Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Subcell Biochem ; 99: 285-315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36151380

RESUMEN

The essential membrane complex FtsE/FtsX (FtsEX), belonging to the ABC transporter superfamily and widespread among bacteria, plays a relevant function in some crucial cell wall remodeling processes such as cell division, elongation, or sporulation. FtsEX plays a double role by recruiting proteins to the divisome apparatus and by regulating lytic activity of the cell wall hydrolases required for daughter cell separation. Interestingly, FtsEX does not act as a transporter but uses the ATPase activity of FtsE to mechanically transmit a signal from the cytosol, through the membrane, to the periplasm that activates the attached hydrolases. While the complete molecular details of such mechanism are not yet known, evidence has been recently reported that clarify essential aspects of this complex system. In this chapter we will present recent structural advances on this topic. The three-dimensional structure of FtsE, FtsX, and some of the lytic enzymes or their cognate regulators revealed an unexpected scenario in which a delicate set of intermolecular interactions, conserved among different bacterial genera, could be at the core of this regulatory mechanism providing exquisite control in both space and time of this central process to assist bacterial survival.


Asunto(s)
Proteínas Bacterianas , Proteínas de Escherichia coli , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Unión Proteica
2.
EMBO Rep ; 20(1)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30523075

RESUMEN

Macromolecular condensation resulting from biologically regulated liquid-liquid phase separation is emerging as a mechanism to organize intracellular space in eukaryotes, with broad implications for cell physiology and pathology. Despite their small size, bacterial cells are also organized by proteins such as FtsZ, a tubulin homolog that assembles into a ring structure precisely at the cell midpoint and is required for cytokinesis. Here, we demonstrate that FtsZ can form crowding-induced condensates, reminiscent of those observed for eukaryotic proteins. Formation of these FtsZ-rich droplets occurs when FtsZ is bound to SlmA, a spatial regulator of FtsZ that antagonizes polymerization, while also binding to specific sites on chromosomal DNA. The resulting condensates are dynamic, allowing FtsZ to undergo GTP-driven assembly to form protein fibers. They are sensitive to compartmentalization and to the presence of a membrane boundary in cell mimetic systems. This is a novel example of a bacterial nucleoprotein complex exhibiting condensation into liquid droplets, suggesting that phase separation may also play a functional role in the spatiotemporal organization of essential bacterial processes.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Citocinesis/genética , Proteínas del Citoesqueleto/genética , ADN Bacteriano/genética , Proteínas de Escherichia coli/genética , Sitios de Unión , Escherichia coli/genética , Extracción Líquido-Líquido , Unión Proteica , Multimerización de Proteína
3.
Bioorg Chem ; 109: 104668, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33601139

RESUMEN

Curcumin (CUR) is a symmetrical dicarbonyl compound with antibacterial activity. On the other hand, pharmacokinetic and chemical stability limitations hinder its therapeutic application. Monocarbonyl analogs of curcumin (MACs) have been shown to overcome these barriers. We synthesized and investigated the antibacterial activity of a series of unsymmetrical MACs derived from acetone against Mycobacterium tuberculosis and Gram-negative and Gram-positive species. Phenolic MACs 4, 6 and 8 showed a broad spectrum and potent activity, mainly against M. tuberculosis, Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus (MRSA), with MIC (minimum inhibitory concentration) values ranging from 0.9 to 15.6 µg/mL. The investigation regarding toxicity on human lung cells (MRC-5 and A549 lines) revealed MAC 4 was more selective than MACs 6 and 8, with SI (selectivity index) values ranging from 5.4 to 15.6. In addition, MAC 4 did not demonstrate genotoxic effects on A549 cells and it was more stable than CUR in phosphate buffer (pH 7.4) for 24 h at 37 °C. Fluorescence and phase contrast microscopies indicated that MAC 4 has the ability to disrupt the divisome of Bacillus subtilis without damaging its cytoplasmic membrane. However, biochemical investigations demonstrated that MAC 4 did not affect the GTPase activity of B. subtilis FtsZ, which is the main constituent of the bacterial divisome. These results corroborated that MAC 4 is a promising antitubercular and antibacterial agent.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Curcumina/análogos & derivados , Curcumina/farmacología , Bacillus subtilis/efectos de los fármacos , Línea Celular , Curcumina/química , Diseño de Fármacos , Desarrollo de Medicamentos , Humanos , Pulmón/citología , Estructura Molecular
4.
Biochim Biophys Acta Biomembr ; 1859(10): 1815-1827, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28642045

RESUMEN

FtsZ filaments localize at the middle of the bacterial cell and participate in the formation of a contractile ring responsible for cell division. Previous studies demonstrated that the highly conserved negative charge of glutamate 83 and the positive charge of arginine 85 located in the lateral helix H3 bend of Escherichia coli FtsZ are required for in vivo cell division. In order to understand how these lateral mutations impair the formation of a contractile ring,we extend previous in vitro characterization of these mutants in solution to study their behavior on lipid modified surfaces. We study their interaction with ZipAand look at their reorganization on the surface. We found that the dynamic bundling capacity of the mutant proteins is deficient, and this impairment increases the more the composition and spatial arrangement of the reconstituted system resembles the situation inside the cell: mutant proteins completely fail to reorganize to form higher order aggregates when bound to an E.coli lipid surface through oriented ZipA.We conclude that these surface lateral point mutations affect the dynamic reorganization of FtsZ filaments into bundles on the cell membrane, suggesting that this event is relevant for generating force and completing bacterial division.


Asunto(s)
Proteínas Bacterianas/genética , Supervivencia Celular/genética , Proteínas del Citoesqueleto/genética , Lípidos/fisiología , Mutación Puntual/genética , Polímeros/metabolismo , Proteínas de Ciclo Celular/genética , División Celular/genética , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética
5.
J Biol Chem ; 290(41): 25081-9, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26330552

RESUMEN

The cell division protein FtsZ assembles in vitro by a mechanism of cooperative association dependent on GTP, monovalent cations, and Mg(2+). We have analyzed the GTPase activity and assembly dynamics of Streptococcus pneumoniae FtsZ (SpnFtsZ). SpnFtsZ assembled in an apparently cooperative process, with a higher critical concentration than values reported for other FtsZ proteins. It sedimented in the presence of GTP as a high molecular mass polymer with a well defined size and tended to form double-stranded filaments in electron microscope preparations. GTPase activity depended on K(+) and Mg(2+) and was inhibited by Na(+). GTP hydrolysis exhibited a delay that included a lag phase followed by a GTP hydrolysis activation step, until reaction reached the GTPase rate. The lag phase was not found in polymer assembly, suggesting a transition from an initial non-GTP-hydrolyzing polymer that switches to a GTP-hydrolyzing polymer, supporting models that explain FtsZ polymer cooperativity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , GTP Fosfohidrolasas/metabolismo , Streptococcus pneumoniae , Proteínas Bacterianas/química , Proteínas del Citoesqueleto/química , Guanosina Difosfato/metabolismo , Cinética , Multimerización de Proteína , Estructura Cuaternaria de Proteína
6.
BMC Microbiol ; 16(1): 239, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27729019

RESUMEN

BACKGROUND: Proteins from the LytR-CpsA-Psr family are found in almost all Gram-positive bacteria. Although LCP proteins have been studied in other pathogens, their functions in enterococci remain uncharacterized. The Psr protein from Enterococcus hirae, here renamed LcpA, previously associated with the regulation of the expression of the low-affinity PBP5 and ß-lactam resistance, has been characterized. RESULTS: LcpA protein of E. hirae ATCC 9790 has been produced and purified with and without its transmembrane helix. LcpA appears, through different methods, to be localized in the membrane, in agreement with in silico predictions. The interaction of LcpA with E. hirae cell wall indicates that LcpA binds enterococcal peptidoglycan, regardless of the presence of secondary cell wall polymers. Immunolocalization experiments showed that LcpA and PBP5 are localized at the division site of E. hirae. CONCLUSIONS: LcpA belongs to the LytR-CpsA-Psr family. Its topology, localization and binding to peptidoglycan support, together with previous observations on defective mutants, that LcpA plays a role related to the cell wall metabolism, probably acting as a phosphotransferase catalyzing the attachment of cell wall polymers to the peptidoglycan.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Enterococcus hirae/metabolismo , Peptidoglicano/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Secuencia de Bases , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Membrana Celular/metabolismo , Pared Celular/metabolismo , Clonación Molecular , ADN Bacteriano , Enterococcus hirae/citología , Enterococcus hirae/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Fosfotransferasas/metabolismo , Mapas de Interacción de Proteínas , Proteínas Recombinantes , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/aislamiento & purificación , Resistencia betalactámica
7.
Proc Natl Acad Sci U S A ; 110(48): 19549-54, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218612

RESUMEN

Bacteriophages take over host resources primarily via the activity of proteins expressed early in infection. One of these proteins, produced by the Escherichia coli phage T7, is gene product (Gp) 0.4. Here, we show that Gp0.4 is a direct inhibitor of the E. coli filamenting temperature-sensitive mutant Z division protein. A chemically synthesized Gp0.4 binds to purified filamenting temperature-sensitive mutant Z protein and directly inhibits its assembly in vitro. Consequently, expression of Gp0.4 in vivo is lethal to E. coli and results in bacteria that are morphologically elongated. We further show that this inhibition of cell division by Gp0.4 enhances the bacteriophage's competitive ability. This division inhibition is thus a fascinating example of a strategy in bacteriophages to maximize utilization of their hosts' cell resources.


Asunto(s)
Adaptación Biológica/genética , Bacteriófago T7/genética , Proteínas del Citoesqueleto/antagonistas & inhibidores , Escherichia coli/virología , Proteínas Virales/metabolismo , Proteínas Virales/farmacología , Proteínas Bacterianas/genética , Western Blotting , Proteínas del Citoesqueleto/genética , Escherichia coli/citología , Plásmidos/genética , Proteínas Virales/genética
8.
FEBS Lett ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849310

RESUMEN

The FtsEX membrane complex constitutes an essential component of the ABC transporter superfamily, widely distributed among bacterial species. It governs peptidoglycan degradation for cell division, acting as a signal transmitter rather than a substrate transporter. Through the ATPase activity of FtsE, it facilitates signal transmission from the cytosol across the membrane to the periplasm, activating associated peptidoglycan hydrolases. This review concentrates on the latest structural advancements elucidating the architecture of the FtsEX complex and its interplay with lytic enzymes or regulatory counterparts. The revealed three-dimensional structures unveil a landscape wherein a precise array of intermolecular interactions, preserved across diverse bacterial species, afford meticulous spatial and temporal control over the cell division process.

9.
Microbiol Spectr ; 11(6): e0169723, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37888989

RESUMEN

IMPORTANCE: We have identified a novel phage-encoded inhibitor of the major cytoskeletal protein in bacterial division, FtsZ. The inhibition is shown to confer T5 bacteriophage with a growth advantage in dividing hosts. Our studies demonstrate a strategy in bacteriophages to maximize their progeny number by inhibiting escape of one of the daughter cells of an infected bacterium. They further emphasize that FtsZ is a natural target for bacterial growth inhibition.


Asunto(s)
Bacteriófagos , División Celular , Bacteriófagos/fisiología , Bacterias , Proteínas del Citoesqueleto , Proteínas Bacterianas/genética
10.
Cells ; 12(2)2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36672251

RESUMEN

Cell-cycle progression is regulated by numerous intricate endogenous mechanisms, among which intracellular forces and protein motors are central players. Although it seems unlikely that it is possible to speed up this molecular machinery by applying tiny external forces to the cell, we show that magnetic forcing of magnetosensitive bacteria reduces the duration of the mitotic phase. In such bacteria, the coupling of the cell cycle to the splitting of chains of biogenic magnetic nanoparticles (BMNs) provides a biological realization of such forcing. Using a static gradient magnetic field of a special spatial configuration, in probiotic bacteria E. coli Nissle 1917, we shortened the duration of the mitotic phase and thereby accelerated cell division. Thus, focused magnetic gradient forces exerted on the BMN chains allowed us to intervene in the processes of division and growth of bacteria. The proposed magnetic-based cell division regulation strategy can improve the efficiency of microbial cell factories and medical applications of magnetosensitive bacteria.


Asunto(s)
Escherichia coli , Campos Magnéticos , Escherichia coli/metabolismo , División Celular , Ciclo Celular
11.
FEBS Lett ; 597(23): 2931-2945, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37857499

RESUMEN

Bacterial division is mediated by a protein complex called the Z-ring, and Z-ring associated protein E (ZapE) is a Z-ring-associated protein that acts as its negative regulator. In the present study, we show that treatment of Escherichia coli with the antibiotic aztreonam stabilized the Z-ring, induced filamentation, and reduced viability, with similar phenotypes being observed in ZapE deletion strains. Aztreonam treatment decreased ZapE expression, and the overexpression of ZapE rescued filamentous morphology significantly and viability partially. However, overexpression of filamentous temperature sensitive I (FtsI), a known target of aztreonam, could not rescue the filamentation. Interestingly, overexpression of ZapE and FtsI together was able to rescue both filamentous morphology and cell viability. Using in silico and biochemical analyses, we show that aztreonam directly interacts with ZapE. Our study suggests that the inhibitory effects of aztreonam in E. coli could be mediated by targeting ZapE.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Aztreonam/farmacología , Aztreonam/metabolismo , Proteínas de Escherichia coli/metabolismo , División Celular
12.
Acta Pharm Sin B ; 13(5): 2056-2070, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37250168

RESUMEN

Tuberculosis (TB) is one of the deadly diseases caused by Mycobacterium tuberculosis (Mtb), which presents a significant public health challenge. Treatment of TB relies on the combination of several anti-TB drugs to create shorter and safer regimens. Therefore, new anti-TB agents working by different mechanisms are urgently needed. FtsZ, a tubulin-like protein with GTPase activity, forms a dynamic Z-ring in cell division. Most of FtsZ inhibitors are designed to inhibit GTPase activity. In Mtb, the function of Z-ring is modulated by SepF, a FtsZ binding protein. The FtsZ/SepF interaction is essential for FtsZ bundling and localization at the site of division. Here, we established a yeast two-hybrid based screening system to identify inhibitors of FtsZ/SepF interaction in M. tuberculosis. Using this system, we found compound T0349 showing strong anti-Mtb activity but with low toxicity to other bacteria strains and mice. Moreover, we have demonstrated that T0349 binds specifically to SepF to block FtsZ/SepF interaction by GST pull-down, fluorescence polarization (FP), surface plasmon resonance (SPR) and CRISPRi knockdown assays. Furthermore, T0349 can inhibit bacterial cell division by inducing filamentation and abnormal septum. Our data demonstrated that FtsZ/SepF interaction is a promising anti-TB drug target for identifying agents with novel mechanisms.

13.
Cell Rep ; 42(7): 112756, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37418323

RESUMEN

Bacterial cell-wall hydrolases must be tightly regulated during bacterial cell division to prevent aberrant cell lysis and to allow final separation of viable daughter cells. In a multidisciplinary work, we disclose the molecular dialogue between the cell-wall hydrolase LytB, wall teichoic acids, and the eukaryotic-like protein kinase StkP in Streptococcus pneumoniae. After characterizing the peptidoglycan recognition mode by the catalytic domain of LytB, we further demonstrate that LytB possesses a modular organization allowing the specific binding to wall teichoic acids and to the protein kinase StkP. Structural and cellular studies notably reveal that the temporal and spatial localization of LytB is governed by the interaction between specific modules of LytB and the final PASTA domain of StkP. Our data collectively provide a comprehensive understanding of how LytB performs final separation of daughter cells and highlights the regulatory role of eukaryotic-like kinases on lytic machineries in the last step of cell division in streptococci.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ácidos Teicoicos/metabolismo , Proteínas Bacterianas/metabolismo , División Celular , Proteínas Quinasas/metabolismo , Hidrolasas/metabolismo , Pared Celular/metabolismo
14.
Int J Biol Macromol ; 253(Pt 1): 126398, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37634788

RESUMEN

The conserved process of cell division in bacteria has been a long-standing target for antimicrobials, although there are few examples of potent broad-spectrum compounds that inhibit this process. Most currently available compounds acting on division are directed towards the FtsZ protein, a self-assembling GTPase that is a central element of the division machinery in most bacteria. Benzodioxane-benzamides are promising candidates, but poorly explored in Gram-negatives. We have tested a number of these compounds on E. coli FtsZ and found that many of them significantly stabilized the polymers against disassembly and reduced the GTPase activity. Reconstitution in crowded cell-like conditions showed that FtsZ bundles were also susceptible to these compounds, including some compounds that were inactive on protofilaments in dilute conditions. They efficiently killed E. coli cells defective in the AcrAB efflux pump. The activity of the compounds on cell growth and division generally showed a good correlation with their effect in vitro, and our experiments are consistent with FtsZ being the target in vivo. Our results uncover the detrimental effects of benzodioxane-benzamides on permeable E. coli cells via its central division protein, implying that lead compounds may be found within this class for the development of antibiotics against Gram-negative bacteria.


Asunto(s)
Proteínas Bacterianas , Escherichia coli , Proteínas Bacterianas/metabolismo , Benzamidas/farmacología , Proteínas del Citoesqueleto/metabolismo , Bacterias/metabolismo , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/farmacología
15.
Open Biol ; 13(3): 220324, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36854378

RESUMEN

Cytokinesis is a fundamental process for bacterial survival and proliferation, involving the formation of a ring by filaments of the GTPase FtsZ, spatio-temporally regulated through the coordinated action of several factors. The mechanisms of this regulation remain largely unsolved, but the inhibition of FtsZ polymerization by the nucleoid occlusion factor SlmA and filament stabilization by the widely conserved cross-linking protein ZapA are known to play key roles. It was recently described that FtsZ, SlmA and its target DNA sequences (SlmA-binding sequence (SBS)) form phase-separated biomolecular condensates, a type of structure associated with cellular compartmentalization and resistance to stress. Using biochemical reconstitution and orthogonal biophysical approaches, we show that FtsZ-SlmA-SBS condensates captured ZapA in crowding conditions and when encapsulated inside cell-like microfluidics microdroplets. We found that, through non-competitive binding, the nucleotide-dependent FtsZ condensate/polymer interconversion was regulated by the ZapA/SlmA ratio. This suggests a highly concentration-responsive tuning of the interconversion that favours FtsZ polymer stabilization by ZapA under conditions mimicking intracellular crowding. These results highlight the importance of biomolecular condensates as concentration hubs for bacterial division factors, which can provide clues to their role in cell function and bacterial survival of stress conditions, such as those generated by antibiotic treatment.


Asunto(s)
Acrilatos , Condensados Biomoleculares , Citocinesis , Polímeros
16.
Biomedicines ; 10(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36009372

RESUMEN

The global spread of bacterial antimicrobial resistance is associated to millions of deaths from bacterial infections per year, many of which were previously treatable. This, combined with slow antibiotic deployment, has created an urgent need for developing new antibiotics. A still clinically unexploited mode of action consists in suppressing bacterial cell division. FtsZ, an assembling GTPase, is the key protein organizing division in most bacteria and an attractive target for antibiotic discovery. Nevertheless, developing effective antibacterial inhibitors targeting FtsZ has proven challenging. Here we review our decade-long multidisciplinary research on small molecule inhibitors of bacterial division, in the context of global efforts to discover FtsZ-targeting antibiotics. We focus on methods to characterize synthetic inhibitors that either replace bound GTP from the FtsZ nucleotide binding pocket conserved across diverse bacteria or selectively bind into the allosteric site at the interdomain cleft of FtsZ from Bacillus subtilis and the pathogen Staphylococcus aureus. These approaches include phenotype screening combined with fluorescence polarization screens for ligands binding into each site, followed by detailed cytological profiling, and biochemical and structural studies. The results are analyzed to design an optimized workflow to identify effective FtsZ inhibitors, and new approaches for the discovery of FtsZ-targeting antibiotics are discussed.

17.
Front Microbiol ; 13: 757711, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35592002

RESUMEN

FtsZ is the cytoskeletal protein that organizes the formation of the septal ring and orchestrates bacterial cell division. Its association to the membrane is essential for its function. In this mini-review I will address the question of how this association can interfere with the structure and dynamic properties of the filaments and argue that its dynamics could also remodel the underlying lipid membrane through its activity. Thus, lipid rearrangement might need to be considered when trying to understand FtsZ's function. This new element could help understand how FtsZ assembly coordinates positioning and recruitment of the proteins forming the septal ring inside the cell with the activity of the machinery involved in peptidoglycan synthesis located in the periplasmic space.

18.
Front Mol Biosci ; 8: 681938, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124162

RESUMEN

Rat is a widely used mammalian model for gut microbiota research. However, due to the difficulties of individual in vitro culture of many of the gut bacteria, much information about the microbial behaviors in the rat gut remains largely unknown. Here, to characterize the in situ growth and division of rat gut bacteria, we apply a chemical strategy that integrates the use of sequential tagging with D-amino acid-based metabolic probes (STAMP) with fluorescence in situ hybridization (FISH) to rat gut microbiota. Following sequential gavages of two different fluorescent D-amino acid probes to rats, the resulting dually labeled gut bacteria provides chronological information of their in situ cell wall synthesis. After taxonomical labeling with FISH probes, most of which are newly designed in this study, we successfully identify the growth patterns of 15 bacterial species, including two that have not been cultured separately in the laboratory. Furthermore, using our labeling protocol, we record Butyrivibrio fibrisolvens cells growing at different growth stages of a complete cell division cycle, which offers a new scope for understanding basic microbial activities in the gut of mammalian hosts.

19.
Front Microbiol ; 12: 729307, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489918

RESUMEN

LytM-domain containing proteins are LAS peptidases (lysostaphin-type enzymes, D-Ala-D-Ala metallopeptidases, and sonic hedgehog) and are known to play diverse roles throughout the bacterial cell cycle through direct or indirect hydrolysis of the bacterial cell wall. A subset of the LytM factors are catalytically inactive but regulate the activity of other cell wall hydrolases and are classically described as cell separation factors NlpD and EnvC. Here, we explore the function of four LytM factors in the alphaproteobacterial plant pathogen Agrobacterium tumefaciens. An LmdC ortholog (Atu1832) and a MepM ortholog (Atu4178) are predicted to be catalytically active. While Atu1832 does not have an obvious function in cell growth or division, Atu4178 is essential for polar growth and likely functions as a space-making endopeptidase that cleaves amide bonds in the peptidoglycan cell wall during elongation. The remaining LytM factors are degenerate EnvC and NlpD orthologs. Absence of these proteins results in striking phenotypes indicative of misregulation of cell division and growth pole establishment. The deletion of an amidase, AmiC, closely phenocopies the deletion of envC suggesting that EnvC might regulate AmiC activity. The NlpD ortholog DipM is unprecedently essential for viability and depletion results in the misregulation of early stages of cell division, contrasting with the canonical view of DipM as a cell separation factor. Finally, we make the surprising observation that absence of AmiC relieves the toxicity induced by dipM overexpression. Together, these results suggest EnvC and DipM may function as regulatory hubs with multiple partners to promote proper cell division and establishment of polarity.

20.
Gut Microbes ; 13(1): 1960134, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34428120

RESUMEN

How to study the unculturable bacteria in the laboratory is one of the major challenges in human gut microbiota research. The resulting lack of microbiology knowledge of this "dark matter" greatly hinders further understanding of our gut microbiota. Here, to characterize the in vivo growth and division of human gut bacteria, we report the integrative use of STAMP (sequential tagging with D-amino acid-based metabolic probes) and fluorescence in situ hybridization (FISH) in a human microbiota-associated mouse model. After stable colonization of the human fecal microbiotas in germ-free mice, two fluorescent D-amino acid probes were sequentially administered by gavage, and the dually labeled peptidoglycan of the bacteria provided a chronological recording of their cell wall syntheses. Following taxonomic identification with FISH staining, the growth patterns of 32 species, including 5 currently unculturables, were identified. Surprisingly, we found that many bacterial species in the human microbiota were significantly shorter than those in the mouse gut microbiota. An imaging database for gut bacteria ̶ Microbiome Atlas was built for summarizing STAMP imaging of bacteria from different microbiotas, which can be contributed by the microbiota research community worldwide. This integrative imaging strategy and the database will promote our understanding of the bacterial cytology in gut microbiotas and facilitate communications among cellular microbiologists.


Asunto(s)
Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Microbioma Gastrointestinal/fisiología , Hibridación Fluorescente in Situ/métodos , Imagen Óptica/métodos , Animales , Ciego/microbiología , Colorantes Fluorescentes , Vida Libre de Gérmenes , Humanos , Ratones , Ratones Endogámicos BALB C , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA