Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Biotechnol ; : 1-23, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38797692

RESUMEN

Owing to the unmet demand, the pharmaceutical industry is investigating an alternative host to mammalian cells to produce antibodies for a variety of therapeutic and research applications. Regardless of some disadvantages, Escherichia coli and Pichia pastoris are the preferred microbial hosts for antibody production. Despite the fact that the production of full-length antibodies has been successfully demonstrated in E. coli, which has mostly been used to produce antibody fragments, such as: antigen-binding fragments (Fab), single-chain fragment variable (scFv), and nanobodies. In contrast, Pichia, a eukaryotic microbial host, is mostly used to produce glycosylated full-length antibodies, though hypermannosylated glycan is a major challenge. Advanced strategies, such as the introduction of human-like glycosylation in endotoxin-edited E. coli and cell-free system-based glycosylation, are making progress in creating human-like glycosylation profiles of antibodies in these microbes. This review begins by explaining the structural and functional requirements of antibodies and continues by describing and analyzing the potential of E. coli and P. pastoris as hosts for providing a favorable environment to create a fully functional antibody. In addition, authors compare these microbes on certain features and predict their future in antibody production. Briefly, this review analyzes, compares, and highlights E. coli and P. pastoris as potential hosts for antibody production.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38691205

RESUMEN

Two-pore physiologically based pharmacokinetic (PBPK) modeling has demonstrated its potential in describing the pharmacokinetics (PK) of different-size proteins. However, all existing two-pore models lack either diverse proteins for validation or interspecies extrapolation. To fill the gap, here we have developed and optimized a translational two-pore PBPK model that can characterize plasma and tissue disposition of different-size proteins in mice, rats, monkeys, and humans. Datasets used for model development include more than 15 types of proteins: IgG (150 kDa), F(ab)2 (100 kDa), minibody (80 kDa), Fc-containing proteins (205, 200, 110, 105, 92, 84, 81, 65, or 60 kDa), albumin conjugate (85.7 kDa), albumin (67 kDa), Fab (50 kDa), diabody (50 kDa), scFv (27 kDa), dAb2 (23.5 kDa), proteins with an albumin-binding domain (26, 23.5, 22, 16, 14, or 13 kDa), nanobody (13 kDa), and other proteins (110, 65, or 60 kDa). The PBPK model incorporates: (i) molecular weight (MW)-dependent extravasation through large and small pores via diffusion and filtration, (ii) MW-dependent renal filtration, (iii) endosomal FcRn-mediated protection from catabolism for IgG and albumin-related modalities, and (iv) competition for FcRn binding from endogenous IgG and albumin. The finalized model can well characterize PK of most of these proteins, with area under the curve predicted within two-fold error. The model also provides insights into contribution of renal filtration and lysosomal degradation towards total elimination of proteins, and contribution of paracellular convection/diffusion and transcytosis towards extravasation. The PBPK model presented here represents a cross-modality, cross-species platform that can be used for development of novel biologics.

3.
J Biol Chem ; 298(9): 102357, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35952760

RESUMEN

Strains of Clostridium perfringens produce a two-domain enterotoxin (CpE) that afflicts humans and domesticated animals, causing prevalent gastrointestinal illnesses. CpE's C-terminal domain (cCpE) binds cell surface receptors, followed by a restructuring of its N-terminal domain to form a membrane-penetrating ß-barrel pore, which is toxic to epithelial cells of the gut. The claudin family of membrane proteins are known receptors for CpE and also control the architecture and function of cell-cell contacts (tight junctions) that create barriers to intercellular molecular transport. CpE binding and assembly disables claudin barrier function and induces cytotoxicity via ß-pore formation, disrupting gut homeostasis; however, a structural basis of this process and strategies to inhibit the claudin-CpE interactions that trigger it are both lacking. Here, we used a synthetic antigen-binding fragment (sFab) library to discover two sFabs that bind claudin-4 and cCpE complexes. We established these sFabs' mode of molecular recognition and binding properties and determined structures of each sFab bound to claudin-4-cCpE complexes using cryo-EM. The structures reveal that the sFabs bind a shared epitope, but conform distinctly, which explains their unique binding equilibria. Mutagenesis of antigen/sFab interfaces observed therein result in binding changes, validating the structures, and uncovering the sFab's targeting mechanism. From these insights, we generated a model for CpE's claudin-bound ß-pore that predicted sFabs would not prevent cytotoxicity, which we then verified in vivo. Taken together, this work demonstrates the development and mechanism of claudin/cCpE-binding sFabs that provide a framework and strategy for obstructing claudin/CpE assembly to treat CpE-linked gastrointestinal diseases.


Asunto(s)
Claudinas , Enterotoxinas , Animales , Claudina-3/genética , Claudina-3/metabolismo , Claudina-4/genética , Claudina-4/metabolismo , Claudinas/metabolismo , Clostridium perfringens , Enterotoxinas/metabolismo , Epítopos/metabolismo , Humanos , Unión Proteica
4.
Proteins ; 91(2): 196-208, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36111441

RESUMEN

The continued emergence of new SARS-CoV-2 variants has accentuated the growing need for fast and reliable methods for the design of potentially neutralizing antibodies (Abs) to counter immune evasion by the virus. Here, we report on the de novo computational design of high-affinity Ab variable regions (Fv) through the recombination of VDJ genes targeting the most solvent-exposed hACE2-binding residues of the SARS-CoV-2 spike receptor binding domain (RBD) protein using the software tool OptMAVEn-2.0. Subsequently, we carried out computational affinity maturation of the designed variable regions through amino acid substitutions for improved binding with the target epitope. Immunogenicity of designs was restricted by preferring designs that match sequences from a 9-mer library of "human Abs" based on a human string content score. We generated 106 different antibody designs and reported in detail on the top five that trade-off the greatest computational binding affinity for the RBD with human string content scores. We further describe computational evaluation of the top five designs produced by OptMAVEn-2.0 using a Rosetta-based approach. We used Rosetta SnugDock for local docking of the designs to evaluate their potential to bind the spike RBD and performed "forward folding" with DeepAb to assess their potential to fold into the designed structures. Ultimately, our results identified one designed Ab variable region, P1.D1, as a particularly promising candidate for experimental testing. This effort puts forth a computational workflow for the de novo design and evaluation of Abs that can quickly be adapted to target spike epitopes of emerging SARS-CoV-2 variants or other antigenic targets.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Neutralizantes , Epítopos/química , Región Variable de Inmunoglobulina , Glicoproteína de la Espiga del Coronavirus/metabolismo , Anticuerpos Antivirales/metabolismo
5.
Curr Issues Mol Biol ; 45(10): 8112-8125, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37886955

RESUMEN

Oligomerization of antibody fragments via modification with polyethylene glycol (pegylation) may alter their function and properties, leading to a multivalent interaction of the resulting constructs with the target antigen. In a recent study, we generated pegylated monomers and multimers of scFv fragments of GD2-specific antibodies using maleimide-thiol chemistry. Multimerization enhanced the antigen-binding properties and demonstrated a more efficient tumor uptake in a syngeneic GD2-positive mouse cancer model compared to monomeric antibody fragments, thereby providing a rationale for improving the therapeutic characteristics of GD2-specific antibody fragments. In this work, we obtained pegylated conjugates of scFv fragments of GD2-specific antibodies with maytansinoids DM1 or DM4 using tetravalent PEG-maleimide (PEG4). The protein products from the two-stage thiol-maleimide reaction resolved by gel electrophoresis indicated that pegylated scFv fragments constituted the predominant part of the protein bands, and most of the scFv formed pegylated monomers and dimers. The conjugates retained the ability to bind ganglioside GD2 comparable to that of the parental scFv fragment and to specifically interact with GD2-positive cells. Both induced significant inhibitory effects in the GD2-positive B78-D14 cell line, in contrast to the GD2-negative B16 cell line. The decrease in the B78-D14 cell viability when treated with scFv-PEG4-DM4 was more prominent than that for scFv-PEG4-DM1, and was characterized by a twofold lower half-maximal inhibitory concentration (IC50). Unlike the parental scFv fragment, the product of scFv and PEG4 conjugation (scFv-PEG4), consisting predominantly of pegylated scFv multimers and monomers, induced direct cell death in the GD2-positive B78-D14 cells. However, the potency of scFv-PEG4 was low in the selected concentration range, thus demonstrating that the cytotoxic effect of DM1 and DM4 within the antibody fragment-drug conjugates was primary. The suggested approach may contribute to development of novel configurations of antibody fragment-drug conjugates for cancer treatment.

6.
Mol Pharm ; 20(3): 1549-1563, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36602058

RESUMEN

Glioblastoma (GBM) is the most aggressive form of primary brain cancer, accounting for about 85% of all primary central nervous system (CNS) tumors. With standard treatment strategies like surgery, radiation, and chemotherapy, the median survival time of patients with GBM is only 12-15 months from diagnosis. The poor prognosis of GBM is due to a very high tumor recurrence rate following initial treatment, indicating a dire need for improved diagnostic and therapeutic alternatives for this disease. Antibody-based immunotheranostics holds great promise in treating GBM, combining the theranostic applications of radioisotopes and target-specificity of antibodies. In this study, we developed and validated antibody-based positron emission tomography (PET) tracers targeting the heparan sulfate proteoglycan, glypican-1 (GPC-1), for noninvasive detection of disease using diagnostic molecular imaging. GPC-1 is overexpressed in multiple solid tumor types, including GBM, and is a promising biomarker for novel immunotheranostics. Here, we investigate zirconium-89 (89Zr)-conjugated Miltuximab (a clinical stage anti-GPC-1 monoclonal antibody developed by GlyTherix, Ltd.) and engineered fragments for their potential as immuno-PET tracers to detect GPC-1positive GBM tumors in preclinical models. We explore the effects of molecular size, avidity, and Fc-domain on the pharmacokinetics and biodistribution in vivo, by comparing in parallel the full-length antibody (Miltuximab), Fab'2, Fab, and single-chain variable fragment (scFv) formats. High radiolabeling efficiency (>95%) was demonstrated by all the formats and the stability post-radiolabeling was higher for larger constructs of Miltuximab and the Fab. Receptor-mediated internalization of all 89Zr-labeled formats was observed in a human GBM cell line in vitro, while full-length Miltuximab demonstrated the highest tumor retention (5.7 ± 0.94% ID/g, day-9 postinjection (p.i.)) and overall better tumor-to-background ratios than the smaller Fc-less formats. Results from in vivo PET image quantification and ex vivo scintillation counting were highly correlated. Altogether, 89Zr-DFO-Miltuximab appears to be an effective immuno-PET imaging agent for detecting GPC-1positive tumors such as GBM and the current results support utility of the Fc containing whole mAb format over smaller antibody fragments for this target.


Asunto(s)
Glioblastoma , Glipicanos , Humanos , Distribución Tisular , Anticuerpos Monoclonales/farmacocinética , Recurrencia Local de Neoplasia , Tomografía de Emisión de Positrones/métodos , Circonio , Fragmentos de Inmunoglobulinas , Línea Celular Tumoral
7.
Fish Shellfish Immunol ; 138: 108808, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37169114

RESUMEN

The development of recombinant antibody fragments as promising alternatives to full-length immunoglobulins offers vast opportunities for biomedicine. Antibody fragments have important advantages compared with conventional monoclonal antibodies that make them attractive for the biotech industry: superior stability and solubility, reduced immunogenicity, higher specificity and affinity, capacity to target the hidden epitope and cross the blood-brain barrier, the ability to refold after heat denaturation and inexpensive and easy large-scale production. Different antibody formats such as antigen-binding fragments (Fab), single-chain fragment variable (scFv) consisting of the antigen-binding domains of Ig heavy (VH) and light (VL) chain regions connected by a flexible peptide linker, single-domain antibody fragments (sdAbs) like camelid heavy-chain variable domains (VHHs) and shark variable new antigen receptor (VNARs), and bispecific antibodies (bsAbs) are currently being evaluated as diagnostics or therapeutics in preclinical studies and clinical trials. In the present review, we summarize and discuss studies on VNARs, the smallest recombinant antibody fragment, obtained after the screening of different types of phage display antibody libraries. Results published until March 2023 are discussed.


Asunto(s)
Bacteriófagos , Tiburones , Animales , Fragmentos de Inmunoglobulinas , Tiburones/genética , Proteínas Recombinantes/genética , Anticuerpos Monoclonales , Biblioteca de Péptidos
8.
Appl Microbiol Biotechnol ; 107(13): 4133-4152, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37199752

RESUMEN

Scorpion envenomation is a serious health problem in tropical and subtropical zones. The access to scorpion antivenom is sometimes limited in availability and specificity. The classical production process is cumbersome, from the hyper-immunization of the horses to the IgG digestion and purification of the F(ab)'2 antibody fragments. The production of recombinant antibody fragments in Escherichia coli is a popular trend due to the ability of this microbial host to produce correctly folded proteins. Small recombinant antibody fragments, such as single-chain variable fragments (scFv) and nanobodies (VHH), have been constructed to recognize and neutralize the neurotoxins responsible for the envenomation symptoms in humans. They are the focus of interest of the most recent studies and are proposed as potentially new generation of pharmaceuticals for their use in immunotherapy against scorpion stings of the Buthidae family. This literature review comprises the current status on the scorpion antivenom market and the analyses of cross-reactivity of commercial scorpion anti-serum against non-specific scorpion venoms. Recent studies on the production of new recombinant scFv and nanobodies will be presented, with a focus on the Androctonus and Centruroides scorpion species. Protein engineering-based technology could be the key to obtaining the next generation of therapeutics capable of neutralizing and cross-reacting against several types of scorpion venoms. KEY POINTS: • Commercial antivenoms consist of predominantly purified equine F(ab)'2fragments. • Nanobody-based antivenom can neutralize Androctonus venoms and have a low immunogenicity. • Affinity maturation and directed evolution are used to obtain potent scFv families against Centruroides scorpions.


Asunto(s)
Venenos de Escorpión , Anticuerpos de Cadena Única , Anticuerpos de Dominio Único , Animales , Caballos , Humanos , Antivenenos/metabolismo , Escorpiones/metabolismo , Escherichia coli/metabolismo , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Venenos de Escorpión/genética , Venenos de Escorpión/metabolismo
9.
Biochemistry (Mosc) ; 88(9): 1191-1204, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37770388

RESUMEN

Biotechnological and biomedical applications of antibodies have been on a steady rise since the 1980s. As unique and highly specific bioreagents, monoclonal antibodies (mAbs) have been widely exploited and approved as therapeutic agents. However, the use of mAbs has limitations for therapeutic applications. Antibody fragments (AbFs) with preserved antigen-binding sites have a significant potential to overcome the disadvantages of conventional mAbs, such as heterogeneous tissue distribution after systemic administration, especially in solid tumors, and Fc-mediated bystander activation of the immune system. AbFs possess better biodistribution coefficient due to lower molecular weight. They preserve the functional features of mAbs, such as antigen specificity and binding, while at the same time, ensuring much better tissue penetration. An additional benefit of AbFs is the possibility of their production in bacterial and yeast cells due to the small size, more robust structure, and lack of posttranslational modifications. In this review, we described current approaches to the AbF production with recent examples of AbF synthesis in bacterial and yeast expression systems and methods for the production optimization.

10.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36674755

RESUMEN

Ganglioside GD2 is a well-established target expressed on multiple solid tumors, many of which are characterized by low treatment efficiency. Antibody-drug conjugates (ADCs) have demonstrated marked success in a number of solid tumors, and GD2-directed drug conjugates may also hold strong therapeutic potential. In a recent study, we showed that ADCs based on the approved antibody dinutuximab and the drugs monomethyl auristatin E (MMAE) or F (MMAF) manifested potent and selective cytotoxicity in a panel of tumor cell lines and strongly inhibited solid tumor growth in GD2-positive mouse cancer models. Here, we employed two different GD2-binding moieties-minibodies and scFv fragments that carry variable antibody domains identical to those of dinutuximab, and site-directly conjugated them to MMAE or MMAF by thiol-maleimide chemistry with drug-to-antibody ratios (DAR) of 2 and 1, respectively. Specific binding of the antibody fragment-drug conjugates (FDCs) to GD2 was confirmed in direct ELISA, flow cytometry, and confocal microscopy. Selective cytotoxic and cytostatic effects of the conjugates were observed in GD2-positive but not GD2-negative neuroblastoma and melanoma cell lines. Minibody-based FDCs demonstrated more pronounced cytotoxic effects and stronger antigen binding compared to scFv-based FDCs. The developed molecules may offer considerable practical benefit, since antibody fragment-drug conjugates are capable of enhancing therapeutic efficacy of ADCs by improving their pharmacokinetic characteristics and reducing side effects.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neuroblastoma , Animales , Ratones , Fragmentos de Inmunoglobulinas , Línea Celular Tumoral , Antineoplásicos/farmacología , Inmunoconjugados/uso terapéutico , Neuroblastoma/patología , Modelos Animales de Enfermedad , Gangliósidos/metabolismo
11.
Crit Rev Biotechnol ; 42(5): 756-773, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34470557

RESUMEN

This review article concerns the production of recombinant antibody fragments for applications mainly in the diagnostic sector. The so-called "point of care diagnostics" is very important for timely diagnosis and treatment, thus being able to save lives and resources. There is intense pressure for more accurate and less expensive rapid diagnostic tests, with a value preferably <$1. Thus, the large-scale cost-effective production of recombinant antibodies is vital. The importance of Escherichia coli toward the production of inexpensive rapid tests will be explained in this review paper. Details about the different strains of E. coli, the strategies used for the insertion and the expression of recombinant proteins, and the challenges that still exist are provided. Afterward, the importance of the expression scale and culture parameters in the final yield of the antibodies are examined. From this analysis, it appears that for good yields of recombinant antibodies, aside from appropriate gene transfer and expression, the culturing parameters are of paramount importance. Larger scale production is more favorable, mainly due to the higher cell densities that can be achieved. Yields of functional Fab fragments in the range of 10-20 mg/L are considered good in shake flasks, whereas in bioreactors can be up to 1-2 g/L. An amount of 10-500 mg of such antibody per million rapid tests is required. Despite the substantial importance of the production of the antibodies and their fragments, their downstream processing should be appropriately considered from the beginning for achieving the target value of the final rapid diagnostic tests.


Asunto(s)
Reactores Biológicos , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo
12.
Biotechnol Bioeng ; 119(9): 2505-2517, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35689353

RESUMEN

Plants are economical and sustainable factories for the production of recombinant proteins. Currently, numerous proteins produced using different plant-based systems with applications as cosmetic and tissue culture ingredients, research and diagnostic reagents, and industrial enzymes are marketed worldwide. In this study, we aimed to demonstrate the usefulness of a plant-based system to synthesize a single-chain antibody (scFv)-elastin-like polypeptide (ELP) fusion to be applied as an affinity precipitation reagent of the difficult to produce recombinant proteins. We used the human tissue transglutaminase (TG2), the main celiac disease autoantigen, as a proof of concept. We cloned a TG2-specific scFv and fused it to a short hydrophobic ELP tag. The anti-TG2-scFv-ELP was produced in Nicotiana benthamiana and was efficiently recovered by an inverse transition cycling procedure improved by coaggregation with bacteria-made free ELP. Finally, the scFv-ELP was used to purify both plant-synthesized human TG2 and also Caco-2-TG2. In conclusion, this study showed for the first time the usefulness of a plant-based expression system to produce an antibody-ELP fusion designed for the purification of low-yield proteins.


Asunto(s)
Elastina , Nicotiana , Células CACO-2 , Elastina/química , Humanos , Fragmentos de Inmunoglobulinas , Péptidos/química , Proteínas Recombinantes de Fusión/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
13.
Mol Pharm ; 19(5): 1233-1247, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35438509

RESUMEN

Glioblastoma (GB) is recognized as the most aggressive form of primary brain cancer. Despite advances in treatment strategies that include surgery, radiation, and chemotherapy, the median survival time (∼15 months) of patients with GB has not significantly improved. The poor prognosis of GB is also associated with a very high chance of tumor recurrence (∼90%), and current treatment measures have failed to address the complications associated with this disease. However, targeted therapies enabled through antibody engineering have shown promise in countering GB when used in combination with conventional approaches. Here, we discuss the challenges in conventional as well as future GB therapeutics and highlight some of the known advantages of using targeted biologics to overcome these impediments. We also review a broad range of potential alternative routes that could be used clinically to administer anti-GB biologics to the brain through evasion of its natural barriers.


Asunto(s)
Productos Biológicos , Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patología , Sistemas de Liberación de Medicamentos , Glioblastoma/metabolismo , Humanos , Recurrencia Local de Neoplasia
14.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36293532

RESUMEN

The human leucine-rich repeat-containing protein 15 (LRRC15) is a membrane protein identified as a marker of CAF (cancer-associated fibroblast) cells whose overexpression is positively correlated with cancer grade and outcome. Nuclear molecular imaging (i.e., SPECT and PET) to track LRRC15 expression could be very useful in guiding further therapeutic strategies. In this study, we developed an ScFv mouse phage-display library to obtain small fragment antibodies against human LRRC15 for molecular imaging purposes. Mice were immunized with recombinant human LRRC15 (hLRRC15), and lymph node cells were harvested for ScFv (single-chain variable fragment) phage-display analysis. The built library was used for panning on cell lines with constitutive or induced expression after transfection. The choice of best candidates was performed by screening various other cell lines, using flow cytometry. The selected candidates were reformatted into Cys-ScFv or Cys-diabody by addition of cysteine, and cloned in mammalian expression vectors to obtain batches of small fragments that were further used in site-specific radiolabeling tests. The obtained library was 1.2 × 107 cfu/µg with an insertion rate >95%. The two panning rounds performed on cells permittedenrichment of 2 × 10−3. Screening with flow cytometry allowed us to identify 28 specific hLRRC15 candidates. Among these, two also recognized murine LRCC15 and were reformatted into Cys-ScFv and Cys-diabody. They were expressed transiently in a mammalian system to obtain 1.0 to 4.5 mg of Cys fragments ready for bioconjugation and radiolabeling. Thus, in this paper, we demonstrate the relevance of the phage-display ScFv library approach for the fast-track development of small antibodies for imaging and/or immunotherapy purposes.


Asunto(s)
Bacteriófagos , Anticuerpos de Cadena Única , Humanos , Ratones , Animales , Biblioteca de Péptidos , Cisteína , Leucina , Ensayo de Inmunoadsorción Enzimática , Proteínas de la Membrana , Bacteriófagos/metabolismo , Mamíferos/metabolismo
15.
J Infect Dis ; 224(4): 705-714, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-33728452

RESUMEN

Maternal-fetal transmission of Toxoplasma gondii tachyzoites acquired during pregnancy has potentially dramatic consequences for the fetus. Current reference-standard treatments are not specific to the parasite and can induce severe side effects. In order to provide treatments with a higher specificity against toxoplasmosis, we developed antibody fragments-single-chain fragment variable (scFv) and scFv fused with mouse immunoglobulin G2a crystallizable fragment (scFv-Fc)-directed against the major surface protein SAG1. After validating their capacity to inhibit T. gondii proliferation in vitro, the antibody fragments' biological activity was assessed in vivo using a congenital toxoplasmosis mouse model. Dams were treated by systemic administration of antibody fragments and with prevention of maternal-fetal transmission being used as the parameter of efficacy. We observed that both antibody fragments prevented T. gondii dissemination and protected neonates, with the scFv-Fc format having better efficacy. These data provide a proof of concept for the use of antibody fragments as effective and specific treatment against congenital toxoplasmosis and provide promising leads.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antiprotozoarios/inmunología , Ingeniería de Proteínas , Anticuerpos de Cadena Única , Toxoplasmosis Congénita , Animales , Femenino , Ratones , Embarazo , Anticuerpos de Cadena Única/inmunología , Toxoplasma/inmunología , Toxoplasmosis Congénita/tratamiento farmacológico , Toxoplasmosis Congénita/prevención & control
16.
Biotechnol Bioeng ; 118(12): 4815-4828, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34585737

RESUMEN

Monoclonal antibodies are the leading class of biopharmaceuticals in terms of numbers approved for therapeutic purposes. Antigen-binding fragments (Fab) are also used as biotherapeutics and used widely in research applications. The dominant expression systems for full-length antibodies are mammalian cell-based, whereas for Fab molecules the preference has been an expression in bacterial systems. However, advances in CHO and downstream technologies make mammalian systems an equally viable option for small- and large-scale Fab production. Using a panel of full-length IgG antibodies and their corresponding Fab pair with different antigen specificities, we investigated the impact of the IgG and Fab molecule format on production from Chinese hamster ovary (CHO) cells and assessed the cellular capability to process and produce these formats. The full-length antibody format resulted in the recovery of fewer mini-pools posttransfection when compared to the corresponding Fab fragment format that could be interpreted as indicative of a greater overall burden on cells. Antibody-producing cell pools that did recover were subsequently able to achieve higher volumetric protein yields (mg/L) and specific productivity than the corresponding Fab pools. Importantly, when the actual molecules produced per cell of a given format was considered (as opposed to mass), CHO cells produced a greater number of Fab molecules per cell than obtained with the corresponding IgG, suggesting that cells were more efficient at making the smaller Fab molecule. Analysis of cell pools showed that gene copy number was not correlated to the subsequent protein production. The amount of mRNA correlated with secreted Fab production but not IgG, whereby posttranscriptional processes act to limit antibody production. In summary, we provide the first comparative description of how full-length IgG and Fab antibody formats impact on the outcomes of a cell line construction process and identify potential limitations in their production that could be targeted for engineering increases in the efficiency in the manufacture of these recombinant antibody formats.


Asunto(s)
Fragmentos Fab de Inmunoglobulinas , Inmunoglobulina G , Proteínas Recombinantes , Animales , Células CHO , Técnicas de Cultivo de Célula , Cromatografía Líquida de Alta Presión , Cricetinae , Cricetulus , Fragmentos Fab de Inmunoglobulinas/análisis , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/aislamiento & purificación , Fragmentos Fab de Inmunoglobulinas/metabolismo , Inmunoglobulina G/análisis , Inmunoglobulina G/química , Inmunoglobulina G/aislamiento & purificación , Inmunoglobulina G/metabolismo , Proteínas Recombinantes/análisis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
17.
J Pharmacokinet Pharmacodyn ; 48(5): 743-762, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34146191

RESUMEN

In the past, our lab proposed a two-pore PBPK model for different-size protein therapeutics using de novo derived parameters and the model was validated using plasma PK data of different-size antibody fragments digitized from the literature (Li Z, Shah DK, J Pharmacokinet Pharmacodynam 46(3):305-318, 2009). To further validate the model using tissue distribution data, whole-body biodistribution study of 6 different-size proteins in mice were conducted. Studied molecules covered a wide MW range (13-150 kDa). Plasma PK and tissue distribution profiles is 9 tissues were measured, including heart, lung, liver, spleen, kidney, skin, muscle, small intestine, large intestine. Tumor exposure of different-size proteins were also evaluated. The PBPK model was validated by comparing percentage predictive errors (%PE) between observed and model predicted results for each type of molecule in each tissue. Model validation showed that the two-pore PBPK model was able to predict plasma, tissues and tumor PK of all studied molecules relatively well. This model could serve as a platform for developing a generic PBPK model for protein therapeutics in the future.


Asunto(s)
Distribución Tisular/fisiología , Trastuzumab/farmacocinética , Animales , Anticuerpos Monoclonales/farmacocinética , Línea Celular Tumoral , Humanos , Ratones , Ratones Desnudos , Modelos Biológicos , Neoplasias/metabolismo
18.
Methods ; 154: 3-9, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30172007

RESUMEN

Bispecific antibodies (BsAbs), which target two antigens or epitopes, incorporate the specificities and properties of two distinct monoclonal antibodies (mAbs) into a single molecule. As such, BsAbs can elicit synergistic activities and provide the capacity for enhanced therapeutic efficacy and/or safety compared to what can be achieved with conventional monospecific IgGs. There are many building block formats to generate BsAbs and Trispecific antibodies (TsAbs) based on combining the antigen recognition domains of monoclonal antibodies (mAbs). This review describes the many and varied antibody-based building blocks used to achieve multivalency and multispecificity. These diverse building blocks provide opportunities to tailor the design of BsAbs and TsAbs to match the desired applications.


Asunto(s)
Anticuerpos Biespecíficos , Anticuerpos Monoclonales , Ingeniería de Proteínas
19.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255488

RESUMEN

The accumulation of amyloid protein aggregates in tissues is the basis for the onset of diseases known as amyloidoses. Intriguingly, many amyloidoses impact the central nervous system (CNS) and usually are devastating diseases. It is increasingly apparent that neurotoxic soluble oligomers formed by amyloidogenic proteins are the primary molecular drivers of these diseases, making them lucrative diagnostic and therapeutic targets. One promising diagnostic/therapeutic strategy has been the development of antibody fragments against amyloid oligomers. Antibody fragments, such as fragment antigen-binding (Fab), scFv (single chain variable fragments), and VHH (heavy chain variable domain or single-domain antibodies) are an alternative to full-length IgGs as diagnostics and therapeutics for a variety of diseases, mainly because of their increased tissue penetration (lower MW compared to IgG), decreased inflammatory potential (lack of Fc domain), and facile production (low structural complexity). Furthermore, through the use of in vitro-based ligand selection, it has been possible to identify antibody fragments presenting marked conformational selectivity. In this review, we summarize significant reports on antibody fragments selective for oligomers associated with prevalent CNS amyloidoses. We discuss promising results obtained using antibody fragments as both diagnostic and therapeutic agents against these diseases. In addition, the use of antibody fragments, particularly scFv and VHH, in the isolation of unique oligomeric assemblies is discussed as a strategy to unravel conformational moieties responsible for neurotoxicity. We envision that advances in this field may lead to the development of novel oligomer-selective antibody fragments with superior selectivity and, hopefully, good clinical outcomes.


Asunto(s)
Amiloide/inmunología , Amiloidosis/diagnóstico , Síndromes de Neurotoxicidad/diagnóstico , Agregación Patológica de Proteínas/diagnóstico , Amiloide/antagonistas & inhibidores , Amiloidosis/inmunología , Amiloidosis/patología , Animales , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos de Inmunoglobulinas/inmunología , Síndromes de Neurotoxicidad/inmunología , Síndromes de Neurotoxicidad/patología , Fragmentos de Péptidos/inmunología , Agregación Patológica de Proteínas/inmunología , Anticuerpos de Dominio Único , Relación Estructura-Actividad
20.
Eur J Nucl Med Mol Imaging ; 46(2): 489-500, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30456475

RESUMEN

PURPOSE: Metabolic imaging using [18F]FDG is the current standard for clinical PET; however, some malignancies (e.g., indolent lymphomas) show low avidity for FDG. The majority of B cell lymphomas express CD20, making it a valuable target both for antibody-based therapy and imaging. We previously developed PET tracers based on the humanised anti-CD20 antibody obinutuzumab (GA101). Preclinical studies showed that the smallest bivalent fragment, the cys-diabody (GAcDb, 54.5 kDa) with a peak uptake at 1-2 h post-injection and a biological half-life of 2-5 h, is compatible with short-lived positron emitters such as fluorine-18 (18F, t1/2 110 min), enabling same-day imaging. METHODS: GAcDb was radiolabeled using amine-reactive N-succinimidyl 4-[18F]-fluorobenzoate ([18F]SFB), or thiol-reactive N-[2-(4-[18F]-fluorobenzamido)ethyl]maleimide ([18F]FBEM) for site-specific conjugation to C-terminal cysteine residues. Both tracers were used for immunoPET imaging of the B cell compartment in human CD20 transgenic mice (hCD20TM). [18F]FB-GAcDb immunoPET was further evaluated in a disseminated lymphoma (A20-hCD20) syngeneic for hCD20TM and compared to [18F]FDG PET. Tracer uptake was confirmed by ex vivo biodistribution. RESULTS: The GAcDb was successfully 18F-radiolabeled using two different conjugation methods resulting in similar specific activities and without impairing immunoreactivity. Both tracers ([18F]FB-GAcDb and [18F]FBEM-GAcDb) specifically target human CD20-expressing B cells in transgenic mice. Fast blood clearance results in high contrast PET images as early as 1 h post injection enabling same-day imaging. [18F]FB-GAcDb immunoPET detects disseminated lymphoma disease in the context of normal tissue expression of hCD20, with comparable sensitivity as [18F]FDG PET but with added specificity for the therapeutic target. CONCLUSIONS: [18F]FB-GAcDb and [18F]FBEM-GAcDb could monitor normal B cells and B cell malignancies non-invasively and quantitatively in vivo. In contrast to [18F]FDG PET, immunoPET provides not only information about the extent of disease but also about presence and localisation of the therapeutic target.


Asunto(s)
Anticuerpos/inmunología , Antígenos CD20/inmunología , Radioisótopos de Flúor , Linfoma de Células B/diagnóstico por imagen , Linfoma de Células B/patología , Tomografía de Emisión de Positrones/métodos , Animales , Humanos , Marcaje Isotópico , Linfoma de Células B/inmunología , Ratones , Ratones Transgénicos , Radioquímica , Factores de Tiempo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA