Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.016
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(11): 2801-2816.e17, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38657601

RESUMEN

The niche is typically considered as a pre-established structure sustaining stem cells. Therefore, the regulation of its formation remains largely unexplored. Whether distinct molecular mechanisms control the establishment versus maintenance of a stem cell niche is unknown. To address this, we compared perinatal and adult bone marrow mesenchymal stromal cells (MSCs), a key component of the hematopoietic stem cell (HSC) niche. MSCs exhibited enrichment in genes mediating m6A mRNA methylation at the perinatal stage and downregulated the expression of Mettl3, the m6A methyltransferase, shortly after birth. Deletion of Mettl3 from developing MSCs but not osteoblasts led to excessive osteogenic differentiation and a severe HSC niche formation defect, which was significantly rescued by deletion of Klf2, an m6A target. In contrast, deletion of Mettl3 from MSCs postnatally did not affect HSC niche. Stem cell niche generation and maintenance thus depend on divergent molecular mechanisms, which may be exploited for regenerative medicine.


Asunto(s)
Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Metiltransferasas , Ratones Endogámicos C57BL , Nicho de Células Madre , Animales , Ratones , Adenosina/metabolismo , Adenosina/análogos & derivados , Diferenciación Celular , Epigénesis Genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Factores de Transcripción de Tipo Kruppel , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Metiltransferasas/metabolismo , Metiltransferasas/genética , Osteoblastos/metabolismo , Osteoblastos/citología , Osteogénesis , ARN Mensajero/metabolismo , ARN Mensajero/genética , Transcriptoma/genética , Humanos
2.
Cell ; 187(12): 3120-3140.e29, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714197

RESUMEN

Non-hematopoietic cells are essential contributors to hematopoiesis. However, heterogeneity and spatial organization of these cells in human bone marrow remain largely uncharacterized. We used single-cell RNA sequencing (scRNA-seq) to profile 29,325 non-hematopoietic cells and discovered nine transcriptionally distinct subtypes. We simultaneously profiled 53,417 hematopoietic cells and predicted their interactions with non-hematopoietic subsets. We employed co-detection by indexing (CODEX) to spatially profile over 1.2 million cells. We integrated scRNA-seq and CODEX data to link predicted cellular signaling with spatial proximity. Our analysis revealed a hyperoxygenated arterio-endosteal neighborhood for early myelopoiesis, and an adipocytic localization for early hematopoietic stem and progenitor cells (HSPCs). We used our CODEX atlas to annotate new images and uncovered mesenchymal stromal cell (MSC) expansion and spatial neighborhoods co-enriched for leukemic blasts and MSCs in acute myeloid leukemia (AML) patient samples. This spatially resolved, multiomic atlas of human bone marrow provides a reference for investigation of cellular interactions that drive hematopoiesis.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Proteómica , Análisis de la Célula Individual , Transcriptoma , Humanos , Análisis de la Célula Individual/métodos , Médula Ósea/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Proteómica/métodos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Hematopoyesis , Nicho de Células Madre , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología
3.
Cell ; 187(14): 3690-3711.e19, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838669

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP) arises from aging-associated acquired mutations in hematopoietic progenitors, which display clonal expansion and produce phenotypically altered leukocytes. We associated CHIP-DNMT3A mutations with a higher prevalence of periodontitis and gingival inflammation among 4,946 community-dwelling adults. To model DNMT3A-driven CHIP, we used mice with the heterozygous loss-of-function mutation R878H, equivalent to the human hotspot mutation R882H. Partial transplantation with Dnmt3aR878H/+ bone marrow (BM) cells resulted in clonal expansion of mutant cells into both myeloid and lymphoid lineages and an elevated abundance of osteoclast precursors in the BM and osteoclastogenic macrophages in the periphery. DNMT3A-driven clonal hematopoiesis in recipient mice promoted naturally occurring periodontitis and aggravated experimentally induced periodontitis and arthritis, associated with enhanced osteoclastogenesis, IL-17-dependent inflammation and neutrophil responses, and impaired regulatory T cell immunosuppressive activity. DNMT3A-driven clonal hematopoiesis and, subsequently, periodontitis were suppressed by rapamycin treatment. DNMT3A-driven CHIP represents a treatable state of maladaptive hematopoiesis promoting inflammatory bone loss.


Asunto(s)
Hematopoyesis Clonal , ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Periodontitis , Animales , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Ratones , Hematopoyesis Clonal/genética , Humanos , Periodontitis/genética , Periodontitis/patología , Mutación , Masculino , Femenino , Inflamación/genética , Inflamación/patología , Osteoclastos/metabolismo , Ratones Endogámicos C57BL , Adulto , Interleucina-17/metabolismo , Interleucina-17/genética , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Hematopoyesis/genética , Osteogénesis/genética , Células Madre Hematopoyéticas/metabolismo , Resorción Ósea/genética , Resorción Ósea/patología , Persona de Mediana Edad
4.
Immunity ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39089257

RESUMEN

Unlike sessile macrophages that occupy specialized tissue niches, non-classical monocytes (NCMs)-circulating phagocytes that patrol and cleanse the luminal surface of the vascular tree-are characterized by constant movement. Here, we examined the nature of the NCM's nurturing niche. Expression of the growth factor CSF1 on endothelial cells was required for survival of NCMs in the bloodstream. Lack of endothelial-derived CSF1 did not affect blood CSF1 concentration, suggesting that NCMs rely on scavenging CSF1 present on endothelial cells. Deletion of the transmembrane chemokine and adhesion factor CX3CL1 on endothelial cells impaired NCM survival. Mechanistically, endothelial-derived CX3CL1 and integrin subunit alpha L (ITGAL) facilitated the uptake of CSF1 by NCMs. CSF1 was produced by all tissular endothelial cells, and deletion of Csf1 in all endothelial cells except bone marrow sinusoids impaired NCM survival, arguing for a model where the full vascular tree acts as a niche for NCMs and where survival and patrolling function are connected.

5.
Immunity ; 57(2): 364-378.e9, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38301651

RESUMEN

Mutations of the CBP/p300 histone acetyltransferase (HAT) domain can be linked to leukemic transformation in humans, suggestive of a checkpoint of leukocyte compartment sizes. Here, we examined the impact of reversible inhibition of this domain by the small-molecule A485. We found that A485 triggered acute and transient mobilization of leukocytes from the bone marrow into the blood. Leukocyte mobilization by A485 was equally potent as, but mechanistically distinct from, granulocyte colony-stimulating factor (G-CSF), which allowed for additive neutrophil mobilization when both compounds were combined. These effects were maintained in models of leukopenia and conferred augmented host defenses. Mechanistically, activation of the hypothalamus-pituitary-adrenal gland (HPA) axis by A485 relayed shifts in leukocyte distribution through corticotropin-releasing hormone receptor 1 (CRHR1) and adrenocorticotropic hormone (ACTH), but independently of glucocorticoids. Our findings identify a strategy for rapid expansion of the blood leukocyte compartment via a neuroendocrine loop, with implications for the treatment of human pathologies.


Asunto(s)
Médula Ósea , Histona Acetiltransferasas , Humanos , Histona Acetiltransferasas/metabolismo , Médula Ósea/metabolismo , Histonas/metabolismo , Neutrófilos/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo
6.
Am J Hum Genet ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39079539

RESUMEN

A major fraction of loci identified by genome-wide association studies (GWASs) mediate alternative splicing, but mechanistic interpretation is hindered by the technical limitations of short-read RNA sequencing (RNA-seq), which cannot directly link splicing events to full-length protein isoforms. Long-read RNA-seq represents a powerful tool to characterize transcript isoforms, and recently, infer protein isoform existence. Here, we present an approach that integrates information from GWASs, splicing quantitative trait loci (sQTLs), and PacBio long-read RNA-seq in a disease-relevant model to infer the effects of sQTLs on the ultimate protein isoform products they encode. We demonstrate the utility of our approach using bone mineral density (BMD) GWAS data. We identified 1,863 sQTLs from the Genotype-Tissue Expression (GTEx) project in 732 protein-coding genes that colocalized with BMD associations (H4PP ≥ 0.75). We generated PacBio Iso-Seq data (N = ∼22 million full-length reads) on human osteoblasts, identifying 68,326 protein-coding isoforms, of which 17,375 (25%) were unannotated. By casting the sQTLs onto protein isoforms, we connected 809 sQTLs to 2,029 protein isoforms from 441 genes expressed in osteoblasts. Overall, we found that 74 sQTLs influenced isoforms likely impacted by nonsense-mediated decay and 190 that potentially resulted in the expression of unannotated protein isoforms. Finally, we functionally validated colocalizing sQTLs in TPM2, in which siRNA-mediated knockdown in osteoblasts showed two TPM2 isoforms with opposing effects on mineralization but exhibited no effect upon knockdown of the entire gene. Our approach should be to generalize across diverse clinical traits and to provide insights into protein isoform activities modulated by GWAS loci.

7.
Development ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39012257

RESUMEN

The Forkhead box transcription factors Foxc1 and Foxc2 are expressed in condensing mesenchyme cells at the onset of endochondral ossification. We used the Prx1-cre mouse to ablate Foxc1 and Foxc2 in limb skeletal progenitor cells. Prx1-cre;Foxc1Δ/ Δ;Foxc2Δ/Δ limbs were shorter than controls, with worsening phenotypes in distal structures. Cartilage formation and mineralization was severely disrupted in the paws. The radius and tibia were malformed, while the fibula and ulna remained unmineralized. Chondrocyte maturation was delayed with fewer Indian Hedgehog-expressing, prehypertrophic chondrocytes forming and a smaller hypertrophic chondrocyte zone. Later, progression out of chondrocyte hypertrophy was slowed, leading to an accumulation of COLX-expressing hypertrophic chondrocyte zone and formation of a smaller primary ossification center with fewer osteoblast progenitor cells populating this region. Targeting Foxc1 and Foxc2 in hypertrophic chondrocytes with Col10a1-cre also resulted in an expanded hypertrophic chondrocyte zone and smaller primary ossification center. Our findings suggest that Foxc1 and Foxc2 direct chondrocyte maturation towards hypertrophic chondrocyte formation. At later stages, Foxc1 and Foxc2 regulate function in hypertrophic chondrocyte remodelling to allow primary ossification center formation and osteoblast recruitment.

8.
Development ; 151(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345329

RESUMEN

The cranial sutures are proposed to be a stem cell niche, harbouring skeletal stem cells that are directly involved in development, homeostasis and healing. Like the craniofacial bones, the sutures are formed from both mesoderm and neural crest. During cranial bone repair, neural crest cells have been proposed to be key players; however, neural crest contributions to adult sutures are not well defined, and the relative importance of suture proximity is unclear. Here, we use genetic approaches to re-examine the neural crest-mesoderm boundaries in the adult mouse skull. These are combined with calvarial wounding experiments suggesting that suture proximity improves the efficiency of cranial repair. Furthermore, we demonstrate that Gli1+ and Axin2+ skeletal stem cells are present in all calvarial sutures examined. We propose that the position of the defect determines the availability of neural crest-derived progenitors, which appear to be a key element in the repair of calvarial defects.


Asunto(s)
Suturas Craneales , Cráneo , Ratones , Animales , Células Madre , Cresta Neural , Mesodermo
9.
Proc Natl Acad Sci U S A ; 121(5): e2313656121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252822

RESUMEN

Long non-coding RNA (lncRNA) serves as a vital regulator of bone metabolism, but its role in pathologically overactive osteoclast differentiation remains elusive. Here, we identify lncRNA Dancr (Differentiation Antagonizing Non-protein Coding RNA) as a critical suppressor of osteoclastogenesis and bone resorption, which is down-regulated in response to estrogen deficiency. Global or osteoclast-specific Dancr Knockout mice display significant trabecular bone deterioration and enhanced osteoclast activity, but minimal alteration of bone formation. Moreover, the bone-targeted delivery of Dancr by Adeno-associated viral remarkably attenuates ovariectomy-induced osteopenia in mice. Mechanistically, Dancr establishes a direct interaction with Brahma-related gene 1 to prevent its binding and preserve H3K27me3 enrichment at the nuclear factor of activated T cells 1 and proliferator-activated receptor gamma coactivator 1-beta promoters, thereby maintaining appropriate expression of osteoclastic genes and metabolic programs during osteoclastogenesis. These results demonstrate that Dancr is a key molecule maintaining proper osteoclast differentiation and bone homeostasis under physiological conditions, and Dancr overexpression constitutes a potential strategy for treating osteoporosis.


Asunto(s)
Factores de Transcripción NFATC , Osteogénesis , ARN Largo no Codificante , Factores de Transcripción , Animales , Femenino , Ratones , Homeostasis , Ratones Noqueados , Factores de Transcripción NFATC/genética , Osteoclastos , Osteogénesis/genética , ARN Largo no Codificante/genética , Factores de Transcripción/genética
10.
Proc Natl Acad Sci U S A ; 121(5): e2312929121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252825

RESUMEN

Immunotherapy is a promising approach for treating metastatic breast cancer (MBC), offering new possibilities for therapy. While checkpoint inhibitors have shown great progress in the treatment of metastatic breast cancer, their effectiveness in patients with bone metastases has been disappointing. This lack of efficacy seems to be specific to the bone environment, which exhibits immunosuppressive features. In this study, we elucidate the multiple roles of the sialic acid-binding Ig-like lectin (Siglec)-15/sialic acid glyco-immune checkpoint axis in the bone metastatic niche and explore potential therapeutic strategies targeting this glyco-immune checkpoint. Our research reveals that elevated levels of Siglec-15 in the bone metastatic niche can promote tumor-induced osteoclastogenesis as well as suppress antigen-specific T cell responses. Next, we demonstrate that antibody blockade of the Siglec-15/sialic acid glyco-immune checkpoint axis can act as a potential treatment for breast cancer bone metastasis. By targeting this pathway, we not only aim to treat bone metastasis but also inhibit the spread of metastatic cancer cells from bone lesions to other organs.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Ácido N-Acetilneuramínico , Neoplasias Óseas/tratamiento farmacológico , Inmunoterapia , Anticuerpos Bloqueadores
11.
Proc Natl Acad Sci U S A ; 121(33): e2402903121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39102549

RESUMEN

Immune checkpoint therapy has limited efficacy for patients with bone-metastatic castration-resistant prostate cancer (bmCRPC). To improve immunotherapy for bmCRPC, we aimed to identify the mechanism of bmCRPC-induced changes in the immune microenvironment. Among bmCRPC patients, higher levels of a 32-gene M2-like macrophage signature in bone metastasis samples correlated with shorter overall survival. Immunohistochemistry showed that CD206-positive (CD206+) macrophages were enriched in bmCRPC bone biopsy specimens compared with primary tumors or lymph node metastases. In preclinical osteogenic prostate cancer (Pca) xenograft models, CD206+ macrophages were recruited to areas with tumor-induced bone. RNA sequencing (RNAseq) analysis showed higher expression of an M2-like gene signature, with activated canonical and noncanonical Wnt pathways, in tumor-associated macrophages isolated from osteogenic tumors (bone-TAMs) than in TAMs isolated from nonosteogenic tumors (ctrl-TAMs). Mechanistic studies showed that endothelial cells (ECs) that had undergone EC-to-osteoblast (EC-to-OSB) transition, the precursors of tumor-induced OSBs, produced paracrine factors, including Wnts, CXCL14, and lysyl oxidase, which induced M2 polarization and recruited M2-like TAMs to the bone-tumor microenvironment (bone-TME). Bone-TAMs suppressed CD8+ T cells' proliferation and cytolytic activity, and these effects were partially reversed by treating bone-TAMs with Wnt inhibitors. Genetic or pharmacological inhibition of Pca-induced EC-to-OSB transition reduced the levels of M2-like macrophages in osteogenic tumors. Our study demonstrates that Pca-induced EC-to-OSB transition drives immunosuppression in the bone-TME, suggesting that therapies that reduce Pca-induced bone formation may improve immunotherapeutic outcomes for bmCRPC.


Asunto(s)
Neoplasias Óseas , Células Endoteliales , Macrófagos , Osteoblastos , Microambiente Tumoral , Vía de Señalización Wnt , Masculino , Microambiente Tumoral/inmunología , Humanos , Neoplasias Óseas/inmunología , Neoplasias Óseas/secundario , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/inmunología , Osteoblastos/metabolismo , Osteoblastos/inmunología , Neoplasias de la Próstata Resistentes a la Castración/inmunología , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Línea Celular Tumoral , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología
12.
Proc Natl Acad Sci U S A ; 121(4): e2309628121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38227660

RESUMEN

Human bone marrow failure (BMF) syndromes result from the loss of hematopoietic stem and progenitor cells (HSPC), and this loss has been attributed to cell death; however, the cell death triggers, and mechanisms remain unknown. During BMF, tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ) increase. These ligands are known to induce necroptosis, an inflammatory form of cell death mediated by RIPK1, RIPK3, and MLKL. We previously discovered that mice with a hematopoietic RIPK1 deficiency (Ripk1HEM KO) exhibit inflammation, HSPC loss, and BMF, which is partially ameliorated by a RIPK3 deficiency; however, whether RIPK3 exerts its effects through its function in mediating necroptosis or other forms of cell death remains unclear. Here, we demonstrate that similar to a RIPK3 deficiency, an MLKL deficiency significantly extends survival and like Ripk3 deficiency partially restores hematopoiesis in Ripk1HEM KO mice revealing that both necroptosis and apoptosis contribute to BMF in these mice. Using mouse models, we show that the nucleic acid sensor Z-DNA binding protein 1 (ZBP1) is up-regulated in mouse RIPK1-deficient bone marrow cells and that ZBP1's function in endogenous nucleic acid sensing is necessary for HSPC death and contributes to BMF. We also provide evidence that IFNγ mediates HSPC death in Ripk1HEM KO mice, as ablation of IFNγ but not TNFα receptor signaling significantly extends survival of these mice. Together, these data suggest that RIPK1 maintains hematopoietic homeostasis by preventing ZBP1 activation and induction of HSPC death.


Asunto(s)
Ácidos Nucleicos , Pancitopenia , Animales , Humanos , Ratones , Apoptosis/genética , Trastornos de Fallo de la Médula Ósea , Muerte Celular/fisiología , Células Madre Hematopoyéticas/metabolismo , Necrosis/metabolismo , Ácidos Nucleicos/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
13.
Hum Mol Genet ; 33(7): 612-623, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38176734

RESUMEN

Telomeres are nucleoprotein structures that protect the chromosome ends from degradation and fusion. Telomerase is a ribonucleoprotein complex essential to maintain the length of telomeres. Germline defects that lead to short and/or dysfunctional telomeres cause telomere biology disorders (TBDs), a group of rare and heterogeneous Mendelian diseases including pulmonary fibrosis, dyskeratosis congenita, and Høyeraal-Hreidarsson syndrome. TPP1, a telomeric factor encoded by the gene ACD, recruits telomerase at telomere and stimulates its activity via its TEL-patch domain that directly interacts with TERT, the catalytic subunit of telomerase. TBDs due to TPP1 deficiency have been reported only in 11 individuals. We here report four unrelated individuals with a wide spectrum of TBD manifestations carrying either heterozygous or homozygous ACD variants consisting in the recurrent and previously described in-frame deletion of K170 (K170∆) and three novel missense mutations G179D, L184R, and E215V. Structural and functional analyses demonstrated that the four variants affect the TEL-patch domain of TPP1 and impair telomerase activity. In addition, we identified in the ACD gene several motifs associated with small deletion hotspots that could explain the recurrence of the K170∆ mutation. Finally, we detected in a subset of blood cells from one patient, a somatic TERT promoter-activating mutation that likely provides a selective advantage over non-modified cells, a phenomenon known as indirect somatic genetic rescue. Together, our results broaden the genetic and clinical spectrum of TPP1 deficiency and specify new residues in the TEL-patch domain that are crucial for length maintenance and stability of human telomeres in vivo.


Asunto(s)
Complejo Shelterina , Telomerasa , Proteínas de Unión a Telómeros , Humanos , Biología , Mutación , Complejo Shelterina/genética , Telomerasa/genética , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
14.
J Cell Sci ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078119

RESUMEN

After tissue injury, inflammatory cells are rapidly recruited to the wound where they clear microbes and other debris, and coordinate the behaviour of other cell lineages at the repair site in both positive and negative ways. In this study, we take advantage of the translucency and genetic tractability of zebrafish to evaluate the feasibility of reprogramming innate immune cells in vivo with cargo-loaded protocells and investigate how this alters the inflammatory response in the context of skin and skeletal repair. Using live imaging we show that protocells loaded with R848 cargo (which targets TLR7/8 signalling), are engulfed by macrophages resulting in their switching to a pro-inflammatory phenotype and altering their regulation of angiogenesis, collagen deposition and re-epithelialization during skin wound healing, as well as dampening osteoblast and osteoclast recruitment and bone mineralization during fracture repair. For infected skin wounds, R848-reprogrammed macrophages exhibited enhanced bactericidal activities leading to improved healing. We replicated our zebrafish studies in cultured human macrophages, and showed that R848-loaded protocells similarly reprogramme human cells, indicating how this strategy might be used to modulate wound inflammation in the clinic.

15.
Circ Res ; 135(4): 540-549, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39088641

RESUMEN

Platelets are among the most abundant cells within the circulation. Given that the platelet lifespan is 7 to 10 days in humans, a constant production of around 100 billion platelets per day is required. Platelet production from precursor cells called megakaryocytes is one of the most enigmatic processes in human biology. Although it has been studied for over a century, there is still controversy about the exact mechanisms leading to platelet release into circulation. The formation of proplatelet extensions from megakaryocytes into bone marrow sinusoids is the best-described mechanism explaining the origin of blood platelets. However, using powerful imaging techniques, several emerging studies have recently raised challenging questions in the field, suggesting that small platelet-sized structures called buds might also contribute to the circulating platelet pool. How and whether these structures differ from microvesicles or membrane blebs, which have previously been described to be released from megakaryocytes, is still a matter of discussion. In this review, we will summarize what the past and present have revealed about platelet production and whether mature blood platelets might emerge via different mechanisms.


Asunto(s)
Plaquetas , Megacariocitos , Trombopoyesis , Humanos , Plaquetas/metabolismo , Megacariocitos/citología , Megacariocitos/metabolismo , Animales , Trombopoyesis/fisiología
16.
EMBO Rep ; 25(3): 1106-1129, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308064

RESUMEN

Herpesviruses modulate immune control to secure lifelong infection. The mechanisms Human Cytomegalovirus (HCMV) employs in this regard can reveal unanticipated aspects of cellular signaling involved in antiviral immunity. Here, we describe a novel relationship between the TGF-ß family cytokine BMP9 and HCMV infection. We identify a cross-talk between BMP9-induced and IFN receptor-mediated signaling, showing that BMP9 boosts the transcriptional response to and antiviral activity of IFNß, thereby enhancing viral restriction. We also show that BMP9 is secreted by human fibroblasts upon HCMV infection. However, HCMV infection impairs BMP9-induced enhancement of the IFNß response, indicating that this signaling role of BMP9 is actively targeted by HCMV. Indeed, transmembrane proteins US18 and US20, which downregulate type I BMP receptors, are necessary and sufficient to cause inhibition of BMP9-mediated boosting of the antiviral response to IFNß. HCMV lacking US18 and US20 is more sensitive to IFNß. Thus, HCMV has a mutually antagonistic relationship with BMP9, which extends the growing body of evidence that BMP signaling is an underappreciated modulator of innate immunity in response to viral infection.


Asunto(s)
Factor 2 de Diferenciación de Crecimiento , Inmunidad Innata , Humanos , Citocinas/metabolismo , Citomegalovirus/metabolismo , Factor 2 de Diferenciación de Crecimiento/metabolismo , Transducción de Señal
17.
Bioessays ; 46(3): e2300173, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38161246

RESUMEN

Endosteal stem cells are a subclass of bone marrow skeletal stem cell populations that are particularly important for rapid bone formation occurring in growth and regeneration. These stem cells are strategically located near the bone surface in a specialized microenvironment of the endosteal niche. These stem cells are abundant in young stages but eventually depleted and replaced by other stem cell types residing in a non-endosteal perisinusoidal niche. Single-cell molecular profiling and in vivo cell lineage analyses play key roles in discovering endosteal stem cells. Importantly, endosteal stem cells can transform into bone tumor-making cells when deleterious mutations occur in tumor suppressor genes. The emerging hypothesis is that osteoblast-chondrocyte transitional identities confer a special subset of endosteal stromal cells with stem cell-like properties, which may make them susceptible for tumorigenic transformation. Endosteal stem cells are likely to represent an important therapeutic target of bone diseases caused by aberrant bone formation.


Asunto(s)
Enfermedades Óseas , Médula Ósea , Humanos , Médula Ósea/metabolismo , Osteogénesis , Osteoblastos/metabolismo , Enfermedades Óseas/metabolismo , Enfermedades Óseas/patología , Células Madre , Células de la Médula Ósea/metabolismo
18.
Clin Microbiol Rev ; 37(2): e0009923, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38546225

RESUMEN

SUMMARYAs Chagas disease remains prevalent in the Americas, it is important that healthcare professionals and researchers are aware of the screening, diagnosis, monitoring, and treatment recommendations for the populations of patients they care for and study. Management of Trypanosoma cruzi infection in immunocompromised hosts is challenging, particularly because, regardless of antitrypanosomal treatment status, immunocompromised patients with Chagas disease are at risk for T. cruzi reactivation, which can be lethal. Evidence-based practices to prevent and manage T. cruzi reactivation vary depending on the type of immunocompromise. Here, we review available data describing Chagas disease epidemiology, testing, and management practices for various populations of immunocompromised individuals, including people with HIV and patients undergoing solid organ and hematopoietic stem cell transplantation.


Asunto(s)
Enfermedad de Chagas , Huésped Inmunocomprometido , Humanos , Enfermedad de Chagas/diagnóstico , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/inmunología , Enfermedad de Chagas/terapia , Trypanosoma cruzi/inmunología
19.
J Biol Chem ; 300(4): 107164, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484798

RESUMEN

O-glycosylation is a conserved posttranslational modification that impacts many aspects of organismal viability and function. Recent studies examining the glycosyltransferase Galnt11 demonstrated that it glycosylates the endocytic receptor megalin in the kidneys, enabling proper binding and reabsorption of ligands, including vitamin D-binding protein (DBP). Galnt11-deficient mice were unable to properly reabsorb DBP from the urine. Vitamin D plays an essential role in mineral homeostasis and its deficiency is associated with bone diseases such as rickets, osteomalacia, and osteoporosis. We therefore set out to examine the effects of the loss of Galnt11 on vitamin D homeostasis and bone composition. We found significantly decreased levels of serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, consistent with decreased reabsorption of DBP. This was accompanied by a significant reduction in blood calcium levels and a physiologic increase in parathyroid hormone (PTH) in Galnt11-deficient mice. Bones in Galnt11-deficient mice were smaller and displayed a decrease in cortical bone accompanied by an increase in trabecular bone and an increase in a marker of bone formation, consistent with PTH-mediated effects on bone. These results support a unified model for the role of Galnt11 in bone and mineral homeostasis, wherein loss of Galnt11 leads to decreased reabsorption of DBP by megalin, resulting in a cascade of disrupted mineral and bone homeostasis including decreased circulating vitamin D and calcium levels, a physiological increase in PTH, an overall loss of cortical bone, and an increase in trabecular bone. Our study elucidates how defects in O-glycosylation can influence vitamin D and mineral homeostasis and the integrity of the skeletal system.


Asunto(s)
Huesos , Homeostasis , Polipéptido N-Acetilgalactosaminiltransferasa , Vitamina D , Animales , Masculino , Ratones , Huesos/anatomía & histología , Huesos/química , Huesos/metabolismo , Calcio/metabolismo , Glicosilación , Homeostasis/genética , Hormona Paratiroidea/metabolismo , Vitamina D/metabolismo , Vitamina D/análogos & derivados , Proteína de Unión a Vitamina D/metabolismo
20.
J Biol Chem ; 300(7): 107487, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38908751

RESUMEN

Macrophages are essential regulators of inflammation and bone loss. Receptor activator of nuclear factor-κß ligand (RANKL), a pro-inflammatory cytokine, is responsible for macrophage differentiation to osteoclasts and bone loss. We recently showed that 14-3-3ζ-knockout (YwhazKO) rats exhibit increased bone loss in the inflammatory arthritis model. 14-3-3ζ is a cytosolic adaptor protein that actively participates in many signaling transductions. However, the role of 14-3-3ζ in RANKL signaling or bone remodeling is unknown. We investigated how 14-3-3ζ affects osteoclast activity by evaluating its role in RANKL signaling. We utilized 14-3-3ζ-deficient primary bone marrow-derived macrophages obtained from wildtype and YwhazKO animals and RAW264.7 cells generated using CRISPR-Cas9. Our results showed that 14-3-3ζ-deficient macrophages, upon RANKL stimulation, have bigger and stronger tartrate-resistant acid phosphatase-positive multinucleated cells and increased bone resorption activity. The presence of 14-3-3ζ suppressed RANKL-induced MAPK and AKT phosphorylation, transcription factors (NFATC1 and p65) nuclear translocation, and subsequently, gene induction (Rank, Acp5, and Ctsk). Mechanistically, 14-3-3ζ interacts with TRAF6, an essential component of the RANKL receptor complex. Upon RANKL stimulation, 14-3-3ζ-TRAF6 interaction was increased, while RANK-TRAF6 interaction was decreased. Importantly, 14-3-3ζ supported TRAF6 ubiquitination and degradation by the proteasomal pathway, thus dampening the downstream RANKL signaling. Together, we show that 14-3-3ζ regulates TRAF6 levels to suppress inflammatory RANKL signaling and osteoclast activity. To the best of our knowledge, this is the first report on 14-3-3ζ regulation of RANKL signaling and osteoclast activation.


Asunto(s)
Proteínas 14-3-3 , Osteoclastos , Ligando RANK , Transducción de Señal , Factor 6 Asociado a Receptor de TNF , Animales , Ratones , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Resorción Ósea/metabolismo , Resorción Ósea/genética , Resorción Ósea/patología , Macrófagos/metabolismo , Ratones Noqueados , Osteoclastos/metabolismo , Osteoclastos/citología , Estabilidad Proteica , Ligando RANK/metabolismo , Ligando RANK/genética , Células RAW 264.7 , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA