Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(46): e2210562119, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343224

RESUMEN

The development of chimeric antigen receptor (CAR) T cell therapy has become a critical milestone in modern oncotherapy. Despite the remarkable in vitro effectiveness, the problem of safety and efficacy of CAR T cell therapy against solid tumors is challenged by the lack of tumor-specific antigens required to avoid on-target off-tumor effects. Spatially separating the cytotoxic function of CAR T cells from tumor antigen recognition provided by protein mediators allows for the precise control of CAR T cell cytotoxicity. Here, the high affinity and capability of the bacterial toxin-antitoxin barnase-barstar system were adopted to guide CAR T cells to solid tumors. The complementary modules based on (1) ankyrin repeat (DARPin)-barnase proteins and (2) barstar-based CAR (BsCAR) were designed to provide switchable targeting to tumor cells. The alteration of the DARPin-barnase switches enabled the targeting of different tumor antigens with a single BsCAR. A gradual increase in cytokine release and tunable BsCAR T cell cytotoxicity was achieved by varying DARPin-barnase loads. Switchable BsCAR T cell therapy was able to eradicate the HER2+ ductal carcinoma in vivo. Guiding BsCAR T cells by DARPin-barnase switches provides a universal approach for a controlled multitargeted adoptive immunotherapy.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Receptores de Antígenos de Linfocitos T , Inmunoterapia Adoptiva , Neoplasias/metabolismo , Antígenos de Neoplasias
2.
Plant Biotechnol J ; 21(12): 2585-2596, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37596734

RESUMEN

Hybrid breeding for increased vigour has been used for over a century to boost agricultural outputs without requiring higher inputs. While this approach has led to some of the most substantial gains in crop productivity, breeding barriers have fundamentally limited soybean (Glycine max) from reaping the benefits of hybrid vigour. Soybean flowers self-pollinate prior to opening and thus are not readily amenable to outcrossing. In this study, we demonstrate that the barnase/barstar male sterility/rescue system can be used in soybean to produce hybrid seeds. By expressing the cytotoxic ribonuclease, barnase, under a tapetum-specific promoter in soybean anthers, we are able to completely block pollen maturation, creating male sterile plants. We show that fertility can be rescued in the F1 generation of these barnase-expressing lines when they are crossed with pollen from plants that express the barnase inhibitor, barstar. Importantly, we found that the successful rescue of male fertility is dependent on the relative dosage of barnase and barstar. When barnase and barstar were expressed under the same tapetum-specific promoter, the F1 offspring remained male sterile. When we expressed barstar under a relatively stronger promoter than barnase, we were able to achieve a successful rescue of male fertility in the F1 generation. This work demonstrates the successful implementation of a biotechnology approach to produce fertile hybrid offspring in soybean.


Asunto(s)
Glycine max , Infertilidad Masculina , Masculino , Humanos , Plantas Modificadas Genéticamente/genética , Glycine max/genética , Fitomejoramiento , Proteínas Bacterianas/genética , Ribonucleasas/genética
3.
Dokl Biochem Biophys ; 508(1): 17-20, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36653580

RESUMEN

The development of CAR-T specific therapy made a revolution in modern oncology. Despite the pronounced therapeutic effects, this novel approach displayed several crucial limitations caused by the complications in pharmacokinetics and pharmacodynamics controls. The presence of the several severe medical complications of CAR-T therapy initiated a set of attempts aimed to regulate their activity in vivo. We propose to apply the barnase-barstar system to control the cytotoxic antitumor activity of CAR-T cells. To menage the regulation targeting effect of the system we propose to use barstar-modified CAR-T cells together with barnase-based molecules. Barnase was fused with designed ankyrin repeat proteins (DARPins) specific to tumor antigens HER2 (human epidermal growth factor receptor 2) The application of the system demonstrates the pronounced regulatory effects of CAR-T targeting.


Asunto(s)
Antineoplásicos , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Proteínas Bacterianas/metabolismo , Ribonucleasas/metabolismo , Antineoplásicos/farmacología , Linfocitos T/metabolismo
4.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35163789

RESUMEN

Small cationic guanyl-preferring ribonucleases (RNases) produced by the Bacillus species share a similar protein tertiary structure with a high degree of amino acid sequence conservation. However, they form dimers that differ in conformation and stability. Here, we have addressed the issues (1) whether the homologous RNases also have distinctions in catalytic activity towards different RNA substrates and interactions with the inhibitor protein barstar, and (2) whether these differences correlate with structural features of the proteins. Circular dichroism and dynamic light scattering assays revealed distinctions in the structures of homologous RNases. The activity levels of the RNases towards natural RNA substrates, as measured spectrometrically by acid-soluble hydrolysis products, were similar and decreased in the row high-polymeric RNA >>> transport RNA > double-stranded RNA. However, stopped flow kinetic studies on model RNA substrates containing the guanosine residue in a hairpin stem or a loop showed that the cleavage rates of these enzymes were different. Moreover, homologous RNases were inhibited by the barstar with diverse efficiency. Therefore, minor changes in structure elements of homologous proteins have a potential to significantly effect molecule stability and functional activities, such as catalysis or ligand binding.


Asunto(s)
Bacillus/enzimología , ARN/metabolismo , Ribonucleasas/química , Ribonucleasas/metabolismo , Bacillus/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dicroismo Circular , Dispersión Dinámica de Luz , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
5.
Molecules ; 26(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34833876

RESUMEN

Barnase is an extracellular ribonuclease secreted by Bacillus amyloliquefaciens that was originally studied as a small stable enzyme with robust folding. The identification of barnase intracellular inhibitor barstar led to the discovery of an incredibly strong protein-protein interaction. Together, barnase and barstar provide a fully genetically encoded toxin-antitoxin pair having an extremely low dissociation constant. Moreover, compared to other dimerization systems, the barnase-barstar module provides the exact one-to-one ratio of the complex components and possesses high stability of each component in a complex and high solubility in aqueous solutions without self-aggregation. The unique properties of barnase and barstar allow the application of this pair for the engineering of different variants of targeted anticancer compounds and cytotoxic supramolecular complexes. Using barnase in suicide gene therapy has also found its niche in anticancer therapy. The application of barnase and barstar in contemporary experimental cancer therapy is reflected in the review.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Ribonucleasas/metabolismo , Bacillus/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/fisiología , Humanos , Cinética , Modelos Moleculares , Nanotecnología/métodos , Neoplasias/tratamiento farmacológico , Conformación Proteica/efectos de los fármacos , Ribonucleasas/antagonistas & inhibidores , Ribonucleasas/fisiología
6.
J Exp Bot ; 71(4): 1278-1293, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31740929

RESUMEN

Taraxacum koksaghyz has been identified as one of the most promising alternative rubber crops. Its high-quality rubber is produced in the latex of laticifers, a specialized cell type that is organized in a network of elongated tubules throughout the entire plant body. In order to gain insights into the physiological role(s) of latex and hence laticifer biology, we examine the effects of barnase-induced latex RNA degradation on the metabolite and protein compositions in the roots. We established high-quality datasets that enabled precise discrimination between cellular and physiological processes in laticifers and non-laticifer cell types of roots at different vegetative stages. We identified numerous latex-specific proteins, including a perilipin-like protein that has not been studied in plants yet. The barnase-expressing plants revealed a phenotype that did not exude latex, which may provide a valuable genetic basis for future studies of plant-environment interactions concerning latex and also help to clarify the evolution and arbitrary distribution of latex throughout the plant kingdom. The overview of temporal changes in composition and protein abundance provided by our data opens the way for a deeper understanding of the molecular interactions, reactions, and network relationships that underlie the different metabolic pathways in the roots of this potential rubber crop.


Asunto(s)
Látex , Taraxacum , Biología , Metaboloma , Proteoma
7.
Angew Chem Int Ed Engl ; 59(49): 22086-22091, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32744407

RESUMEN

The C40A/C82A double mutant of barstar has been shown to undergo cold denaturation above the water freezing point. By rapidly applying radio-frequency power to lossy aqueous samples, refolding of barstar from its cold-denatured state can be followed by real-time NMR spectroscopy. Since temperature-induced unfolding and refolding is reversible for this double mutant, multiple cycling can be utilized to obtain 2D real-time NMR data. Barstar contains two proline residues that adopt a mix of cis and trans conformations in the low-temperature-unfolded state, which can potentially induce multiple folding pathways. The high time resolution real-time 2D-NMR measurements reported here show evidence for multiple folding pathways related to proline isomerization, and stable intermediates are populated. By application of advanced heating cycles and state-correlated spectroscopy, an alternative folding pathway circumventing the rate-limiting cis-trans isomerization could be observed. The kinetic data revealed intermediates on both, the slow and the fast folding pathway.


Asunto(s)
Frío , Calefacción , Resonancia Magnética Nuclear Biomolecular , Proteínas/química , Cinética , Modelos Moleculares , Conformación Proteica , Desnaturalización Proteica , Ingeniería de Proteínas , Pliegue de Proteína , Factores de Tiempo
8.
Cells ; 13(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38391930

RESUMEN

(1) Background: We have previously shown that the use of an artificial supramolecular two-component system based on chimeric recombinant proteins 4D5scFv-barnase and barstar-heat shock protein 70 KDa (HSP70) allows targeted delivery of HSP70 to the surface of tumor cells bearing HER2/neu antigen. In this work, we studied the possibility to using DARPin9_29-barnase as the first targeting module recognizing HER2/neu-antigen in the HSP70 delivery system. (2) Methods: The effect of the developed systems for HSP70 delivery to human carcinomas SK-BR-3 and BT474 cells hyperexpressing HER2/neu on the activation of cytotoxic effectors of the immune cells was studied in vitro. (3) Results: The results obtained by confocal microscopy and cytofluorimetric analysis confirmed the binding of HSP70 or its fragment HSP70-16 on the surface of the treated cells. In response to the delivery of HSP70 to tumor cells, we observed an increase in the cytolytic activity of different cytotoxic effector immune cells from human peripheral blood. (4) Conclusions: Targeted modification of the tumor cell surface with molecular structures recognized by cytotoxic effectors of the immune system is among new promising approaches to antitumor immunotherapy.


Asunto(s)
Antineoplásicos , Proteínas Bacterianas , Carcinoma , Ribonucleasas , Humanos , Proteínas Recombinantes de Fusión/metabolismo , Proteínas HSP70 de Choque Térmico
9.
EFSA J ; 20(3): e07190, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35311007

RESUMEN

In a previous scientific opinion on application EFSA-GMO-BE-2016-138, the EFSA Panel on Genetically Modified Organisms (GMO Panel) could not conclude on the comparative analysis and on the food/feed safety assessment of genetically modified (GM) oilseed rape (OSR) MS11 because of the lack of an appropriate compositional data set. Following a request from the European Commission, the GMO Panel assessed additional information related to OSR MS11 to complement the original scientific opinion. The GMO Panel concluded that the information submitted (on the composition of the two-event stack MS11 × RF3) could not be used for the assessment of the composition of OSR MS11 and requested the applicant to perform a complementary set of field trials to generate additional data. The applicant did not perform the requested field trials and did not provide any new experimental data on the composition of OSR MS11. Hence, the GMO Panel is still not in the position to conclude on either the compositional analysis or the toxicological, allergenicity or nutritional assessment of OSR MS11. Therefore, the previous conclusions of the GMO Panel still hold.

10.
J Control Release ; 340: 200-208, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34740723

RESUMEN

For precise ligation of a targeting and cytotoxic moiety, the use of Barnase-Barstar pair as a molecular glue is proposed for the first time. Targeting was mediated through the use of a scaffold protein DARPin_9-29 specific for the human epidermal receptor 2 (HER2) antigen that is highly expressed on some types of cancer and Barnase*Barstar native bacterial proteins interacted with each other with Kd 10-14 M. The approach proposed consists of prelabeling a target tumor with hybrid protein DARPin-Barnase prior to administration of cytotoxic component-loaded liposomes that have Barstar covalently attached to their surface. Based on in vivo bioimaging we have proven that DARPin-based Barnase*Barstar-mediated pretargeting possesses precise tumor-targeting capability as well as antitumor activity leading to apparent tumor-growth inhibition of primary tumors and distant metastases in experimental animals. The results obtained indicate that the new system combining DARPin and Barnase*Barstar can be useful both for the drug development and for monitoring the response to treatment in vivo in preclinical studies.


Asunto(s)
Proteínas Bacterianas , Proteínas de Repetición de Anquirina Diseñadas , Sistemas de Liberación de Medicamentos , Ribonucleasas , Animales , Humanos
11.
Plant Biotechnol (Tokyo) ; 37(2): 223-232, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32821230

RESUMEN

Plastid transformants form biofactories that are able to produce extra proteins in plastids when they are in a homoplasmic state. To date, plastid transformation has been reported in about twenty plant species; however, the production of homoplasmic plastid transformants is not always successful or easy. Heteroplasmic plants that contain wild-type plastids produce fewer target proteins and do not always successfully transfer transgenes to progeny. In order to promote the generation of homoplasmic plants, we developed a novel system using barnase-barster to eliminate wild-type plastids from heteroplasmic cells systematically. In this system, a chemically inducible cytotoxic barnase under a plastid transit signal was introduced into nuclear DNA and barster, which inhibits barnase, was integrated into plastid DNA with the primary selection markers aminoglycoside 3'-adenylyltransferase (aadA) and green fluorescence protein (GFP) gene. As expected, the expression of the plastid barnase was lethal to cells as seen in leaf segments, but barster expression in plastids rescued them. We then investigated the regeneration frequency of homoplasmic shoots from heteroplasmic leaf segments with or without barnase expression. The regeneration frequency of homoplasmic-like shoots expressing barnase-barster system was higher than that of shoots not expressing this. We expect that the application of this novel strategy for transformation of plastids will be supportive to generate homoplasmic plastid transformants in other plant species.

12.
EFSA J ; 18(5): e06112, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-37649511

RESUMEN

Oilseed rape MS11 has been developed to confer male sterility and tolerance to glufosinate-ammonium-containing herbicides. Based on the information provided in the application and in line with the scope of application EFSA-GMO-BE-2016-138, the genetically modified organism (GMO) Panel concludes that the molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic characteristics tested between oilseed rape MS11 and its conventional counterpart needs further assessment. No conclusions can be drawn for the compositional analysis due to the lack of an appropriate compositional data set. No toxicological or allergenicity concerns are identified for the Barnase, Barstar and PAT/bar proteins expressed in oilseed rape MS11. Owing to the incompleteness of the compositional analysis, the toxicological, allergenicity and nutritional assessment of oilseed rape MS11 cannot be completed. In the case of accidental release of viable oilseed rape MS11 seeds into the environment, oilseed rape MS11 would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the scope of the application. Since oilseed rape MS11 is designed to be used only for the production of hybrid seed, it is not expected to be commercialised as a stand-alone product for food/feed uses. Thus, seeds harvested from oilseed rape MS11 are not expected to enter the food/feed chain, except accidentally. In this context, the GMO Panel notes that, oilseed rape MS11 would not pose risk to humans and animals, while the scale of environmental exposure will be substantially reduced compared to a stand-alone product.

13.
Front Microbiol ; 10: 558, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30967850

RESUMEN

Bacteriophage endolysins and bacterial exolysins are capable of enzymatic degradation of the cell wall peptidoglycan layer and thus show promise as a new class of antimicrobials. Both exolysins and endolysins often consist of different modules, which are responsible for enzymatic functions and cell wall binding, respectively. Individual modules from different endo- or exolysins with different binding and enzymatic activities, can via gene fusion technology be re-combined into novel variants for investigations of arrangements of potential clinical interest. The aim of this study was to investigate if separately produced cell wall binding and enzyme modules could be assembled into a functional lysin via a non-covalent affinity interaction bridge composed of the barnase ribonuclease from Bacillus amyloliquefaciens and its cognate inhibitor barstar, known to form a stable heterodimeric complex. In a proof-of-principle study, using surface plasmon resonance, flow cytometry and turbidity reduction assays, we show that separately produced modules of a lysin cysteine/histidine-dependent amidohydrolase/peptidase (CHAP) from Staphylococcus aureus bacteriophage K endolysin (LysK) fused to barnase and a cell wall binding Src homology 3 domain (SH3b) from the S. simulans exolysin lysostaphin fused to barstar can be non-covalently assembled into a functional lysin showing both cell wall binding and staphylolytic activity. We hypothesize that the described principle for assembly of functional lysins from separate modules through appended hetero-dimerization domains has a potential for investigations of also other combinations of enzymatically active and cell wall binding domains for desired applications.

14.
ACS Appl Mater Interfaces ; 10(20): 17437-17447, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29701945

RESUMEN

Nanoparticle surface engineering can change its chemical identity to enable surface coupling with functional biomolecules. However, common surface coupling methods such as physical adsorption or chemical conjugation often suffer from the low coupling yield, poorly controllable orientation of biomolecules, and steric hindrance during target binding. These issues limit the application scope of nanostructures for theranostics and personalized medicine. To address these shortfalls, we developed a rapid and versatile method of nanoparticle biomodification. The method is based on a SiO2-binding peptide that binds to the nanoparticle surface and a protein adaptor system, Barnase*Barstar protein pair, serving as a "molecular glue" between the peptide and the attached biomolecule. The biomodification procedure shortens to several minutes, preserves the orientation and functions of biomolecules, and enables control over the number and ratio of attached molecules. The capabilities of the proposed biomodification platform were demonstrated by coupling different types of nanoparticles with DARPin9.29 and 4D5scFv-molecules that recognize the human epidermal growth factor receptor 2 (HER2/neu) oncomarker-and by subsequent highly selective immunotargeting of the modified nanoparticles to different HER2/neu-overexpressing cancer cells in one-step or two-step (by pretargeting with HER2/neu-recognizing molecule) modes. The method preserved the biological activity of the DARPin9.29 molecules attached to a nanoparticle, whereas the state-of-the-art carbodiimide 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/ N-hydroxysulfosuccinimide method of conjugation led to a complete loss of the functional activity of the DARPin9.29 nanoparticle-protein complex. Moreover, the method allowed surface design of nanoparticles that selectively interacted with antigens in complex biological fluids, such as whole blood. The demonstrated capabilities show this method to be a promising alternative to commonly used chemical conjugation techniques in nanobiotechnology, theranostics, and clinical applications.

15.
Acta Naturae ; 10(3): 85-91, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30397532

RESUMEN

One important distinction between many tumor cell types and normal cells consists in the translocation of a number of intracellular proteins, in particular the 70 kDa heat shock protein (HSP70), to the surface of the plasma membrane. It has been demonstrated that such surface localization of HSP70 on tumor cells is recognized by cytotoxic effectors of the immune system, which increases their cytolytic activity. The mechanisms behind this interaction are not fully clear; however, the phenomenon of surface localization of HSP70 on cancer cells can be used to develop new approaches to antitumor immunotherapy. At the same time, it is known that the presence of HSP70 on a cell's surface is not a universal feature of cancer cells. Many types of tumor tissues do not express membrane-associated HSP70, which limits the clinical potential of these approaches. In this context, targeted delivery of exogenous HSP70 to the surface of cancer cells with the aim of attracting and activating the cytotoxic effectors of the immune system can be considered a promising means of antitumor immunotherapy. Molecular constructs containing recombinant mini-antibodies specific to tumor-associated antigens (in particular, antibodies specific to HER2/neu-antigen and other markers highly expressed on the surface of a wide range of cancer cells) can be used to target the delivery of HSP70 to tumor tissues. In order to assess the feasibility and effectiveness of this approach, recombinant constructs containing a mini-antibody specific to the HER2/ neu-antigen in the first module and HSP70 molecule or a fragment of this protein in the second module were developed in this study. Strong selective interaction between the modules was ensured by a cohesive unit formed by the barnase:barstar pair, a heterodimer characterized by an unusually high constant of association. During testing of the developed constructs in in vitro models the constructs exhibited targeted binding to tumor cells expressing the HER2/neu antigen and the agents had a significant stimulating effect on the cytotoxic activity of NK cells against the respective cancer cells.

16.
Mol Biotechnol ; 59(9-10): 445-457, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28791615

RESUMEN

Usable pollination control systems have proven to be effective system for the development of hybrid crop varieties, which are important for optimal performance over varied environments and years. They also act as a biocontainment to check horizontal transgene flow. In the last two decades, many genetic manipulations involving genes controlling the production of cytotoxic products, conditional male sterility, altering metabolic processes, post-transcriptional gene silencing, RNA editing and chloroplast engineering methods have been used to develop a proper pollination control system. In this review article, we outline the approaches used for generating male sterile plants using an effective pollination control system to highlight the recent progress that occurred in this area. Furthermore, we propose possible future directions for biotechnological improvements that will allow the farmers to buy hybrid seed once for many generations in a cost-effective manner.


Asunto(s)
Fertilidad/genética , Infertilidad Vegetal/genética , Plantas Modificadas Genéticamente/genética , Polen/genética , Semillas/genética , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Transgenes/genética
17.
Food Chem Toxicol ; 83: 93-102, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26079618

RESUMEN

The potential allergenicity of Bar, Barnase, and Barstar recombinant proteins expressed in genetically engineered mustard for pollination control in plant breeding was evaluated for regulatory review. To evaluate the potential allergenicity of the Bar, Barnase and Barstar proteins amino acid sequence comparisons were made to those of known and putative allergens, and search for published evidence to the sources of the genes using the AllergenOnline.org database. Initial comparisons in 2012 were performed with version 12 by methods recommended by the Codex Alimentarius Commission and the Indian Council of Medical Research, Government of India. Searches were repeated with version 15 in 2015. A literature search was performed using PubMed to identify reports of allergy associated with the sources of the three transgenes. Potential open reading frames at the DNA insertion site were evaluated for matches to allergens. No significant sequence identity matches were identified with Bar, Barnase or Barstar proteins or potential fusion peptides at the genomic-insert junctions compared to known allergens. No references were identified that associated the sources of the genes with allergy. Based on these results we conclude that the Bar, Barnase and Barstar proteins are unlikely to present any significant risk of food allergy to consumers.


Asunto(s)
Alérgenos/efectos adversos , Proteínas Bacterianas/efectos adversos , Alimentos Modificados Genéticamente/efectos adversos , Modelos Moleculares , Planta de la Mostaza/metabolismo , Semillas/metabolismo , Acetiltransferasas/efectos adversos , Acetiltransferasas/química , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Alérgenos/química , Alérgenos/genética , Alérgenos/metabolismo , Secuencia de Aminoácidos , Antígenos de Plantas/efectos adversos , Antígenos de Plantas/química , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Bacillus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biología Computacional , Bases de Datos de Proteínas , Proteínas en la Dieta/efectos adversos , Proteínas en la Dieta/química , Proteínas en la Dieta/metabolismo , Hipersensibilidad a los Alimentos/etiología , Hipersensibilidad a los Alimentos/prevención & control , Humanos , India , Planta de la Mostaza/enzimología , Planta de la Mostaza/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Polinización , Proteínas Recombinantes/efectos adversos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribonucleasas/efectos adversos , Ribonucleasas/química , Ribonucleasas/genética , Ribonucleasas/metabolismo , Medición de Riesgo , Semillas/enzimología , Semillas/genética , Alineación de Secuencia , Streptomyces/enzimología
18.
J Biomol Tech ; 23(3): 101-14, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22942790

RESUMEN

Protein-protein interactions identified through high-throughput proteomics efforts continue to advance our understanding of the protein interactome. In addition to highly specific protein-protein interactions, it is becoming increasingly more common for yeast two-hybrid, pull-down assays, and other proteomics techniques to identify multiple protein ligands that bind to the same target protein. A resulting challenge is to accurately characterize the assembly of these multiprotein complexes and the competition among multiple protein ligands for a given target. The Association of Biomolecular Resource Facilities-Molecular Interactions Research Group recently conducted a benchmark study to assess participants' ability to correctly describe the interactions between two protein ligands and their target protein using primarily biosensor technologies, such as surface plasmon resonance. Participants were provided with microgram quantities of three proteins (A, B, and C) and asked to determine if a ternary A-B-C complex can form or if protein-B and protein-C bind competitively to protein-A. This article will summarize the experimental approaches taken by participants to characterize the molecular interactions, the interpretation of the data, and the results obtained using different biosensor instruments.


Asunto(s)
Benchmarking , Mapeo de Interacción de Proteínas/normas , Resonancia por Plasmón de Superficie/normas , Proteínas Bacterianas/química , Unión Competitiva , Humanos , Proteínas Inmovilizadas/química , Interferometría/normas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Estándares de Referencia , Ribonucleasas/antagonistas & inhibidores , Ribonucleasas/química , Espectrometría de Masa por Ionización de Electrospray/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA