Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biomed Inform ; 156: 104681, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960273

RESUMEN

The multimorbidity problem involves the identification and mitigation of adverse interactions that occur when multiple computer interpretable guidelines are applied concurrently to develop a treatment plan for a patient diagnosed with multiple diseases. Solving this problem requires decision support approaches which are difficult to comprehend for physicians. As such, the rationale for treatment plans generated by these approaches needs to be provided. OBJECTIVE: To develop an explainability component for an automated planning-based approach to the multimorbidity problem, and to assess the fidelity and interpretability of generated explanations using a clinical case study. METHODS: The explainability component leverages the task-network model for representing computer interpretable guidelines. It generates post-hoc explanations composed of three aspects that answer why specific clinical actions are in a treatment plan, why specific revisions were applied, and how factors like medication cost, patient's adherence, etc. influence the selection of specific actions. The explainability component is implemented as part of MitPlan, where we revised our planning-based approach to support explainability. We developed an evaluation instrument based on the system causability scale and other vetted surveys to evaluate the fidelity and interpretability of its explanations using a two dimensional comparison study design. RESULTS: The explainability component was implemented for MitPlan and tested in the context of a clinical case study. The fidelity and interpretability of the generated explanations were assessed using a physician-focused evaluation study involving 21 participants from two different specialties and two levels of experience. Results show that explanations provided by the explainability component in MitPlan are of acceptable fidelity and interpretability, and that the clinical justification of the actions in a treatment plan is important to physicians. CONCLUSION: We created an explainability component that enriches an automated planning-based approach to solving the multimorbidity problem with meaningful explanations for actions in a treatment plan. This component relies on the task-network model to represent computer interpretable guidelines and as such can be ported to other approaches that also use the task-network model representation. Our evaluation study demonstrated that explanations that support a physician's understanding of the clinical reasons for the actions in a treatment plan are useful and important.


Asunto(s)
Multimorbilidad , Humanos , Sistemas de Apoyo a Decisiones Clínicas , Planificación de Atención al Paciente
2.
Childs Nerv Syst ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39289198

RESUMEN

Cranial vault remodelling for craniosynostosis aims to increase intracranial volume to facilitate brain growth, avoid the development of raised intracranial pressure and address cosmesis. The extent of vault expansion is predominantly limited by scalp closure and reconstruction technique. Virtual surgical planning tools have been developed to predict post-operative changes and guide expansion. We present a validation study of a novel 'Dura-based Automated Vault Expansion-Remodeling' (DAVE-R) model to guide pre-operative planning for fronto-orbital advancement and remodelling (FOAR). METHODS: Patients with trigonocephaly who underwent FOAR with pre- and post-operative imaging from 2018 to 2020 were identified from a prospectively maintained database. Post-operative scans, normative atlas and whole brain parcellation were registered to the pre-operative images to quantify the change in intracranial volume and morphology (utilising measurement of fronto-orbital advancement and bifrontozygomatic distance) compared to that predicted by the DAVE-R model. RESULTS: Ten patients were included. The DAVE-R model predicted bifrontozygomatic distances of 92.0 + / - 5.14 mm (mean + /SD), which closely matched the post-operative results of 92.7 + / - 6.02 mm (mean + / - SD); (t(d.f. 9) = -0.306, p = 0.77). The fronto-orbital advancement predicted by the DAVE-R method was 11.5 + / - 1.96 mm (mean + / - SD) which was significantly greater than 8.6 + / - 2.94 mm (mean ± SD); (t(d.f. 9) = 3.137, p = 0.01) achieved post-operatively. CONCLUSIONS: We demonstrate that the DAVE-R model provides an objective means of extracting realistic surgical goals in patients undergoing FOAR for trigonocephaly that closely correlates with post-operative outcomes. The normative dural model warrants further study and validation for other forms of craniosynostosis correction.

3.
J Appl Clin Med Phys ; 25(2): e14168, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37798910

RESUMEN

PURPOSE: Knowledge-based planning (KBP) aims to automate and standardize treatment planning. New KBP users are faced with many questions: How much does model size matter, and are multiple models needed to accommodate specific physician preferences? In this study, six head-and-neck KBP models were trained to address these questions. METHODS: The six models differed in training size and plan composition: The KBPFull (n = 203 plans), KBP101 (n = 101), KBP50 (n = 50), and KBP25 (n = 25) were trained with plans from two head-and-neck physicians. KBPA and KBPB each contained n = 101 plans from only one physician, respectively. An independent set of 39 patients treated to 6000-7000 cGy by a third physician was re-planned with all KBP models for validation. Standard head-and-neck dosimetric parameters were used to compare resulting plans. KBPFull plans were compared to the clinical plans to evaluate overall model quality. Additionally, clinical and KBPFull plans were presented to another physician for blind review. Dosimetric comparison of KBPFull against KBP101 , KBP50 , and KBP25 investigated the effect of model size. Finally, KBPA versus KBPB tested whether training KBP models on plans from one physician only influences the resulting output. Dosimetric differences were tested for significance using a paired t-test (p < 0.05). RESULTS: Compared to manual plans, KBPFull significantly increased PTV Low D95% and left parotid mean dose but decreased dose cochlea, constrictors, and larynx. The physician preferred the KBPFull plan over the manual plan in 20/39 cases. Dosimetric differences between KBPFull , KBP101 , KBP50 , and KBP25 plans did not exceed 187 cGy on aggregate, except for the cochlea. Further, average differences between KBPA and KBPB were below 110 cGy. CONCLUSIONS: Overall, all models were shown to produce high-quality plans. Differences between model outputs were small compared to the prescription. This indicates only small improvements when increasing model size and minimal influence of the physician when choosing treatment plans for training head-and-neck KBP models.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Bases del Conocimiento , Radiometría , Órganos en Riesgo
4.
J Appl Clin Med Phys ; 25(5): e14361, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642406

RESUMEN

PURPOSES: This study aimed to develop and validate algorithms for automating intensity modulated radiation therapy (IMRT) planning in breast cancer patients, with a focus on patient anatomical characteristics. MATERIAL AND METHODS: We retrospectively selected 400 breast cancer patients without lymph node involvement for automated treatment planning. Automation was achieved using the Eclipse Scripting Application Programming Interface (ESAPI) integrated into the Eclipse Treatment Planning System. We employed three beam insertion geometries and three optimization strategies, resulting in 3600 plans, each delivering a 40.05 Gy dose in 15 fractions. Gantry angles in the tangent fields were selected based on a criterion involving the minimum intersection area between the Planning Target Volume (PTV) and the ipsilateral lung in the Beam's Eye View projection. ESAPI was also used to gather patient anatomical data, serving as input for Random Forest models to select the optimal plan. The Random Forest classification considered both beam insertion geometry and optimization strategy. Dosimetric data were evaluated in accordance with the Radiation Therapy Oncology Group (RTOG) 1005 protocol. RESULTS: Overall, all approaches generated high-quality plans, with approximately 94% meeting the acceptable dose criteria for organs at risk and/or target coverage as defined by RTOG guidelines. Average automated plan generation time ranged from 6 min and 37 s to 9 min and 22 s, with the mean time increasing with additional fields. The Random Forest approach did not successfully enable automatic planning strategy selection. Instead, our automated planning system allows users to choose from the tested geometry and strategy options. CONCLUSIONS: Although our attempt to correlate patient anatomical features with planning strategy using machine learning tools was unsuccessful, the resulting dosimetric outcomes proved satisfactory. Our algorithm consistently produced high-quality plans, offering significant time and efficiency advantages.


Asunto(s)
Algoritmos , Neoplasias de la Mama , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Femenino , Neoplasias de la Mama/radioterapia , Órganos en Riesgo/efectos de la radiación , Estudios Retrospectivos , Automatización , Pronóstico
5.
Appl Intell (Dordr) ; 54(1): 470-489, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38225993

RESUMEN

Goal Recognition is the task of discerning the intended goal that an agent aims to achieve, given a set of goal hypotheses, a domain model, and a sequence of observations (i.e., a sample of the plan executed in the environment). Existing approaches assume that goal hypotheses comprise a single conjunctive formula over a single final state and that the environment dynamics are deterministic, preventing the recognition of temporally extended goals in more complex settings. In this paper, we expand goal recognition to temporally extended goals in Fully Observable Non-Deterministic (fond) planning domain models, focusing on goals on finite traces expressed in Linear Temporal Logic (ltlf) and Pure-Past Linear Temporal Logic (ppltl). We develop the first approach capable of recognizing goals in such settings and evaluate it using different ltlf and ppltl goals over six fond planning domain models. Empirical results show that our approach is accurate in recognizing temporally extended goals in different recognition settings.

6.
J Appl Clin Med Phys ; 24(3): e13837, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36347220

RESUMEN

PURPOSE: Determine the dosimetric quality and the planning time reduction when utilizing a template-based automated planning application. METHODS: A software application integrated through the treatment planning system application programing interface, QuickPlan, was developed to facilitate automated planning using configurable templates for contouring, knowledge-based planning structure matching, field design, and algorithm settings. Validations are performed at various levels of the planning procedure and assist in the evaluation of readiness of the CT image, structure set, and plan layout for automated planning. QuickPlan is evaluated dosimetrically against 22 hippocampal-avoidance whole brain radiotherapy patients. The required times to treatment plan generation are compared for the validations set as well as 10 prospective patients whose plans have been automated by QuickPlan. RESULTS: The generations of 22 automated treatment plans are compared against a manual replanning using an identical process, resulting in dosimetric differences of minor clinical significance. The target dose to 2% volume and homogeneity index result in significantly decreased values for automated plans, whereas other dose metric evaluations are nonsignificant. The time to generate the treatment plans is reduced for all automated plans with a median difference of 9' 50″ ± 4' 33″. CONCLUSIONS: Template-based automated planning allows for reduced treatment planning time with consistent optimization structure creation, treatment field creation, plan optimization, and dose calculation with similar dosimetric quality. This process has potential expansion to numerous disease sites.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Estudios Prospectivos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica , Programas Informáticos
7.
Zhongguo Yi Liao Qi Xie Za Zhi ; 47(4): 365-369, 2023 Jul 30.
Artículo en Zh | MEDLINE | ID: mdl-37580284

RESUMEN

OBJECTIVE: To study the feasibility and potential benefits of beam angle optimization (BAO) to automated planning in liver cancer. METHODS: An approach of beam angle sampling is proposed to implement BAO along with the module Auto-planning in treatment planning system (TPS) Pinnacle. An in-house developed plan quality metric (PQM) is taken as the preferred evaluating method during the sampling. The process is driven automatically by in-house made Pinnacle scripts both in sampling and scoring. In addition, dosimetry analysis and physician's opinion are also performed as the supplementary and compared with the result of PQM. RESULTS: It is revealed by the numerical analysis of PQM scores that only 15% patients whose superior trials evaluated by PQM are also the initial trials. Gantry optimization can bring benefit to plan quality along with auto-planning in liver cancer. Similar results are provided by both dose comparison and physician's opinion. CONCLUSIONS: It is possible to introduce a full automated approach of beam angle optimization to automated planning process. The advantages of this procedure can be observed both in numerical analysis and physician's opinion.


Asunto(s)
Neoplasias Hepáticas , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios de Factibilidad , Radiometría/métodos , Neoplasias Hepáticas/radioterapia , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica
8.
J Appl Clin Med Phys ; 23(8): e13704, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35791594

RESUMEN

PURPOSE: Knowledge-based planning (KBP) has been shown to be an effective tool in quality control for intensity-modulated radiation therapy treatment planning and generating high-quality plans. Previous studies have evaluated its ability to create consistent plans across institutions and between planners within the same institution as well as its use as teaching tool for inexperienced planners. This study evaluates whether planning quality is consistent when using a KBP model to plan across different treatment machines. MATERIALS AND METHODS: This study used a RapidPlan model (Varian Medical Systems) provided by the vendor, to which we added additional planning objectives, maximum dose limits, and planning structures, such that a clinically acceptable plan is achieved in a single optimization. This model was used to generate and optimize volumetric-modulated arc therapy plans for a cohort of 50 patients treated for head-neck cancer. Plans were generated using the following treatment machines: Varian 2100, Elekta Versa HD, and Varian Halcyon. A noninferiority testing methodology was used to evaluate the hypothesis that normal and target metrics in our autoplans were no worse than a set of clinically-acceptable baseline plans by a margin of 1.8 Gy or 3% dose-volume. The quality of these plans were also compared through the use of common clinical dose-volume histogram criteria. RESULTS: The Versa HD met our noninferiority criteria for 23 of 34 normal and target metrics; while the Halcyon and Varian 2100 machines met our criteria for 24 of 34 and 26 of 34 metrics, respectively. The experimental plans tended to have less volume coverage for prescription dose planning target volume and larger hotspot volumes. However, comparable plans were generated across different treatment machines. CONCLUSIONS: These results support the use of a head-neck RapidPlan models in centralized planning workflows that support clinics with different linac models/vendors, although some fine-tuning for targets may be necessary.


Asunto(s)
Neoplasias de Cabeza y Cuello , Radioterapia de Intensidad Modulada , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Bases del Conocimiento , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos
9.
J Appl Clin Med Phys ; 23(2): e13510, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34936205

RESUMEN

BACKGROUND: Pencil beam scanning (PBS) proton therapy offers dosimetric advantages for several treatment sites, including head and neck (H&N). However, to achieve the optimal target coverage and robustness, these plans can be complex and time consuming to develop and optimize. Automating the treatment planning process can ensure a high-quality and standardized plan, reduce burden to the planner, and decrease time-to-treatment. We utilized in-house scripting to automate a four-field multi-field optimization (MFO) H&N planning technique. METHODS AND MATERIALS: Ten bilateral H&N patients were planned in RayStation v6 with a four-field modified-X beam configuration using MFO planning. Automation included creation of avoidance structures to control spot placement and development of standardized beams, PBS spot settings, robust optimization objectives, and patient-specific predicted planning constraints. Each patient was planned both with and without automation to evaluate differences in planning time, perceived effort and plan quality, plan robustness, and OAR sparing. RESULTS: On average, scripted plans required 3.2 h, compared to 4.3 h without the script. There was no difference in target coverage or plan robustness with or without automation. Automation significantly reduced mean dose to the oral cavity, parotids, esophagus, trachea, and larynx. Perceived effort was scaled from 1 (minimum effort) to 100 (maximum effort), and automation reduced perceived effort by 42% (p < 0.05). Two non-scripted plans required re-planning due to errors. CONCLUSIONS: Automation of this multi-beam, the MFO proton planning process reduced planning time and improved OAR sparing compared to the same planning process without scripting. Scripting generation of complex structures and planning objectives reduced burden on the planner. With most current treatment planning software, this automation is simple to implement and can standardize quality of care across all treatment planners.


Asunto(s)
Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
10.
Sensors (Basel) ; 22(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36016062

RESUMEN

Reinforcement Learning (RL) comes with the promise of automating network management. However, due to its trial-and-error learning approach, model-based RL (MBRL) is not applicable in some network management scenarios. This paper explores the potential of using Automated Planning (AP) to achieve this MBRL in the functional areas of network management. In addition, a comparison of several integration strategies of AP and RL is depicted. We also describe an architecture that realizes a cognitive management control loop by combining AP and RL. Our experiments evaluate on a simulated environment evidence that the combination proposed improves model-free RL but demonstrates lower performance than Deep RL regarding the reward and convergence time metrics. Nonetheless, AP-based MBRL is useful when the prediction model needs to be understood and when the high computational complexity of Deep RL can not be used.


Asunto(s)
Aprendizaje , Refuerzo en Psicología , Recompensa
11.
J Appl Clin Med Phys ; 22(4): 115-120, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33764663

RESUMEN

PURPOSE: To assess the dosimetric performance of an automated breast planning software. METHODS: We retrospectively reviewed 15 breast cancer patients treated with tangent fields according to the RTOG 1005 protocol and 30 patients treated off-protocol. Planning with electronic compensators (eComps) via manual, iterative fluence editing was compared to an automated planning program called EZFluence (EZF) (Radformation, Inc.). We compared the minimum dose received by 95% of the volume (D95%), D90%, the volume receiving at least 105% of prescription (V105%), V95%, the conformity index of the V95% and PTV volumes (CI95%), and total monitor units (MUs). The PTV_Eval structure generated by EZF was compared to the RTOG 1005 breast PTV_Eval structure. RESULTS: The average D95% was significantly greater for the EZF plans, 95.0%, vs. the original plans 93.2% (P = 0.022). CI95% was less for the EZF plans, 1.18, than the original plans, 1.48 (P = 0.09). D90% was only slightly greater for EZF, averaging at 98.3% for EZF plans and 97.3% for the original plans (P = 0.0483). V105% (cc) was, on average, 27.8cc less in the EZF breast plans, which was significantly less than for those manually planned. The average number of MUs for the EZF plans, 453, was significantly less than original protocol plans, 500 (P = 8 × 10-6 ). The average difference between the protocol PTV volume and the EZF PTV volume was 196 cc, with all but two cases having a larger EZF PTV volume (P = 0.020). CONCLUSION: EZF improved dose homogeneity, coverage, and MU efficiency vs. manually produced eComp plans. The EZF-generated PTV eval is based on the volume encompassed by the tangents, and is not appropriate for dosimetric comparison to constraints for RTOG 1005 PTV eval. EZF produced dosimetrically similar or superior plans to manual, iteratively derived plans and may also offer time and efficiency benefits.


Asunto(s)
Neoplasias de la Mama , Planificación de la Radioterapia Asistida por Computador , Mama , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/radioterapia , Femenino , Humanos , Factor 4 Similar a Kruppel , Dosificación Radioterapéutica , Estudios Retrospectivos , Programas Informáticos
12.
J Biomed Inform ; 108: 103460, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32512210

RESUMEN

Surgical planning for StereoElectroEncephaloGraphy (SEEG) is a complex and patient specific task, where the experience and medical workflow of each institution may influence the final planning choices. To account for this variability, we developed a data-based Computer Assisted Planning (CAP) solution able to exploit the knowledge extracted by past cases. By the analysis of retrospective patients' data sets, our system proposes a pool of trajectories commonly used by the institution, which can be selected to initialize a new patient plan. An optimization framework adapts those to the patient's anatomy by optimizing clinical requirements (e.g. distance from vessel, gray matter recording and insertion angle), and adapting its strategy based on the trajectory type selected.The system has been customized based on the data of a single institution. Two neurosurgeons, working in a high-volume hospital, have validated it by using 15 retrospective patient data sets, with more than 200 trajectories reviewed. Both surgeons considered ~81% of the optimized trajectories as clinically feasible (75% inter-rater reliability). Quantitative comparison of distance from vessels, insertion angle and gray matter recording index showed that the optimized trajectories reached superior or comparable values with respect to the original manual plans. The results suggest that a tailored center-based solution could increase the acceptance rate of the automated trajectories proposed.


Asunto(s)
Electroencefalografía , Técnicas Estereotáxicas , Humanos , Conocimiento , Planificación de la Radioterapia Asistida por Computador , Reproducibilidad de los Resultados , Estudios Retrospectivos
13.
J Appl Clin Med Phys ; 21(6): 114-120, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32275353

RESUMEN

PURPOSE: To develop and validate a robust template for VMAT SBRT of lung lesions, using the multicriterial optimization (MCO) of a commercial treatment planning system. METHODS: The template was established and refined on 10 lung SBRT patients planned for 55 Gy/5 fr. To improve gradient and conformity a ring structure around the planning target volume (PTV) was set in the list of objectives. Ideal fluence optimization was conducted giving priority to organs at risk (OARs) and using the MCO, which further pushes OARs doses. Segmentation was conducted giving priority to PTV coverage. Two different templates were produced with different degrees of modulation, by setting the Fluence Smoothing parameter to Medium (MFS) and High (HFS). Each template was applied on 20 further patients. Automatic and manual plans were compared in terms of dosimetric parameters, delivery time, and complexity. Statistical significance of differences was evaluated using paired two-sided Wilcoxon signed-rank test. RESULTS: No statistically significant differences in PTV coverage and maximum dose were observed, while an improvement was observed in gradient and conformity. A general improvement in dose to OARs was seen, which resulted to be significant for chest wall V30 Gy , total lung V20 Gy , and spinal cord D0.1 cc . MFS plans are characterized by a higher modulation and longer delivery time than manual plans. HFS plans have a modulation and a delivery time comparable to manual plans, but still present an advantage in terms of gradient. CONCLUSION: The automation of the planning process for lung SBRT using robust templates and MCO was demonstrated to be feasible and more efficient.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Radiocirugia , Radioterapia de Intensidad Modulada , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Femenino , Humanos , Pulmón/diagnóstico por imagen , Pulmón/cirugía , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirugía , Masculino , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
14.
J Appl Clin Med Phys ; 21(11): 88-97, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33016622

RESUMEN

PURPOSE: To present the development of an in-house coded solution for treatment planning of tangential breast radiotherapy that creates single click plans by emulating the iterative optimization process of human dosimetrists. METHOD: One hundred clinical breast cancer patients were retrospectively planned with an automated planning (AP) code incorporating the hybrid intensity-modulated radiotherapy (IMRT) approach. The code automates all planning processes including plan generation, beam generation, gantry and collimator angle determination, open segments and dynamic IMRT fluence and calculations. Thirty-nine dose volume histogram (DVH) metrics taken from three international recommendations were compared between the automated and clinical plans (CP), along with median interquartile analysis of the DVH distributions. Total planning time and delivery QA were also compared between the plan sets. RESULTS: Of the 39 planning metrics analyzed 23 showed no significant difference between clinical and automated planning techniques. Of the 16 metrics with statistically significant variations, 2 were improved in the clinical plans in comparison to 14 improved in the AP plans. Automated plans produced a greater number of ideal plans against international guidelines as per EviQ (AP:77%, CP:68%), RTOG 1005 (AP:80%, CP:71%), and London Cancer references (AP:80%, CP:75%). Delivery QA results for both techniques were equivalent. Automated planning techniques resulted in an average reduction in planning time from 23 to 5 minutes. CONCLUSION: We have introduced an automated planning code with iterative optimization that produces equivalent quality plans to manual clinical planning. The resultant change in workflow results in a reduction in treatment planning times.


Asunto(s)
Neoplasias de la Mama , Radioterapia de Intensidad Modulada , Mama , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/radioterapia , Femenino , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Estudios Retrospectivos
15.
Sensors (Basel) ; 20(22)2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33202674

RESUMEN

Using Automated Planning for the high level control of robotic architectures is becoming very popular thanks mainly to its capability to define the tasks to perform in a declarative way. However, classical planning tasks, even in its basic standard Planning Domain Definition Language (PDDL) format, are still very hard to formalize for non expert engineers when the use case to model is complex. Human Robot Interaction (HRI) is one of those complex environments. This manuscript describes the rationale followed to design a planning model able to control social autonomous robots interacting with humans. It is the result of the authors' experience in modeling use cases for Social Assistive Robotics (SAR) in two areas related to healthcare: Comprehensive Geriatric Assessment (CGA) and non-contact rehabilitation therapies for patients with physical impairments. In this work a general definition of these two use cases in a unique planning domain is proposed, which favors the management and integration with the software robotic architecture, as well as the addition of new use cases. Results show that the model is able to capture all the relevant aspects of the Human-Robot interaction in those scenarios, allowing the robot to autonomously perform the tasks by using a standard planning-execution architecture.


Asunto(s)
Robótica , Dispositivos de Autoayuda , Anciano , Evaluación Geriátrica , Humanos , Rehabilitación , Programas Informáticos
16.
Strahlenther Onkol ; 193(12): 1031-1038, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28770294

RESUMEN

PURPOSE: This study evaluates the performance and planning efficacy of the Auto-Planning (AP) module in the clinical version of Pinnacle 9.10 (Philips Radiation Oncology Systems, Fitchburg, WI, USA). METHODS AND MATERIALS: Twenty automated intensity-modulated radiotherapy (IMRT) plans were compared with the original manually planned clinical IMRT plans from patients with oropharyngeal cancer. RESULTS: Auto-Planning with IMRT offers similar coverage of the planning target volume as the original manually planned clinical plans, as well as better sparing of the contralateral parotid gland, contralateral submandibular gland, larynx, mandible, and brainstem. The mean dose of the contralateral parotid gland and contralateral submandibular gland could be reduced by 2.5 Gy and 1.7 Gy on average. The number of monitor units was reduced with an average of 143.9 (18%). Hands-on planning time was reduced from 1.5-3 h to less than 1 h. CONCLUSIONS: The Auto-Planning module was able to produce clinically acceptable head and neck IMRT plans with consistent quality.


Asunto(s)
Órganos en Riesgo/efectos de la radiación , Neoplasias Orofaríngeas/patología , Neoplasias Orofaríngeas/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Programas Informáticos , Humanos , Tratamientos Conservadores del Órgano , Exposición a la Radiación/análisis , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resultado del Tratamiento
17.
J Appl Clin Med Phys ; 18(1): 18-24, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28291912

RESUMEN

OBJECTIVES: To reduce treatment planning times while maintaining plan quality through the introduction of semi-automated planning techniques for breast radiotherapy. METHODS: Automatic critical structure delineation was examined using the Smart Probabilistic Image Contouring Engine (SPICE) commercial autosegmentation software (Philips Radiation Oncology Systems, Fitchburg, WI) for a cohort of ten patients. Semiautomated planning was investigated by employing scripting in the treatment planning system to automate segment creation for breast step-and-shoot planning and create objectives for segment weight optimization; considerations were made for three different multileaf collimator (MLC) configurations. Forty patients were retrospectively planned using the script and a planning time comparison performed. RESULTS: The SPICE heart and lung outlines agreed closely with clinician-defined outlines (median Dice Similarity Coefficient > 0.9); median difference in mean heart dose was 0.0 cGy (range -10.8 to 5.4 cGy). Scripted treatment plans demonstrated equivalence with their clinical counterparts. No statistically significant differences were found for target parameters. Minimal ipsilateral lung dose increases were also observed. Statistically significant (P < 0.01) time reductions were achievable for MLCi and Agility MLC (Elekta Ltd, Crawley, UK) plans (median 4.9 and 5.9 min, respectively). CONCLUSIONS: The use of commercial autosegmentation software enables breast plan adjustment based on doses to organs at risk. Semi-automated techniques for breast radiotherapy planning offer modest reductions in planning times. However, in the context of a typical department's breast radiotherapy workload, minor savings per plan translate into greater efficiencies overall.


Asunto(s)
Neoplasias de la Mama/radioterapia , Órganos en Riesgo/efectos de la radiación , Aceleradores de Partículas/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Automatización , Femenino , Humanos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos , Programas Informáticos
18.
Phys Imaging Radiat Oncol ; 29: 100547, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38390589

RESUMEN

Background and Purpose: The lack of dedicated tools in commercial planning systems currently restricts efficient review and planning for re-irradiation. The aim of this study was to develop an automated re-irradiation planning framework based on cumulative doses. Materials and Methods: We performed a retrospective study of 14 patients who received spine SBRT re-irradiation near a previously irradiated treatment site. A fully-automated workflow, DART (Dose Accumulation-based Re-irradiation Tool), was implemented within Eclipse by leveraging a combination of a dose accumulation script and a proprietary automated optimization algorithm. First, we converted the prior treatment dose into equivalent dose in 2 Gy fractions (EQD2) and mapped it to the current anatomy, utilizing deformable image registration. Subsequently, the intersection of EQD2 isodose lines with relevant organs at risk defines a series of optimization structures. During plan optimization, the residual allowable dose at a specified tissue tolerance was treated as a hard constraint. Results: All DART plans met institutional physical and cumulative constraints and passed plan checks by qualified medical physicists. DART demonstrated significant improvements in target coverage over clinical plans, with an average increase in PTV D99% and V100% of 2.3 Gy [range -0.3-7.7 Gy] and 3.4 % [range -0.4 %-7.6 %] (p < 0.01, paired t-test), respectively. Moreover, high-dose spillage (>105 %) outside the PTV was reduced by up to 7 cm3. The homogeneity index for DART plans was improved by 19 % (p < 0.001). Conclusions: DART provides a powerful framework to achieve more tailored re-irradiation plans by accounting for dose distributions from the previous treatments. The superior plan quality could improve the therapeutic ratio for re-irradiation patients.

19.
Biomed Phys Eng Express ; 10(2)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38364285

RESUMEN

Objective.Automated Stereotactic Radiosurgery (SRS) planning solutions improve clinical efficiency and reduce treatment plan variability. Available commercial solutions employ a template-based strategy that may not be optimal for all SRS patients. This study compares a novel beam angle optimized Volumetric Modulated Arc Therapy (VMAT) planning solution for multi-metastatic SRS to the commercial solution HyperArc.Approach.Stereotactic Optimized Automated Radiotherapy (SOAR) performs automated plan creation by combining collision prediction, beam angle optimization, and dose optimization to produce individualized high-quality SRS plans using Eclipse Scripting. In this retrospective study 50 patients were planned using SOAR and HyperArc. Assessed dose metrics included the Conformity Index (CI), Gradient Index (GI), and doses to organs-at-risk. Complexity metrics evaluated the modulation, gantry speed, and dose rate complexity. Plan dosimetric quality, and complexity were compared using double-sided Wilcoxon signed rank tests (α= 0.05) adjusted for multiple comparisons.Main Results.The median target CI was 0.82 with SOAR and 0.79 with HyperArc (p < .001). Median GI was 1.85 for SOAR and 1.68 for HyperArc (p < .001). The median V12Gy normal brain volume for SOAR and HyperArc were 7.76 cm3and 7.47 cm3respectively. Median doses to the eyes, lens, optic nerves, and optic chiasm were statistically significant favoring SOAR. The SOAR algorithm scored lower for all complexity metrics assessed.Significance.In-house developed automated planning solutions are a viable alternative to commercial solutions. SOAR designs high-quality patient-specific SRS plans with a greater degree of versatility than template-based methods.


Asunto(s)
Radiocirugia , Humanos , Dosificación Radioterapéutica , Radiocirugia/métodos , Estudios Retrospectivos , Planificación de la Radioterapia Asistida por Computador/métodos , Encéfalo
20.
Math Biosci Eng ; 21(1): 1058-1081, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303454

RESUMEN

In this study, a car transfer planning system for parking lots was designed based on reinforcement learning. The car transfer planning system for parking lots is an intelligent parking management system that is designed by using reinforcement learning techniques. The system features autonomous decision-making, intelligent path planning and efficient resource utilization. And the problem is solved by constructing a Markov decision process and using a dynamic planning-based reinforcement learning algorithm. The system has the advantage of looking to the future and using reinforcement learning to maximize its expected returns. And this is in contrast to manual transfer planning which relies on traditional thinking. In the context of this paper on parking lots, the states of the two locations form a finite set. The system ultimately seeks to find a strategy that is beneficial to the long-term development of the operation. It aims to prioritize strategies that have positive impacts in the future, rather than those that are focused solely on short-term benefits. To evaluate strategies, as its basis the system relies on the expected return of a state from now to the future. This approach allows for a more comprehensive assessment of the potential outcomes and ensures the selection of strategies that align with long-term goals. Experimental results show that the system has high performance and robustness in the area of car transfer planning for parking lots. By using reinforcement learning techniques, parking lot management systems can make autonomous decisions and plan optimal paths to achieve efficient resource utilization and reduce parking time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA