier. This study focused on the anodizing process; physico-chemical characterization using FE-SEM, EDS, and FTIR; in vitro corrosion resistance in an artificial saliva solution; and determining the drug release kinetics of gentamicin sulfate using UV-VIS. The anodizing process was optimized to produce fourth-generation oxide nanotubes in a fluoride-free electrolyte, ensuring rapid growth and lack of order. Results showed that the length of the oxide nanotubes was inversely proportional to the anodizing voltage, with longer nanotubes formed at lower voltages. The nanotubes were shown to have a honeycomb structure with silver particles co-deposited on the surface for antibacterial properties and were capable of carrying and releasing the antibiotic gentamicin sulfate in a controlled manner, following Fick's first law of diffusion. The corrosion resistance study demonstrates that the oxide nanotubes enhance the corrosion resistance of the titanium surface. The oxide nanotubes show promise in enhancing osseointegration and reducing post-implantation complications.

12.
J Hazard Mater ; 472: 134465, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704904

RESUMEN

Oily wastewater and marine oil spills are a massive environmental and human threat. Conventional oil spill treatment methods include adsorption by absorbent materials, dispersants or adsorbents, and in situ burning. Superhydrophobic materials, as a material that can achieve oil-water separation, have great potential for application in oil spill treatment. Research on superhydrophobic oil spill treatment mainly focuses on materials such as sponges and fabrics. Although these materials can effectively perform oil-water separation or oil spill adsorption, they also have the disadvantages of complicated preparation methods and high costs. Here, we present a miniature device for oil-water separation and oil spill collection and recovery. The superhydrophobic copper mesh box can be used on its own as an oil-water separation device or in combination with a commercial polyurethane sponge as a miniature oil-absorbing device. The robust copper mesh is prepared in two steps: anodizing and impregnation. The superhydrophobic copper mesh had a high oil separation flux (32,330 L m-2 h-1) and efficiency (97%), which remained high (28,560 L m-2 h-1) and efficient (95%) after 20 cycles of separation. The combined micro oil adsorption device can adsorb different oils and fats on the water surface, and it has good reusability with oil adsorption capacity and efficiency up to 15.28 g/g and 98% and still has good oil adsorption capacity (11.54 g/g) and efficiency (94.6%) after 20 cycles of adsorption. Therefore, the prepared micro oil-absorbing device has promising application prospects in oil-water separation, oil spill cleanup, etc. ENVIRONMENTAL IMPLICATION: This study demonstrates a facile electrochemical approach to prepare a miniature device for high-efficiency oil-water separation and oil spill collection and recovery. The modified copper mesh's separation flux could reach 32,330 L m-2 h-1, showing great promise in oil-water separation and oil spill cleanup.

13.
Polymers (Basel) ; 16(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39204563

RESUMEN

Anodized aluminum oxide (AAO) molds were used for the production of large-area and inexpensive superhydrophobic polymer films. A controlled anodization methodology was developed for the fabrication of hierarchical micro-nanoporous (HMN) AAO imprint molds (HMN-AAO), where phosphoric acid was used as both an electrolyte and a widening agent. Heat generated upon repetitive high-voltage (195 V) anodization steps is effectively dissipated by establishing a cooling channel. On the HMN-AAO, within the hemispherical micropores, arrays of hexagonal nanopores are formed. The diameter and depth of the micro- and nanopores are 18/8 and 0.3/1.25 µm, respectively. The gradual removal of micropatterns during etching in both the vertical and horizontal directions is crucial for fabricating HMN-AAO with a high aspect ratio. HMN-AAO rendered polycarbonate (PC) and polymethyl methacrylate (PMMA) films with respective water contact angles (WCAs) of 153° and 151°, respectively. The increase in the WCA is 80% for PC (85°) and 89% for PMMA (80°). On the PC and PMMA films, mechanically robust arrays of nanopillars are observed within the hemispherical micropillars. The micro-nanopillars on these polymer films are mechanically robust and durable. Regular nanoporous AAO molds resulted in only a hydrophobic polymer film (WCA = 113-118°). Collectively, the phosphoric acid-based controlled anodization strategy can be effectively utilized for the manufacturing of HMN-AAO molds and roll-to-roll production of durable superhydrophobic surfaces.

14.
ACS Appl Mater Interfaces ; 16(1): 1737-1748, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38163250

RESUMEN

Aluminum solid polymer capacitors are promising devices for the increased demand for power electronics applications. Nonetheless, the low breakdown voltage of commercially available catalysts (∼100 V) limits their applications. In this study, a hydroxide-film-covered high-purity aluminum was anodized at 700 V in boric acid at 85 °C, and the effect of a second hot water immersion (posthydration treatment) after anodizing on the breakdown voltage was studied as a possible future treatment to enhance the withstand voltages of solid electrolytic capacitors. The dielectric breakdown voltage of the anodized aluminum with a PEDOT:PSS coating was ∼500 V, being ∼200 V less than the anodizing voltage; however, the dielectric breakdown voltage was increased above 700 V by introducing the posthydration treatment due to the formation of a nanovoid layer above the dielectric alumina film. Our research suggests that the highly dispersed nanovoids incorporated with PEDOT:PSS avoid the current concentration at some local regions, effectively increasing the dielectric breakdown voltage. The posthydration treatment increased the leakage current by introducing physical defects in the dielectric film. However, the leakage current was reduced by a voltage sweep below the breakdown voltage after the PEDOT:PSS coating or a second anodizing process before the coating, keeping the breakdown voltage above 600 V. A promising processing route to obtain aluminum solid capacitors with high withstand voltage (600 V) found in our research is, first, dipping in hot water; second, anodizing at 700 V; then a second hot water treatment; and a second anodizing at 400 V, which keeps the capacitance invariable with a breakdown voltage enhanced.

15.
Materials (Basel) ; 17(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38930413

RESUMEN

Sulfuric acid anodizing assisted by a hydrothermal sealing with inhibitors [Ce3+-Mo6+] was used to prevent pitting corrosion on spray-deposited hypereutectic Al-Si alloy (A390). An investigation concerning the evaluation of pitting corrosion resistance on the anodic oxide thin film with ions incorporated was carried out in NaCl solution using electrochemical measurements (i.e., potentiodynamic polarization and electrochemical impedance spectroscopy, EIS). The influence of Si phase morphology and size on the growth mechanism of an anodic oxide film was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results were then compared with those for its equivalent IM390 alloy (Al-17Si-4.5Cu-0.6Mg) produced through a conventional process ingot metallurgy, IM. The electrochemical findings indicate that sulfuric acid anodizing followed by a simple hot water sealing treatment was ineffective. In this manner, an intense attack was localized by pitting corrosion that occurred on the anodic oxide film in less than three days, as denoted by characteristic changes in the EIS spectra at the lowest frequencies. Improved results were achieved for Ce-Mo surface modification, which can provide better corrosion resistance on the aluminum alloys because no signs of pits were observed during the corrosion testing.

16.
Materials (Basel) ; 16(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37687720

RESUMEN

This work focuses on different surface treatment processes of the 6061 aluminum alloy profile coatings in the construction industry, mainly including the sand powder film coating, the flat powder coating, the hard anodized film, and the ordinary heat-sealing oxidized coating. The corrosion resistance of the coated aluminum alloy in a 3.5 wt.% NaCl solution (pH 6.5-7.5) and the influence of different surface treatment processes on the corrosion resistance of different samples were studied by scanning electron microscope (SEM) and electrochemical workstation. The result shows that with the increase in corrosion time, the corrosion inhibition performance of the four coated aluminum alloy materials decreased significantly, and the order of decline is: sand powder film coating > hard anodized film > flat powder coating > ordinary heat-sealing oxidized coating. When corroded in a 3.5 wt.% NaCl solution for 2 h, the corrosion inhibition performances of the flat powder coating and ordinary heat-sealing oxidized coating are poor, while the inhibition performances of the sand powder film coating and hard anodized film are good, and the inhibition performance follows the following sequence: the sand powder film coating > hard anodized film> the flat powder coating > ordinary heat-sealing oxidized coating. When corroded in a 3.5 wt.% NaCl solution for 200 h, the corrosion inhibition performances of the sand powder film coating and the flat powder coating are poor, while the inhibition performances of hard anodized film and ordinary heat-sealing oxidized coating are good, and the inhibition performance follows the following sequence: hard anodized film > ordinary heat-sealing oxidized coating > the sand powder film coating > the flat powder coating.

17.
Nanomaterials (Basel) ; 14(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38202470

RESUMEN

Titanium-zirconium dioxide nanostructures loaded by hydroxyapatite were produced on the surface of Ti65Zr alloy. The alloy was treated by anodization with the subsequent immersion in calcium glycerophosphate (CG) solutions. The resulting surfaces present TiO2-ZrO2 nanotubular (TiZr-NT) structures enriched with hydroxyapatite (HAP). The nanotube texture is expected to enhance the surface's corrosion resistance and promote integration with bone tissue in dental implants. The TiZr-NT structure had a diameter of 73 ± 2.2 nm and a length of 10.1 ± 0.5 µm. The most favorable result for the growth of HAP in Hanks' balanced salt solution (Hanks' BSS) was obtained at a CG concentration of 0.5 g/L. Samples soaked in CG at a concentration of 0.5 g/L demonstrated in a decrease of the contact angles to 25.2°; after 3 days of exposure to Hanks' BSS, the contact angles further reduced to 18.5°. The corrosion studies also showed that the TiZr-NT structure soaked in the CG = 0.5 g/L solution exhibited the best corrosion stability.

18.
Artículo en Inglés | MEDLINE | ID: mdl-37931031

RESUMEN

Electrochemically active iron oxide nanotubes formed by anodization are of high interest as battery components in various battery systems due to their 1D geometry, offering high volume expansion tolerance and applications without the use of binders and conductive additives. This work takes a step forward toward understanding lithium-ion storage in 1D nanotubes through the analysis of differential capacity plots d(Q - Q0)·dE-1 supported by in situ Raman spectroscopy observations. The iron oxide nanotubes were synthesized by anodizing polycrystalline iron and subsequently modified by thermal treatment in order to control the degree of crystallinity and the ratio of hematite (Fe2O3) to magnetite (Fe3O4). The electrochemical fingerprints revealed a quasi-reversible lithiation/delithiation process through Li2O formation. Significant improvement in electrochemical performance was found to be related to the high degree of crystallinity and the increase of the hematite (Fe2O3) to magnetite (Fe3O4) ratio. In situ mechanistic studies revealed a reversible reduction of iron oxide to metallic iron simultaneously with Li2O formation.

19.
Nanomaterials (Basel) ; 13(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37887894

RESUMEN

A simple method of synthesis of TiO2 nanotubes (TiNT) loaded with hydroxyapatite (HAP) is described. Such nanotubes find wide applications in various fields, including biomedicine, solar cells, and drug delivery, due to their bioactivity and potential for osseointegration. The Cp-Ti substrate was anodized at a constant voltage of 40 V, with the subsequent heat treatment at 450 °C. The resulting TiNT had a diameter of 100.3 ± 2.8 nm and a length of 3.5 ± 0.04 µm. The best result of the growth rate of HAP in Hanks' balanced salt solution (Hanks' BSS) was obtained in calcium glycerophosphate (CG = 0.1 g/L) when precipitates formed on the bottom and walls of the nanotubes. Structural properties, surface wettability, corrosion resistance, and growth rate of HAP as an indicator of the bioactivity of the coating have been studied. X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), potentiodynamic polarization test (PPC), electrochemical impedance spectroscopy (EIS), and contact angle (CA) measurements were used to characterize HAP-loaded nanotubes (HAP-TiNT). The CA, also serving as an indirect indicator of bioactivity, was 30.4 ± 1.1° for the TiNT not containing HAP. The contact angle value for HAP-TiNT produced in 0.1 g/L CG was 18.2 ± 1.2°, and for HAP-TiNT exposed to Hanks' BSS for 7 days, the CA was 7.2 ± 0.5°. The corrosion studies and measurement of HAP growth rates after a 7-day exposure to Hanks' BSS confirmed the result that TiNT processed in 0.1 g/L of CG exhibited the most significant capacity for HAP formation compared to the other tested samples.

20.
Materials (Basel) ; 16(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37629965

RESUMEN

Aluminum alloy adhesive bonding joint widely appears in many industrial products. Improving the mechanical performances of aluminum alloy bonding joints has been attracting much effort. To acquire more excellent bonding strength, this paper focused on the effects of different surface treatments, including laser ablation and milling superposed by phosphoric acid anodizing (PAA). The treated surfaces were characterized by roughness and contact angle, and the effects of the geometric parameters of microstructures on wettability, failure mode, and shear strength were examined. The results indicate that those surfaces where the spacing is smaller than the diameter present a hydrophilic property and the corresponding specimens are mainly subject to cohesive failure, and vice versa. Additionally, laser ablation with a properly designed dimple pattern can greatly improve the bonding strength, and the maximum average shear strength of specimens with a thickness of 50 µm reaches 32.82 MPa, which is an increase of 28.15% compared with the original milling specimen. Moreover, fabricating groove or grid patterns on the surfaces and applying PAA treatment can also significantly enhance the bonding strength, reaching up to 36.28 MPa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA