Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Molecules ; 26(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34885713

RESUMEN

Plasma polymer coatings fabricated from Melaleuca alternifolia essential oil and its derivatives have been previously shown to reduce the extent of microbial adhesion on titanium, polymers, and other implantable materials used in dentistry. Previous studies have shown these coatings to maintain their performance under standard operating conditions; however, when used in e.g., a dental implant, these coatings may inadvertently become subject to in situ cleaning treatments, such as those using an atmospheric pressure plasma jet, a promising tool for the effective in situ removal of biofilms from tissues and implant surfaces. Here, we investigated the effect of such an exposure on the antimicrobial performance of the Melaleuca alternifolia polymer coating. It was found that direct exposure of the polymer coating surface to the jet for periods less than 60 s was sufficient to induce changes in its surface chemistry and topography, affecting its ability to retard subsequent microbial attachment. The exact effect of the jet exposure depended on the chemistry of the polymer coating, the length of plasma treatment, cell type, and incubation conditions. The change in the antimicrobial activity for polymer coatings fabricated at powers of 20-30 W was not statistically significant due to their limited baseline bioactivity. Interestingly, the bioactivity of polymer coatings fabricated at 10 and 15 W against Staphylococcus aureus cells was temporarily improved after the treatment, which could be attributed to the generation of loosely attached bioactive fragments on the treated surface, resulting in an increase in the dose of the bioactive agents being eluted by the surface. Attachment and proliferation of Pseudomonas aeruginosa cells and mixed cultures were less affected by changes in the bioactivity profile of the surface. The sensitivity of the cells to the change imparted by the jet treatment was also found to be dependent on their origin culture, with mature biofilm-derived P. aeruginosa bacterial cells showing a greater ability to colonize the surface when compared to its planktonic broth-grown counterpart. The presence of plasma-generated reactive oxygen and nitrogen species in the culture media was also found to enhance the bioactivity of polymer coatings fabricated at power levels of 10 and 15 W, due to a synergistic effect arising from simultaneous exposure of cells to reactive oxygen and nitrogen species (RONS) and eluted bioactive fragments. These results suggest that it is important to consider the possible implications of inadvertent changes in the properties and performance of plasma polymer coatings as a result of exposure to in situ decontamination, to both prevent suboptimal performance and to exploit possible synergies that may arise for some polymer coating-surface treatment combinations.


Asunto(s)
Antibacterianos/química , Materiales Biocompatibles Revestidos/química , Melaleuca/química , Aceites Volátiles/química , Antibacterianos/farmacología , Presión Atmosférica , Materiales Biocompatibles Revestidos/farmacología , Implantes Dentales/microbiología , Humanos , Aceites Volátiles/farmacología , Gases em Plasma , Polímeros/química , Prótesis e Implantes , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad , Titanio/química
2.
Macromol Biosci ; 24(7): e2400004, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38520297

RESUMEN

An expedient and efficient approach is used to synthesize a new class of metallo-polymeric microspheres (MPMs) as antimicrobials to succumb the wide range of bacteria from water. Three types of MPMs, that is, poly[Silver (I)-methacrylate-co-methylmethacrylate] (pAgMA), poly[Copper (II)-methacrylate-co-methyl methacrylate] (pCuMA), and poly[Nickel (II)-methacrylate-co-methylmethacrylate] (pNiMA), are prepared via radical suspension polymerization technique in 3D shape with porous texture. The structural and morphological characterization of the prepared microspheres are examined by analytical techniques. The antimicrobial potentialities of prepared MPMs are investigated at the laboratory scale study, revealing that the MPMs exhibit strong antibacterial activity (≈99.9% killing) against Gram-negative and Gram-positive bacteria [Enterobacter hormaechei (EH), Bacillus megatarium (BM), and Bacillus bataviensis (BB)]. The MacConkey agar medium test reveals that MPMs have substantial biocidal efficacy against broad-spectrum Gram-negative bacteria present in tap water. The MPMs exhibit significant antimicrobial efficacy via contact killing owe to the presence of integrated biocidal metal moiety, which represents that the MPMs are safe for water disinfection.


Asunto(s)
Microesferas , Porosidad , Desinfección/métodos , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Purificación del Agua/métodos , Polímeros/química , Polímeros/farmacología
3.
J Biomater Sci Polym Ed ; 35(10): 1537-1549, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38588607

RESUMEN

Packaging plays an important role in protecting foodstuffs against physicochemical damage and microbial activity, as well as extending shelf life. In recent years, petrochemical compounds that cause environmental pollution and contamination due to their non-biodegradability have been replaced by biocompatible polymer-based films in the food packaging industry. Due to aromatic essential oils (EO), various biological activities, and their potential to replace chemical preservatives in the field of food preservation, Star Anise essential oil, which has properties, such as free radical scavenger, antibacterial, antifungal and antiviral, was used as an additive in this study. Biodegradable and biocompatible polyvinyl alcohol (PVA) polymer was used as the matrix and polymer-based films were produced in 3 different concentrations. Spectral analysis, structural, chemical, and thermal characterizations, and surface morphologies of the produced films by the direct incorporation method were examined. In addition, the antibacterial activities of the films on Staphylococcus epidermidis ATCC 12228, Escherichia coli ATCC 25922, and Acinetobacter baumannii ATCC BAA 747 bacteria were investigated. As a result of the examinations, it was determined that an interfacial interaction occurred between the matrix and the filler, and the produced films were thermally resistant and showed antibacterial activity against Gram (+)/Gram (-) bacteria. Consequently, it can be concluded that PVA films containing Star Anise essential oil present a prospective substitute in a variety of industrial packaging systems, including those for food, medicine, and cosmetics.


Asunto(s)
Antibacterianos , Embalaje de Alimentos , Aceites Volátiles , Alcohol Polivinílico , Alcohol Polivinílico/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus epidermidis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Acinetobacter baumannii/efectos de los fármacos
4.
Polymers (Basel) ; 15(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36987253

RESUMEN

The article presents the results of the synthesis and characteristics of the amphiphilic block terpolymers, built of a hydrophilic polyesteramine block, and hydrophobic blocks made of lactidyl and glycolidyl units. These terpolymers were obtained during the copolymerization of L-lactide with glycolide carried out in the presence of previously produced macroinitiators with protected amine and hydroxyl groups. The terpolymers were prepared to produce a biodegradable and biocompatible material containing active hydroxyl and/or amino groups, with strong antibacterial properties and high surface wettability by water. The control of the reaction course, the process of deprotection of functional groups, and the properties of the obtained terpolymers were made based on 1H NMR, FTIR, GPC, and DSC tests. Terpolymers differed in the content of amino and hydroxyl groups. The values of average molecular mass oscillated from about 5000 g/mol to less than 15,000 g/mol. Depending on the length of the hydrophilic block and its composition, the value of the contact angle ranged from 50° to 20°. The terpolymers containing amino groups, capable of forming strong intra- and intermolecular bonds, show a high degree of crystallinity. The endotherm responsible for the melting of L-lactidyl semicrystalline regions appeared in the range from about 90 °C to close to 170 °C, with a heat of fusion from about 15 J/mol to over 60 J/mol.

5.
Int J Biol Macromol ; 242(Pt 3): 125071, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37245777

RESUMEN

This study aims to develop a new soluble oxidized starch-based nonionic antibacterial polymer (OCSI) featuring high antibacterial activity and non-leachability by grafting indoleacetic acid monomer (IAA) onto the oxidized corn starch (OCS). The synthesized OCSI was characterized analytically by Nuclear magnetic resonance H-spectrometer (1H NMR), Fourier transform infrared spectroscopy (FTIR), Ultraviolet-visible spectroscopy (UV-Vis), X-ray diffractometer (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electronic Microscopy (SEM), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results showed that the synthesized OCSI was endowed with high thermal stability and favorable solubility, and the substitution degree reached 0.6. Besides, the disk diffusion test revealed a lowest OCSI inhibitory concentration of 5 µg disk-1, and showed significant bactericidal activity against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). Moreover, the antibacterial films (OCSI-PCL), featuring their good compatibility, mechanical properties, antibacterial activity, non-leachability, and low water vapor permeability (WVP), were also successfully prepared by blending OCSI with biodegradable polycaprolactone (PCL). Finally, CCK-8 assay results confirmed the excellent biocompatibility of the OCSI-PCL films. Overall, this very study evidenced the applicability of the obtained oxidized starch-based biopolymers as an eco-friendly non-ionic antibacterial material and confirmed their promising applications in areas including biomedical materials, medical devices, and food packaging.


Asunto(s)
Antibacterianos , Almidón , Almidón/química , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Espectroscopía Infrarroja por Transformada de Fourier , Escherichia coli
6.
Pharmaceutics ; 14(11)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36432710

RESUMEN

One of the most important threats to public health is the appearance of multidrug-resistant pathogenic bacteria, since they are the cause of a high number of deaths worldwide. Consequently, the preparation of new effective antibacterial agents that do not generate antimicrobial resistance is urgently required. We report on the synthesis of new linear cationic antibacterial polytriazoles that could be a potential source of new antibacterial compounds. These polymers were prepared by thermal- or copper-catalyzed click reactions of azide and alkyne functions. The antibacterial activity of these materials can be modulated by varying the size or nature of their side chains, as this alters the hydrophilic/hydrophobic balance. Antibacterial activity was tested against pathogens of the ESKAPE group. The P3TD polymer, which has butylated side chains, was found to have the highest bactericidal activity. The toxicity of selected polytriazoles was investigated using human red blood cells and a human gingival fibroblast cell line. The propensity of prepared polytriazoles to induce resistance in certain bacteria was studied. Some of them were found to not produce resistance in methicillin-resistant Staphylococcus aureus or Pseudomonas aeruginosa. The interaction of these polytriazoles with the Escherichia coli membrane produces both depolarization and disruption of the membrane.

7.
ACS Appl Mater Interfaces ; 14(39): 44173-44182, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36130111

RESUMEN

The rise of drug-resistant bacteria (e.g., methicillin-resistant Staphylococcus aureus, MRSA) has continued, making the ″super-bugs″ a formidable threat to global health. Herein, we synthesize a series of fluoroalkylated polyethylenimines (PEI-F) with different grafting degrees of fluoroalkyls via a simple ring-opening reaction and demonstrate for the first time that fluoroalkylated PEIs are able to exert potent antibacterial activity to Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Among the fluoroalkylated polymers, PEI-F3.0 shows the strongest antibacterial activity, with a minimum inhibitory concentration (MIC) of 64 µg mL-1, against both E. coli and S. aureus. More importantly, we find that PEI-F3.0 is able to kill over 99.8% of S. aureus within 1 min, which is extremely desirable for the treatment of acute and severe bacterial infections that require quick disinfection. We also demonstrate that the fluoroalkylated PEIs are able to kill bacteria via structural damage of the outer membrane (OM) and cytoplasmic membrane (CM), potential dissipation of CM, and generation of intracellular reactive oxygen species (ROS). The in vivo antibacterial test suggests that commercial Vaseline blended with 6.25 wt % of PEI-F3.0 (VL/PEI-F3.0) is able to efficaciously eradicate MRSA infection on a bacterial infected wound model and promote the healing procedure of the wound site. Therefore, the fluoroalkylated PEIs provide a promising strategy to cope with the major challenges of drug-resistant infections.


Asunto(s)
Infecciones por Escherichia coli , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Antibacterianos/química , Bacterias , Escherichia coli , Infecciones por Escherichia coli/tratamiento farmacológico , Halogenación , Humanos , Pruebas de Sensibilidad Microbiana , Vaselina , Polietileneimina/farmacología , Especies Reactivas de Oxígeno , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus
8.
ACS Biomater Sci Eng ; 8(8): 3596-3607, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35802178

RESUMEN

Hemorrhage during accidents or surgery is a significant challenge that can contribute to mortality. This is further aggravated due to bacterial infections at the injured site. Therefore, rapid application of a hemostatic and antibacterial material is highly necessary as a pretreatment for patients' survival. Herein, we have developed a hemostatic sponge (Hemobac) through amide crosslinking of gelatin and an N-(2-hydroxy) propyl-3-trimethylammonium chitosan (HTCC)-silver chloride nanocomposite (QAm1-Ag0.1) to mitigate bacterial infections, while aiding hemostasis. This Hemobac sponge completely eradicated (∼4-5 log) a wide range of Gram-positive and Gram-negative bacteria encompassing various clinical isolates within 6 h. The antihemorrhagic ability of Hemobac was ascertained through SEM images, which exhibited the presence of agglomerated blood cells onto the sponge with a significantly low blood-clotting index value (∼23 ± 1). Notably, Hemobac reduced the blood loss by ∼70-80% in the liver puncture model and femoral vein injury model in mice, displaying its improved hemostatic ability over a marketed gelatin-based sponge. Negligible hemolytic activity (∼6%) and retained healthy morphology of mammalian cells were observed upon exposure to the Hemobac sponge. Minimal immune response was noticed at the Hemobac-treated wound in mice through histopathology analysis. Collectively, these findings indicate that this biocompatible Hemobac sponge can stop the bleeding instantaneously and combat bacterial infections.


Asunto(s)
Hemostáticos , Animales , Antibacterianos/farmacología , Gelatina/farmacología , Bacterias Gramnegativas , Bacterias Grampositivas , Hemorragia , Hemostasis , Hemostáticos/farmacología , Mamíferos , Ratones
9.
J Biomater Sci Polym Ed ; 32(10): 1301-1311, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33849408

RESUMEN

An innovative nano-base polymer that scavenges radicals and reactive oxygen species exhibits potential antibacterial properties, which are crucial in the biomedical field, particularly in reducing nosocomial infections. However, the safety of this nano-based polymer, which has direct contact with the human system, has not been fully understood. The present study investigated the cytocompatibility and hemocompatibility responses of linear low-density polyethylene polymer (LLDPE) embedded with difference ratios of heterogeneous TiO2/ZnO nanocomposites. Exposure of the blood and fibroblast cells to LLDPE/100Z and LLDPE/25T75Z/10% nanocomposite films for 48 and 72 h decreased their viability by less than 40%, compared with LLDPE, LLDPE/100T and LLDPE/25T75Z/5% nanocomposite films. It also presented possible cellular damage and cytotoxicity, which was supported by the findings from the significant release of extracellular lactate dehydrogenase profiles and cell survival assay Further observation using an electron microscope revealed that LLDPE films with heterogeneous 25T75Z/5% promoted cell adhesion. Moreover, no hemolysis was detected in all ratios of heterogeneous TiO2/ZnO nanocomposite in LLDPE film as it was less than 0.2%, suggesting that these materials were hemocompatible. This study on LLDPE film with heterogeneous TiO2/ZnO nanocomposites demonstrated favorable biocompatible properties that were significant for advanced biomedical polymer application in a hospital setting.


Asunto(s)
Nanocompuestos , Polietileno , Óxido de Zinc , Antibacterianos , Humanos , Polímeros , Titanio
10.
ACS Appl Mater Interfaces ; 12(19): 21201-21209, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31916737

RESUMEN

Biocidal compounds that quickly kill bacterial cells and are then deactivated in the surrounding without causing environmental problems are of great current interest. Here, we present new biodegradable antibacterial polymers based on polyionenes with inserted ester functions (PBI esters). The polymers are prepared by polycondensation reaction of 1,4-dibromobutene and different tertiary diaminodiesters. The resulting PBI esters are antibacterially active against a wide range of bacterial strains and were found to quickly kill these cells within 1 to 10 min. Because of hydrolysis of the ester groups, the PBI esters are degraded and deactivated in aqueous media. The degradation rate depends on the backbone structure and the pH. The structure of the polymers also controls the deactivation mechanism. While the more hydrophilic polymers require hydrolyses of only 19 to 30% of the ester groups to become practically inactive, the more hydrophobic PBI esters require up to 85% hydrolysis to achieve the same result. Thus, depending on the environmental conditions and the chemical nature, the PBI esters can be active for only 20 min or for at least one week.


Asunto(s)
Antibacterianos/farmacología , Plásticos Biodegradables/farmacología , Desinfectantes/farmacología , Ésteres/farmacología , Polímeros/farmacología , Antibacterianos/química , Bacterias/efectos de los fármacos , Plásticos Biodegradables/química , Desinfectantes/química , Ésteres/química , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Polímeros/química
11.
Artículo en Inglés | MEDLINE | ID: mdl-33262975

RESUMEN

Medical device contamination caused by microbial pathogens such as bacteria and fungi has posed a severe threat to the patients' health in hospitals. Due to the increasing resistance of pathogens to antibiotics, the efficacy of traditional antibiotics treatment is gradually decreasing for the infection treatment. Therefore, it is urgent to develop new antibacterial drugs to meet clinical or civilian needs. Antibacterial polymers have attracted the interests of researchers due to their unique bactericidal mechanism and excellent antibacterial effect. This article reviews the mechanism and advantages of antimicrobial polymers and the consideration for their translation. Their applications and advances in medical device surface coating were also reviewed. The information will provide a valuable reference to design and develop antibacterial devices that are resistant to pathogenic infections.

12.
Acta Biomater ; 112: 174-181, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32525051

RESUMEN

We describe the bactericidal capacity of nanopatterned surfaces created by self-assembly of block copolymers. Distinct nanotopographies were generated by spin-coating with polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) followed by solvent vapor annealing. We demonstrate that the bactericidal efficiency of the developed coatings depends on the morphology and the chemistry of the surface: cylindrical nanotopographies presenting both blocks at the surface have stronger bactericidal effect on Escherichia coli than micellar patterns with only PS exposed at the surface. The identified mechanism of bacterial death is a mechanical stress exerted by the nanostructures on the cell-wall. Moreover, the developed nanopatterns are not cytotoxic, which makes them an excellent option for coating of implantable materials and devices. The proposed approach represents an efficient tool in the fight against bacteria, which acts via compromising the bacterial wall integrity. STATEMENT OF SIGNIFICANCE: Bacterial infections represent an important risk during biomaterial implantation in surgeries due to the increase of antibiotic resistance. Bactericidal surfaces are a promising solution to avoid the use of antibiotics, but most of those systems do not allow mammalian cell survival. Nanopatterned silicon surfaces have demonstrated to be simultaneously bactericidal and allow mammalian cell culture but are made by physical methods (e.g. plasma etching) applicable to few materials and small surfaces. In this article we show that block copolymer self-assembly can be used to develop surfaces that kill bacteria (E. coli) but do not harm mammalian cells. Block copolymer self-assembly has the advantage of being applicable to many different types of substrates and large surface areas.


Asunto(s)
Escherichia coli , Nanoestructuras , Animales , Antibacterianos/farmacología , Micelas , Propiedades de Superficie
13.
J Biomater Appl ; 33(10): 1415-1426, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30841776

RESUMEN

This study reports synthesis and attachment of a novel antibacterial and hydrophilic polymer onto a polyvinylchloride surface via a simple and mild surface coating technique. The compound 3,4-dichloro-5-hydroxy-2(5H)-furanone was derivatized and copolymerized with N-vinylpyrrolidone. The copolymer was then covalently coated onto polyvinylchloride surface. 3T3 mouse fibroblast cells and bacterium Pseudomonas aeruginosa were used to evaluate surface adhesion and antibacterial activity. Results showed that the polymer-modified polyvinylchloride surface not only exhibited significantly decreased 3T3 fibroblast cell adhesion with a 64-84% reduction but also demonstrated significantly decreased P. aeruginosa adhesion with a 65-84% reduction, as compared to unmodified polyvinylchloride. Furthermore, the modified polyvinylchloride surfaces exhibited significant antibacterial functions by inhibiting P. aeruginosa growth with a 58-80% reduction and killing bacteria, as compared to unmodified polyvinylchloride. These results demonstrate that covalent polymer attachment conferred cell/bacterial adhesion-resistant and antibacterial properties to the polyvinylchloride surface.


Asunto(s)
Antibacterianos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , Polivinilos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Células 3T3 , Animales , Antibacterianos/química , Adhesión Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Ratones , Polivinilos/química , Infecciones por Pseudomonas/prevención & control , Pseudomonas aeruginosa/citología , Propiedades de Superficie
14.
J Biomater Appl ; 33(3): 340-351, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30089433

RESUMEN

Antimicrobial surface is important for the inhibition of bacteria or biofilm formation on biomaterials. The objective of this study was to immobilize a novel hydrophilic polymer containing the antibacterial moiety onto polyurethane surface via a simple surface coating technology to make the surface not only antibacterial but also antifouling. The compound 3,4-dichloro-5-hydroxy-2(5H)-furanone was derivatized, characterized and incorporated onto polyvinylpyrrolidone containing succinimidyl functional groups, followed by coating onto the polyurethane surface. Contact angle, antibacterial function and protein adsorption of the modified surface were evaluated. The result shows that the modified surface exhibited significantly enhanced hydrophilicity with a 54-65% decrease in contact angle, increased antibacterial activity to Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa with a 24-57% decrease in viability, and reduced human serum albumin adsorption with a 64-70% decrease in adsorption, as compared to the original polyurethane.


Asunto(s)
Antibacterianos/química , Incrustaciones Biológicas/prevención & control , Materiales Biocompatibles Revestidos/química , Furanos/química , Poliuretanos/química , Povidona/química , Adsorción , Antibacterianos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Infecciones Bacterianas/prevención & control , Materiales Biocompatibles Revestidos/farmacología , Furanos/farmacología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Poliuretanos/farmacología , Povidona/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Propiedades de Superficie
15.
J Colloid Interface Sci ; 513: 820-830, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29222981

RESUMEN

We designed and fabricated highly efficient and selective antibacterial substrates, i.e. surface non-cytotoxic against mammalian cells but exhibiting strong antibacterial activity. For that purpose, microporous substrates (pore sizes in the range of 3-5 µm) were fabricated using the Breath Figures approach (BFs). These substrates have additionally a defined chemical composition in the pore cavity (herein either a poly(acrylic acid) or the antimicrobial peptide Nisin) while the composition of the rest of the surface is identical to the polymer matrix. As a result, considering the differences in size of bacteria (1-4 µm) in comparison to mammalian cells (above 10 µm) the bacteria were able to enter in contact with the inner part of the pores where the antimicrobial functionality has been placed. On the opposite, mammalian cells remain in contact with the top surface thus preventing cytotoxic effects and enhancing the biocompatibility of the substrates. The resulting antimicrobial surfaces were exposed to Staphylococcus aureus as a model bacteria and murine endothelial C166-GFP cells. Superior antibacterial performance while maintaining an excellent biocompatibility was obtained by those surfaces prepared using PAA while no evidence of significant antibacterial activity was observed at those surfaces prepared using Nisin.


Asunto(s)
Antibacterianos/farmacología , Bacterias/crecimiento & desarrollo , Materiales Biocompatibles Revestidos/farmacología , Endotelio Vascular/citología , Polímeros/química , Polímeros/farmacología , Animales , Antibacterianos/química , Bacterias/efectos de los fármacos , Adhesión Bacteriana , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Materiales Biocompatibles Revestidos/química , Endotelio Vascular/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Polietilenglicoles/química , Porosidad , Propiedades de Superficie
16.
ACS Appl Mater Interfaces ; 9(51): 44270-44280, 2017 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-29131567

RESUMEN

We report on the fabrication of efficient antibacterial substrates selective for bacteria, i.e., noncytotoxic against mammalian cells. The strategy proposed is based on the different size of bacteria (1-4 µm) in comparison with mammalian cells (above 20 µm) that permit the bacteria to enter in contact with the inner part of micrometer-sized pores where the antimicrobial functionality are placed. On the contrary, mammalian cells, larger in terms of size, remain at the top surface, thus reducing adverse cytotoxic effects and improving the biocompatibility of the substrates. For this purpose, we fabricated well-ordered functional microporous substrates (3-5 µm) using the breath figures approach that enabled the selective functionalization of the pore cavity, whereas the rest of the surface remained unaffected. Microporous surfaces were prepared from polymer blends comprising a homopolymer (i.e., polystyrene) and a block copolymer (either polystyrene-b-poly(dimethylaminoethyl methacrylate) (PDMAEMA) or a quaternized polystyrene-b-poly(dimethylaminoethyl methacrylate)). As a result, porous surfaces with a narrow size distribution and a clear enrichment of the PDMAEMA or the quaternized PDMAEMA block inside the pores were obtained that, in the case of the quaternized PDMAEMA, provided an excellent antimicrobial activity to the films.


Asunto(s)
Antibacterianos/química , Animales , Bacterias , Tamaño de la Célula , Polímeros , Poliestirenos , Porosidad
17.
ACS Appl Mater Interfaces ; 9(42): 37454-37462, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-28934545

RESUMEN

We describe herein a novel strategy for the fabrication of efficient 3D printed antibacterial scaffolds. For this purpose, both the surface topography as well as the chemical composition of 3D scaffolds fabricated by additive manufacturing were modified. The scaffolds were fabricated by fused deposition modeling (FDM) using high-impact polystyrene (HIPS) filaments. The surface of the objects was then topographically modified providing materials with porous surfaces by means of the Breath Figures approach. The strategy involves the immersion of the scaffold in a polymer solution during a precise period of time. This approach permitted the modification of the pore size varying the immersion time as well as the solution concentration. Moreover, by using polymer blend solutions of polystyrene and polystyrene-b-poly(acrylic acid) (PS23-b-PAA18) and a quaternized polystyrene-b-poly(dimethylaminoethyl methacrylate) (PS42-b-PDMAEMAQ17), the scaffolds were simultaneously chemically modified. The surfaces were characterized by scanning electron microscopy and infrared spectroscopy. Finally, the biological response toward bacteria was explored. Porous surfaces prepared using quaternized PDMAEMA as well as those prepared using PAA confer antimicrobial activity to the films, i.e., were able to kill on contact Staphylococcus aureus employed as model bacteria.


Asunto(s)
Antibacterianos/química , Polímeros , Porosidad , Staphylococcus aureus , Andamios del Tejido
18.
Polymers (Basel) ; 10(1)2017 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-30966055

RESUMEN

The biocide agent LAE (ethyl αN-lauroyl l-arginate chloride) was coupled with poly(γ-glutamic acid) (PGGA) to form stable ionic complexes with LAE:PGGA ratios of 1 and 0.5. The nanostructure adopted by these complexes and its response to thermal changes were examined in detail by Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) using synchrotron radiation in real time. A layered biphasic structure with LAE filling the space between the polypeptidic sheets was adopted in these complexes. The complexes were stable up to above 250 °C, non-water soluble, and were able to form consistent transparent films. The release of LAE from the complexes upon incubation in aqueous buffer was examined and found to depend on both pH and complex composition. The antibacterial activity of films made of these complexes against Gram-positive (L. monocytogenes and S. aureus) and Gram-negative (E. coli and S. enterica) bacteria was preliminary evaluated and was found to be very high against the formers and only moderate against the later. The bactericide activity displayed by the LAE·PGGA complexes was directly related with the amount of LAE that was released from the film to the environment.

19.
ACS Appl Mater Interfaces ; 8(18): 11309-17, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27096666

RESUMEN

Escherichia coli plays a crucial role in various inflammatory diseases and infections that pose significant threats to both human health and the global environment. Specifically inhibiting the growth of pathogenic E. coli is of great and urgent concern. By modifying gold nanoparticles (AuNPs) with both poly[2-(methacrylamido)glucopyranose] (pMAG) and poly[2-(methacryloyloxy)ethyl trimethylammonium iodide] (pMETAI), a novel recyclable E. coli-specific-killing AuNP-polymer (ESKAP) nanocomposite is proposed in this study, which based on both the high affinity of glycopolymers toward E. coli pili and the merits of antibacterial quaternized polymers attached to gold nanoparticles. The properties of nanocomposites with different ratios of pMAG to pMETAI grafted onto AuNPs are studied. With a pMAG:pMETAI feed ratio of 1:3, the nanocomposite appeared to specifically adhere to E. coli and highly inhibit the bacterial cells. After addition of mannose, which possesses higher affinity for the lectin on bacterial pili and has a competitive advantage over pMAG for adhesion to pili, the nanocomposite was able to escape from dead E. coli cells, becoming available for repeat use. The recycled nanocomposite retained good antibacterial activity for at least three cycles. Thus, this novel ESKAP nanocomposite is a promising, highly effective, and readily recyclable antibacterial agent that specifically kills E. coli. This nanocomposite has potential applications in biological sensing, biomedical diagnostics, biomedical imaging, drug delivery, and therapeutics.


Asunto(s)
Nanocompuestos , Antibacterianos , Escherichia coli , Fimbrias Bacterianas , Humanos , Nanopartículas del Metal , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA