Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791373

RESUMEN

Climate change will pose a challenge for the winemaking sector worldwide, bringing progressively drier and warmer conditions and increasing the frequency and intensity of weather extremes. The short-term adaptation strategy of applying biostimulants through foliar application serves as a crucial measure in mitigating the detrimental effects of environmental stresses on grapevine yield and berry quality. The aim of this study was to evaluate the effect of foliar application of a seaweed-based biostimulant (A. nodosum-ANE) and glycine betaine (GB) on berry quality, phenolic compounds, and antioxidant activity and to elucidate their action on the secondary metabolism. A trial was installed in a commercial vineyard (cv. "Touriga Franca") in the Cima Corgo (Upper Corgo) sub-region of the Douro Demarcated Region, Portugal. A total of four foliar sprayings were performed during the growing season: at flowering, pea size, bunch closer, and veraison. There was a positive effect of GB in the berry quality traits. Both ANE and GB increased the synthesis of anthocyanins and other phenolics in berries and influenced the expression of genes related to the synthesis and transport of anthocyanins (CHS, F3H, UFGT, and GST). So, they have the potential to act as elicitors of the secondary metabolism, leading to improved grape quality, and also to set the foundation for sustainable agricultural practices in the long run.


Asunto(s)
Antioxidantes , Betaína , Frutas , Regulación de la Expresión Génica de las Plantas , Fenoles , Algas Marinas , Vitis , Vitis/efectos de los fármacos , Vitis/genética , Vitis/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Betaína/farmacología , Frutas/efectos de los fármacos , Frutas/metabolismo , Frutas/química , Frutas/genética , Fenoles/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Algas Marinas/metabolismo , Antocianinas/biosíntesis
2.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36902101

RESUMEN

Grapes are widely cultivated around the world and their quality has distinct regional characteristics. In this study, the qualitative characteristics of the 'Cabernet Sauvignon' grape variety in seven regions, from half-véraison to maturity, were analyzed comprehensively at physiological and transcriptional levels. The results indicated that the quality traits of 'Cabernet Sauvignon' grapes in different regions were significantly different with obvious regionality. Total phenols, anthocyanins, and titratable acids were the main factors of the regionality of berry quality, which were very sensitive to changes in the environment. It should be noted that the changes in titrating acids and total anthocyanin of berries vary greatly from half-véraison to maturity between regions. Moreover, the transcriptional analysis showed that the co-expressed genes between regions characterized the core transcriptome of berry development, while the unique genes of each region reflected the regionality of berries. The differentially expressed genes (DEGs) between half-véraison and maturity can be used to demonstrate that the environment of the regions could promote or inhibit gene expression. The functional enrichment suggested that these DEGs help to understand the interpretation of the plasticity of the quality composition of grapes according to the environment. Taken together, the information generated by this study could contribute to the development of viticultural practices aimed at making better use of native varieties for the development of wines with regional characteristics.


Asunto(s)
Vitis , Vino , Vitis/genética , Antocianinas/metabolismo , Transcriptoma , Frutas/metabolismo
3.
J Sci Food Agric ; 103(5): 2389-2400, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36683377

RESUMEN

BACKGROUND: The present study aimed to assess the impact of a starch/gelatine coating containing cinnamon oil on selected quality attributes and redox status in strawberry fruit stored at room temperature (72 h). RESULTS: Research showed that the application of cinnamon oil to an edible coating allows an improvement of the quality of strawberry fruit stored at room temperature. The cinnamon oil coating inhibits the development of yeast and mould, and reduces loss of soluble solids and ascorbic acid during 72 h storage at room temperature. Moreover, the coating with cinnamon oil clearly reduced the level of oxidative stress, which was manifested by a lower level of reactive oxygen species, as well as a lower activity of antioxidant enzymes. The elimination of oxidative stress in the cinnamon oil-coated fruit also contributed to lower PARP1 mRNA expression, inhibiting the metabolism of NAD+ and reducing ATP losses. CONCLUSION: The coating of strawberry fruit with a starch/gelatine biofilm containing cinnamon oil is an effective method for delaying postharvest senescence of fruit and the storage degradation of tissue. © 2023 Society of Chemical Industry.


Asunto(s)
Películas Comestibles , Fragaria , Aceites Volátiles , Frutas/metabolismo , Fragaria/metabolismo , Cinnamomum zeylanicum/metabolismo , Conservación de Alimentos/métodos , Temperatura , Aceites Volátiles/farmacología , Estrés Oxidativo , Almidón/metabolismo
4.
J Sci Food Agric ; 102(13): 6100-6111, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35474458

RESUMEN

BACKGROUND: Vitis vinifera L. cv. Syrah grapevines in most Chinese viticulture regions generally have compact clusters that increase the susceptibility to diseases and inhibit coloration of the inner berries. Gibberellic acid (GA3 ) is a plant growth regulator that is widely used during grape cultivation to elongate the rachis, control fruit set, and decrease cluster compactness. In this study, Syrah grapevines were treated with GA3 before flowering in 2019 and 2020 to determine the optimal GA3 treatment concentrations and times for decreasing bunch compactness, while minimizing the negative effects on the wine grape cluster weight. RESULTS: Pre-flowering GA3 applications at 3, 5, and 7 mg L-1 , especially treatment at 20 days before flowering, decreased Syrah grape bunch compactness by decreasing the fruit set rate and promoting bunch elongation, with minimal adverse effects on the healthy grape cluster weight in both years. The 7 mg L-1 GA3 treatment at 20 days before flowering significantly increased reducing sugar, total phenolic, tannin, and total anthocyanin contents of Syrah grape berries in 2019 and 2020. Moreover, high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry, hierarchical cluster, and principal component analysis results indicated GA3 applications before flowering (3, 5, and 7 mg L-1 ) significantly affected the accumulation of different anthocyanins in Syrah grape berries. Notably, the application of 7 mg L-1 GA3 at 20 days before flowering resulted in the highest anthocyanin content. CONCLUSION: Pre-flowering gibberellin application can decrease bunch compactness and improve the quality of Syrah grape berries. These findings reflect the potential utility of gibberellin treatments for decreasing cluster compactness and increasing the quality of wine grapes. © 2022 Society of Chemical Industry.


Asunto(s)
Vitis , Vino , Antocianinas/análisis , Flavonoides/análisis , Frutas/química , Giberelinas/farmacología , Fenotipo , Vitis/química , Vino/análisis
5.
J Sci Food Agric ; 100(9): 3729-3740, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32266978

RESUMEN

BACKGROUND: Gibberellic acid (GA3 ), a plant-growth regulator, is often used to obtain enlarged table grape berries and induce seedlessness in them. However, the effects of GA3 on rachis elongation and bunch compactness have seldom been reported in wine-grape production. We assessed the effects of GA3 spraying on wine-grape inflorescences and bunches and their practical implications for viticulture in the Jiaodong Peninsula, China. RESULTS: Various GA3 concentrations were sprayed on field-grown Vitis vinifera L. 'Cabernet Franc' (CF) and 'Cabernet Sauvignon' (CS) grapevines before anthesis in the Jiaodong Peninsula, China, in 2015 and 2016. Inflorescence length during berry development was measured, and flavonoids and aroma compounds in the fruit were detected by high-performance liquid chromatography - mass spectrometry (HPLC-MS) and gas chromatography - mass spectrometry (GC-MS), respectively. For both cultivars, 50 and 100 mg L-1 GA3 caused significant elongation of the rachis, whereas there was no significant effect on inflorescence growth and berry seed number. Anthocyanin, flavonol, and flavan-3-ol levels in mature berries were not significantly influenced by GA3 spraying, whereas C13 -norisoprenoids were modified. CONCLUSION: The application of 50-100 mg L-1 GA3 prior to grapevine anthesis caused elongation of inflorescences and bunches, and eased cluster compactness in CF and CS, and no negative effects were observed on the yield and seed numbers. The concentration and composition of flavonoids and most aroma compounds were not influenced, except that the norisoprenoids were increased by 50 mg L-1 GA3 applications. © 2020 Society of Chemical Industry.


Asunto(s)
Aromatizantes/química , Frutas/química , Giberelinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Vitis/efectos de los fármacos , Vitis/crecimiento & desarrollo , China , Producción de Cultivos , Aromatizantes/metabolismo , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Norisoprenoides/química , Norisoprenoides/metabolismo , Odorantes/análisis , Vitis/química , Vitis/metabolismo
6.
J Sci Food Agric ; 99(10): 4532-4539, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30868591

RESUMEN

BACKGROUND: Rhizosphere soil microbial communities play an important role in grapevine growth. However, the relationship of the rhizosphere soil bacterial community and berry quality of Hutai No.8 grape with different tree-ages is unclear. In this work, the Biolog-ECO technique was used to explore the functional diversity of the rhizosphere soil bacterial communities of Hutai No.8 grape with five ages (3, 5, 7, 9 and 11 years old). Meanwhile, grape berry quality indicators related to berry appearance, flavor and functional substance quality was also examined. RESULTS: Principal component analysis of grape berry quality mainly separated 3-year-old (first bear fruit) and the other tree-ages. In particular, peel weight and total soluble solid content of 3-year-old grape berry was significantly less than that of others. Furthermore, average well color development, species richness and Shannon's diversity index increased significantly with grapevine age. Moreover, the metabolic activities and functional diversity of soil microbial communities in using carbon sources were significantly increasing with grapevine age. Moreover, there were significant correlation between physicochemical indices of grape berry quality and six functional categories of carbon sources. CONCLUSION: Tree-ages could greatly affect the rhizosphere microbial community structure and richness, and then affect the grape berry quality. © 2019 Society of Chemical Industry.


Asunto(s)
Bacterias/aislamiento & purificación , Frutas/química , Microbiología del Suelo , Vitis/química , Bacterias/clasificación , Bacterias/genética , Frutas/crecimiento & desarrollo , Microbiota , Análisis de Componente Principal , Rizosfera , Vitis/crecimiento & desarrollo
7.
Lett Appl Microbiol ; 67(2): 106-112, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29908033

RESUMEN

Grapevine is one of the most widely grown fruit crops in the world. At present, however, there is much concern regarding chemical pollution in viticulture due to the application of chemical fungicides and fertilizers. One viticultural practice to resolve this issue is the application of micro-organisms to grapevine as a substitute for chemicals. Some micro-organisms act as an enhancer of grape berry quality as well as a suppresser of disease in grapevine through their antagonistic ability and/or systemic resistance inducing ability. Herein, we review current and prospective applications of micro-organisms in viticulture. SIGNIFICANCE AND IMPACT OF THE STUDY: In this review, we evaluate the applicability of micro-organisms in viticulture. Micro-organisms can improve grape berry quality through grapevine disease protection and grape berry quality alteration. Because the use of micro-organisms to protect grapevine from plant diseases is safer than the use of chemical fungicides, the use of biofungicides in viticulture is expected to be enhanced by the increasing consumer concern towards chemical fungicides. Micro-organisms also modify plant secondary metabolites for use as flavours, pharmaceuticals and food additives. Studies of micro-organisms that promote polyphenol, anthocyanin and aroma compound biosynthesis are in progress with an eye to improving grape berry quality.


Asunto(s)
Antibiosis/fisiología , Agentes de Control Biológico/metabolismo , Frutas/química , Enfermedades de las Plantas/prevención & control , Vitis/metabolismo , Vitis/microbiología , Fertilizantes/análisis , Fungicidas Industriales/análisis , Enfermedades de las Plantas/microbiología , Estudios Prospectivos
8.
Front Plant Sci ; 15: 1418197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119500

RESUMEN

Soil is the basis of the existence of fruit tree and soil nutrients plays a crucial role in plant growth and berry quality. To investigate the characteristics and interrelationships between soil nutrients and berry quality in Cabernet Gernischet vineyards, this study focused on seven representative vineyards in the eastern foothills of the Helan Mountains. Fifteen soil physicochemical factors and 10 berry quality factors were measured, followed by variation analysis, correlation analysis, multiple linear regression (MLR), partial-least squares regression (PLSR), principal component analysis (PCA), and systematic cluster analysis. We identified the main soil nutrient indicators influencing berry quality and developed linear regression equations. Utilizing PCA, a comprehensive evaluation model for berry quality was constructed, which enabled the calculation and ranking of integrated berry quality scores. The results indicated that soil nutrients in the vineyards of the eastern foothills of the Helan Mountains are relatively deficient and alkaline. The coefficient of variation for soil nutrient factors ranged from 3.19 to 118.08% and for berry quality factors 2.41-26.37%. Correlation analysis revealed varying degrees of correlation between soil nutrient indicators and fruit quality indicators. PCA extracted four principal components with a cumulative contribution rate of 91.506%. Based on the scores of these components and their corresponding weights, a comprehensive model for evaluating the quality of Cabernet Gernischet berries was established. The vineyards were ranked from the highest to the lowest combined scores as Zhenbeibu (ZBB), Yuquanying (YQY), Dawukou (DWK), Beihaizi (BHZ), Shuxin (SX), Huangyangtan (HYT), and Hongde (HD). These findings provide insights into soil nutrient management and comprehensive quality assessment of vineyards in the eastern foothills of the Helan Mountains. In conclusion, this study offers a theoretical foundation for vineyard managers to enhance grape berries quality through soil nutrient management. This will aid in the diagnosis of vineyard soil nutrition and the efficient use of fertilizers, with critical practical and theoretical implications for the meticulous management of vineyards and the production of high-quality wines.

9.
Front Plant Sci ; 15: 1359506, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434439

RESUMEN

The genetic erosion of the European grapevine diversity in the last century has promoted the conservation of varieties in germplasm banks to prevent their disappearance. The study of these varieties is necessary as it would allow the diversification of the wine market, as well as provide a source of genes to face new pathogens or climate constraints. In this work, the grapevine varieties preserved in the "Estación de Viticultura e Enoloxía de Galicia" (EVEGA) Germplasm Bank (Ourense, Spain) were widely characterized, combining ampelography, ampelometry, agronomy, and phytopathology. Moreover, genetic characterization was carried out through the analysis of 48 single-nucleotide polymorphisms (SNPs). A Bayesian analysis based on the SNP data was carried out to define the genetic structure of the EVEGA Germplasm Bank, which allowed the differentiation of two main reconstructed panmictic populations (RPPs), confirming previous results obtained based on microsatellite markers (SSRs). A great diversity between varieties was found for almost every parameter evaluated for ampelography, ampelometry, phytopatology, phenology, and berry quality. A principal component analysis (PCA) performed with these phenotypical data allowed discrimination among some groups of varieties included in different genetic populations. This study allowed us to evaluate the grapevine diversity maintained in the EVEGA Germplasm Bank and characterize varieties of potential value for breeding programs of interest for the Galician viticulture.

10.
Front Plant Sci ; 14: 1271251, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965000

RESUMEN

Scarlet Royal, a mid-season ripening table grape, is one of the popular red grape varieties in California. However, its berries develop an undesirable astringent taste under certain conditions. Among the various factors contributing to the degradation of berry attributes, the levels and compositions of polyphenols play a fundamental role in defining berry quality and sensory characteristics. To comprehend the underlying mechanism of astringency development, Scarlet Royal berries with non-astringent attributes at the V7 vineyard were compared to astringent ones at the V9 vineyard. Biochemical analysis revealed that the divergence in berry astringency stemmed from alterations in its polyphenol composition, particularly tannins, during the late ripening stage at the V9 vineyard. Furthermore, transcriptomic profiling of berries positively associated nineteen flavonoid/proanthocyanidins (PAs) structural genes with the accumulation of PAs in V9 berries. The identification of these genes holds significance for table grape genetic improvement programs. At a practical level, the correlation between the taste panel and tannin content revealed a threshold level of tannins causing an astringent taste at approximately 400 mg/L. Additionally, berry astringency at the V9 vineyard was linked to a lower number of clusters and yield during the two study seasons, 2016 and 2017. Furthermore, petiole nutrient analysis at bloom showed differences in nutrient levels between the two vineyards, including higher levels of nitrogen and potassium in V9 vines compared to V7. It's worth noting that V9 berries at harvest displayed a lower level of total soluble solids and higher titratable acidity compared to V7 berries. In conclusion, our results indicate that the accumulation of tannins in berries during the ripening process results in a reduction in their red color intensity but significantly increases the astringency taste, thereby degrading the berry quality attributes. This study also highlights the association of high nitrogen nutrient levels and a lower crop load with berry astringency in table grapes, paving the way for further research in this area.

11.
Food Chem ; 424: 136451, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37267652

RESUMEN

Berry thinning was applied to control crop load of "Shine Muscat" grape variety. Primary and secondary metabolites released during berries development were monitored, and the correlation between physicochemical parameters and core aroma compounds was analyzed. Results revealed a significant increase in single-berry weight and sugar-acid ratio of berries under low crop load conditions. Furthermore, phenolic content and antioxidant activity under low crop load were significantly higher than those of the other groups. Grapes with low crop loads also exhibited better aroma characteristics and higher sensory scores than those of the other groups, chiefly due to significantly increased terpene and C13-norisoprenoid contents and substantially decreased C6 compound and aldehyde contents. Moreover, correlation analysis revealed total soluble solid accumulation was positively correlated to terpene accumulation, while hexanal, 2-hexanal, (E)-2-hexanal, and (E)-2-octenal were positively correlated with titratable acidity content. Thus, better grape quality could be achieved by precisely controlling berry crop load.


Asunto(s)
Vitis , Vitis/química , Omán , Aldehídos/análisis , Terpenos/análisis , Frutas/química
12.
Food Chem ; 368: 130812, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34419800

RESUMEN

Blueberry aroma is one of the most important quality traits that influences consumer purchasing decisions. This study aimed to optimize and validate a solid-phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS) method for the quantification of 73 volatile compounds in northern highbush blueberries. A SPME extraction of blueberries with water and specific proportions of sodium chloride, citric acid, and ascorbic acid, for 60 min at 50 °C using a divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber was optimal. The method was validated for sensitivity, reproducibility, linearity, and accuracy, and used to quantify volatile compounds through matrix-matched calibration curves in six blueberry cultivars ('Duke', 'Draper', 'Bluecrop', 'Calypso', 'Elliott', and 'Last Call'). Terpenes represented the most abundant volatile fraction, followed by aldehydes and alcohols. Linalool and 2-(E)-hexenal were key compounds that differentiated blueberry cultivars via Principal Component Analysis (PCA). Enantiomeric analyses revealed an excess of (-)-limonene, (-)-α-pinene, and (+)-linalool for all cultivars with potential impacts on the blueberry aroma.


Asunto(s)
Arándanos Azules (Planta) , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas , Odorantes/análisis , Reproducibilidad de los Resultados , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles/análisis
13.
Plants (Basel) ; 11(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35736764

RESUMEN

Methoxypyrazines (MPs) are a unique class of volatile compounds containing nitrogenous heterocyclics that impart green bell, vegetal and herbal odors to red grape berries and wines. In this study, the quality and MPs levels of grape berries from six representative red wine grape varieties were determined in the two consecutive years. The results showed that, at maturity, the highest total soluble solid was observed in Petit Verdot grape berries in the two consecutive years. While the anthocyanin content showed the highest in Marselan berries in 2018, in 2019, Petit Verdot berries had the highest anthocyanin content. Moreover, 2-methoxypyrazine (MOMP), 3-methyl-2-methoxypyrazine (MEMP) and 3-ethyl-2-methoxypyrazine (ETMP) levels were relatively lower, with almost no detectable in berries at maturity. The relative higher 3-isobutyl-2-methoxypyrazine (IBMP) content was observed in Cabernet Sauvignon, Marselan, Merlot, and Malbec berries. However, 3-sec-butyl-2-methoxypyrazine (SBMP) and IBMP were only detected in six wines, and their levels were higher than those in the grape berries. Furthermore, correlation analysis showed that there was a statistically positive correlation between the expression levels of VvOMT1 and VvOMT3 and MPs content in grape berries, while the lowest association was found in the VvOMT2. These findings provide a basis for selecting the most suitable grape varieties to improve wine quality.

14.
Front Plant Sci ; 13: 1035022, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531411

RESUMEN

Grape berries contain a variety of metabolites, such as anthocyanins, sugars, fatty acids, and antioxidants. Endogenous phytohormones strongly influence these metabolites, which regulate berry quality improvement. In this study, we evaluated the effects of 2,4-epibrassinolide (EBR, brassinolide (BR)-like growth regulator), jasmonic acid (JA), and their signaling inhibitors brassinazole (Brz), and sodium diethyldithiocarbamate (DIECA) on berry quality and antioxidant ability. Overall, the pre-harvest application of 0.5 mg L-1 EBR and 100 µmol L-1 JA significantly influences the quality of the grape berry. Results showed that EBR was superior to other treatments at enhancing the content of different metabolites, including anthocyanins, fructose, glucose, and a variety of fatty acids, in grapes. EBR and JA also enhanced the synthesis of gibberellin3 (GA3), cytokinin (CTK), salicylic acid (SA), JA, methyl jasmonate (MeJA), BR, and abscisic acid (ABA), while inhibiting the synthesis of auxin (IAA). Most genes related to BR/JA and anthocyanins/sugars/fatty acids biosynthesis were up-regulated. The effects of Brz and DIECA on the grape berry quality were totally reversed throughout the study, as shown by EBR and JA. According to correlation analysis, EBR and JA have a beneficial positive interaction that promotes the formation of strong coherences in grape berries between ABA/IAA/ZT-fruit expansion, BR/JA/MeJA/GA3/ZR-biochemical characteristics development, JA/MeJA/ABA/GA3/SA/ZR-antioxidant capacity enhancement, and JA/MeJA/IAA/GA3/ZT/ZR-fatty acids accumulation. In this regard, we concluded that preharvest exogenous 0.5 mg L-1 EBR and 100 µmol L-1 JA is a successful way to improve grape berry quality.

15.
Front Microbiol ; 13: 1070817, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704567

RESUMEN

Lycium barbarum L., goji berry, is a precious traditional Chinese medicine and it is homology of medicine and food. Its growth is heavily dependent on nitrogen. The use of chemical fertilizers has significantly promoted the yield of goji berry and the development of the L. barbarum L. industry. However, crop plants are inefficient in the acquisition and utilization of applied nitrogen, it often leads to excessive application of nitrogen fertilizers by producers, which cause negatively impact to the environment ultimately. The exploration of an interaction model which deals with crops, chemical fertilizers, and rhizosphere microbes to improve nitrogen use efficiency, is, therefore, an important research objective to achieve sustainable development of agriculture greatly. In our study, we explored the effects of nitrogen input on soil microbial community structure, soil nitrogen cycling, and the contents of nutrients in L. barbarum fruits. The structure and composition of the bacterial community in the rhizosphere soil of L. barbarum were significantly different under different nitrogen supply conditions, and high nitrogen addition inhibited the diversity and stability of bacterial communities. Low nitrogen input stimulated the relative abundance of ammonia-oxidizing bacteria (AOB), such as Nitrosospira, catalyzing the first step of the ammonia oxidation process. The results of the GLMM model showed that the level of nitrogen fertilizer (urea) input, the relative abundance of AOB, the relative abundance of Bradyrhizobium, and their combinations had significant effects on the soil nitrogen cycling and contents of nutrients in L. barbarum fruits. Therefore, we believe that moderately reducing the use of urea and other nitrogen fertilizers is more conducive to improving soil nitrogen use efficiency and Goji berry fruit quality by increasing the nitrogen cycling potential of soil microorganisms.

16.
Foods ; 10(1)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33418947

RESUMEN

GC-FID/MS is a powerful technique used to analyze food and beverage aromas. Volatile organic compounds (VOCs) in grape berries play an important role in determining wine quality and are affected by many factors, such as climate and soil that mainly influence their relative concentrations. Wine aroma is generated by a complex mixture of compounds, and the sensory relevance of individual VOCs is far from elucidated. Herein, the VOC content (free and glycosylated) of Cannonau grape skin and juice and of Cannonau wine collected in different areas of Sardinia is explored. Wine sensory analysis was also carried out and the relationship between sensory attributes and VOCs was investigated. Although Cannonau grapes showed the same VOC fingerprint, great variability was identified between samples, although only the differences in 2-phenylethanol and benzyl alcohol concentration in the grape skins and benzyl alcohol and a terpenoid in grape juice were significantly different according to ANOVA. The correlation between VOC content and the sensory profile highlights the role played by 2-methyl-1-butanol and 2-phenylethanol in increasing wine sensory complexity.

17.
Plants (Basel) ; 10(12)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34961055

RESUMEN

Monastrell grapevines grafted on the rootstocks 140Ru, 1103P, 41B, 110R, and 161-49C were subjected to regulated deficit irrigation (RDI) and partial root-zone irrigation (PRI). We analyzed the effects of the rootstock and irrigation method on the phenolic concentration in different berry tissues, its dilution/concentration due to the berry size, the anatomical and morphological traits of berries related to the phenolic compounds concentration, and the relationships of all these parameters with the final berry and wine phenolic content. The rootstock had an important effect on the accumulation of total phenolic compounds and anthocyanins in the skin (berries from 110R and 140Ru had the highest values). Moreover, the rootstock modified some anatomical and morphological characteristics that had a direct relationship with the final phenolic compounds concentration in the must. Large grapes and high must percentages (110R and 140Ru) produced a dilution effect, whereas small berries and a low must percentage increased the concentration (161-49C). For 110R, the small size of the cells of the epidermis and hypodermis in the grapes also could have contributed to the high phenolic compounds concentration in the skin. The percentage of cells in the skin with a uniform coloration was positively correlated with its total phenolic compounds and anthocyanins concentration and also with the phenolic quality of the wine. The PRI modified some specific morphological/anatomical skin/berry traits, and these may have contributed to important changes in the final concentration of phenolic compounds, depending on the rootstock. The better phenolic quality of the must and wines observed in some rootstocks under PRI could be due to smaller cells in the epidermis and hypodermis of the skin (161-49C), a higher percentage of cells with a uniform coloration in the hypodermis (110R), or a lower number of seeds per berry (161-49C). In contrast, the lower phenolic compounds concentration in the must of grapes observed in the most vigorous rootstocks under PRI could be due to a greater thickness of the epidermis (140Ru), greater cuticle thickness (41B), a higher number of seeds (140Ru), a lower skin/pulp ratio and percentage of skin (140Ru), a greater percentage of cells in the epidermis without coloration or with large inclusions, and a lower percentage of cells with a uniform coloration in the epidermis (140Ru). The final quality of the grape is related to some changes in histological and morphological aspects of the grape produced by the rootstock and irrigation strategy.

18.
Foods ; 10(11)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34828961

RESUMEN

Row orientation, among others, is a crucial factor in determining grapevine performance and health status, thus affecting berry components that form the basis of the later wine profile. However, the literature about the impact of changes in row orientation at steep slope sites on grapevine fruit composition as well as the differentiation between canopy sides hardly exists. Thus, the aim of this work was to gain knowledge about the impact of row orientation in steep slope vineyards on selected primary and secondary metabolites in berries of Vitis vinifera L. cv. Riesling. Samples were taken from both canopy sides of different row orientations of terraced and downslope vineyards in steep slopes. Free amino acids in the juice and flavonols in the berry skin had a positive correlation to sunlight exposure. Furthermore, grapevines showed adaptations to constantly higher light conditions, e.g., physiologically in reduction in chlorophyll content or protective mechanisms resulting in a lower susceptibility to sunburn damage. Thus, grapevine fruit parameters are affected by row orientation change in steep slopes.

19.
Front Plant Sci ; 12: 712622, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539704

RESUMEN

Climate change models predict lower precipitation and higher air temperatures that will negatively affect viticultural regions. Irrigation of vineyards will be crucial for mitigating abiotic stress during the growing season. However, the environmental impact of irrigation requires consideration for ensuring its sustainability in the future. We evaluated the standard irrigation practices on grapevine water use efficiency, berry flavonoid composition, vineyard water footprint, and arbuscular mycorrhizal fungi-grapevine symbiosis in two seasons with contrasting amounts of precipitation. The irrigation treatments consisted of weekly replacement of 25, 50, and 100% of crop evapotranspiration (ETc) during two growing seasons. Irrigation in grapevine vineyards mitigated the water scarcity when precipitation during the dormant season was not sufficient. The results provided field data supporting that despite the low rainfall recorded in one of the seasons, increasing the amount of irrigation was not advised, and replacing 50% ETc was sufficient. In this treatment, berry composition was improved with increased contents of total soluble solids, anthocyanins, and flavonols, and a stable flavonoid profile without an economic decrease in yield. In addition, with 50% ETc, the mycorrhizal symbiosis was not compromised and water resources were not highly impacted. Altogether, our results provide fundamental knowledge for viticulturists to design an appropriate irrigation schedule under the future warming scenarios with minimal environmental impact in semi-arid regions facing warming trends.

20.
Front Plant Sci ; 9: 323, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29632542

RESUMEN

Hybrid (Vitis vinifera ×Vitis labrusca) table grape cultivars grown in the subtropics often fail to accumulate sufficient anthocyanins to achieve good uniform berry color. Growers of V. vinifera table grapes in temperate regions generally use ethephon and, more recently, (S)-cis-abscisic acid (S-ABA) to overcome this problem. The objective of this study was to determine if S-ABA applications at different timings and concentrations have an effect on anthocyanin regulatory and biosynthetic genes, pigment accumulation, and berry color of the Selection 21 cultivar, a new V. vinifera ×V. labrusca hybrid seedless grape that presents lack of red color when grown in subtropical areas. Applications of S-ABA 400 mg/L resulted in a higher accumulation of total anthocyanins and of the individual anthocyaninsanthocyanins: delphinidin-3-glucoside, cyanidin-3-glucoside, peonidin-3-glucoside, and malvidin-3-glucoside in the berry skin and improved the color attributes of the berries. Treatment with two applications at 7 days after véraison (DAV) and 21 DAV of S-ABA 400 mg/L resulted in a higher accumulation of total anthocyanins in the skin of berries and increased the gene expression of CHI, F3H, DFR, and UFGT and of the VvMYBA1 and VvMYBA2 transcription factors in the seedless grape cultivar.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA