Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.151
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 174(2): 433-447.e19, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29909985

RESUMEN

Nearly all prostate cancer deaths are from metastatic castration-resistant prostate cancer (mCRPC), but there have been few whole-genome sequencing (WGS) studies of this disease state. We performed linked-read WGS on 23 mCRPC biopsy specimens and analyzed cell-free DNA sequencing data from 86 patients with mCRPC. In addition to frequent rearrangements affecting known prostate cancer genes, we observed complex rearrangements of the AR locus in most cases. Unexpectedly, these rearrangements include highly recurrent tandem duplications involving an upstream enhancer of AR in 70%-87% of cases compared with <2% of primary prostate cancers. A subset of cases displayed AR or MYC enhancer duplication in the context of a genome-wide tandem duplicator phenotype associated with CDK12 inactivation. Our findings highlight the complex genomic structure of mCRPC, nominate alterations that may inform prostate cancer treatment, and suggest that additional recurrent events in the non-coding mCRPC genome remain to be discovered.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Secuenciación Completa del Genoma , Anciano , Anilidas/uso terapéutico , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Elementos de Facilitación Genéticos/genética , Duplicación de Gen , Reordenamiento Génico , Genes myc , Sitios Genéticos , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Fosfohidrolasa PTEN/genética , Fenotipo , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/uso terapéutico
2.
Mol Cell ; 84(14): 2785-2796.e4, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936361

RESUMEN

The bacterial world offers diverse strains for understanding medical and environmental processes and for engineering synthetic biological chassis. However, genetically manipulating these strains has faced a long-standing bottleneck: how to efficiently transform DNA. Here, we report imitating methylation patterns rapidly in TXTL (IMPRINT), a generalized, rapid, and scalable approach based on cell-free transcription-translation (TXTL) to overcome DNA restriction, a prominent barrier to transformation. IMPRINT utilizes TXTL to express DNA methyltransferases from a bacterium's restriction-modification systems. The expressed methyltransferases then methylate DNA in vitro to match the bacterium's DNA methylation pattern, circumventing restriction and enhancing transformation. With IMPRINT, we efficiently multiplex methylation by diverse DNA methyltransferases and enhance plasmid transformation in gram-negative and gram-positive bacteria. We also develop a high-throughput pipeline that identifies the most consequential methyltransferases, and we apply IMPRINT to screen a ribosome-binding site library in a hard-to-transform Bifidobacterium. Overall, IMPRINT can enhance DNA transformation, enabling the use of sophisticated genetic manipulation tools across the bacterial world.


Asunto(s)
Sistema Libre de Células , Metilación de ADN , Biosíntesis de Proteínas , Transcripción Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Transformación Bacteriana , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Metilasas de Modificación del ADN/metabolismo , Metilasas de Modificación del ADN/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
Cell ; 167(1): 248-259.e12, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27662092

RESUMEN

Synthetic biology uses living cells as molecular foundries for the biosynthesis of drugs, therapeutic proteins, and other commodities. However, the need for specialized equipment and refrigeration for production and distribution poses a challenge for the delivery of these technologies to the field and to low-resource areas. Here, we present a portable platform that provides the means for on-site, on-demand manufacturing of therapeutics and biomolecules. This flexible system is based on reaction pellets composed of freeze-dried, cell-free transcription and translation machinery, which can be easily hydrated and utilized for biosynthesis through the addition of DNA encoding the desired output. We demonstrate this approach with the manufacture and functional validation of antimicrobial peptides and vaccines and present combinatorial methods for the production of antibody conjugates and small molecules. This synthetic biology platform resolves important practical limitations in the production and distribution of therapeutics and molecular tools, both to the developed and developing world.


Asunto(s)
Formación de Anticuerpos , Péptidos Catiónicos Antimicrobianos/biosíntesis , Vacunas/biosíntesis , Animales , Péptidos Catiónicos Antimicrobianos/genética , Sistema Libre de Células , Técnicas Químicas Combinatorias , Humanos , Biosíntesis de Proteínas , Biología Sintética , Transcripción Genética , Vacunas/genética
4.
CA Cancer J Clin ; 71(2): 176-190, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33165928

RESUMEN

The application of genomic profiling assays using plasma circulating tumor DNA (ctDNA) is rapidly evolving in the management of patients with advanced solid tumors. Diverse plasma ctDNA technologies in both commercial and academic laboratories are in routine or emerging use. The increasing integration of such testing to inform treatment decision making by oncology clinicians has complexities and challenges but holds significant potential to substantially improve patient outcomes. In this review, the authors discuss the current role of plasma ctDNA assays in oncology care and provide an overview of ongoing research that may inform real-world clinical applications in the near future.


Asunto(s)
Biomarcadores de Tumor/sangre , ADN Tumoral Circulante/sangre , Oncología Médica/métodos , Neoplasias/diagnóstico , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , Toma de Decisiones Clínicas , Humanos , Biopsia Líquida/métodos , Biopsia Líquida/normas , Biopsia Líquida/tendencias , Oncología Médica/normas , Oncología Médica/tendencias , Mutación , Estadificación de Neoplasias/métodos , Estadificación de Neoplasias/tendencias , Neoplasias/sangre , Neoplasias/genética , Neoplasias/terapia , Guías de Práctica Clínica como Asunto , Sociedades Médicas/normas , Estados Unidos
5.
Trends Biochem Sci ; 48(7): 642-654, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37087310

RESUMEN

Despite advances in membrane protein (MP) structural biology and a growing interest in their applications, these proteins remain challenging to study. Progress has been hindered by the complex nature of MPs and innovative methods will be required to circumvent technical hurdles. Cell-free protein synthesis (CFPS) is a burgeoning technique for synthesizing MPs directly into a membrane environment using reconstituted components of the cellular transcription and translation machinery in vitro. We provide an overview of CFPS and how this technique can be applied to the synthesis and study of MPs. We highlight numerous strategies including synthesis methods and folding environments, each with advantages and limitations, to provide a survey of how CFPS techniques can advance the study of MPs.


Asunto(s)
Proteínas de la Membrana , Biosíntesis de Proteínas , Proteínas de la Membrana/metabolismo , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo
6.
EMBO J ; 42(17): e114131, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37458194

RESUMEN

CMG (Cdc45-MCM-GINS) helicase assembly at the replication origin is the culmination of eukaryotic DNA replication initiation. This process can be reconstructed in vitro using defined factors in Saccharomyces cerevisiae; however, in vertebrates, origin-dependent CMG formation has not yet been achieved partly due to the lack of a complete set of known initiator proteins. Since a microcephaly gene product, DONSON, was reported to remodel the CMG helicase under replication stress, we analyzed its role in DNA replication using a Xenopus cell-free system. We found that DONSON was essential for the replisome assembly. In vertebrates, DONSON physically interacted with GINS and Polε via its conserved N-terminal PGY and NPF motifs, and the DONSON-GINS interaction contributed to the replisome assembly. DONSON's chromatin association during replication initiation required the pre-replicative complex, TopBP1, and kinase activities of S-CDK and DDK. Both S-CDK and DDK required DONSON to trigger replication initiation. Moreover, human DONSON could substitute for the Xenopus protein in a cell-free system. These findings indicate that vertebrate DONSON is a novel initiator protein essential for CMG helicase assembly.


Asunto(s)
Proteínas de Mantenimiento de Minicromosoma , Proteínas de Saccharomyces cerevisiae , Animales , Humanos , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicación del ADN , Saccharomyces cerevisiae/metabolismo , Vertebrados
7.
Am J Hum Genet ; 111(5): 809-824, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38642557

RESUMEN

Advancements in genomic technologies have shown remarkable promise for improving health trajectories. The Human Genome Project has catalyzed the integration of genomic tools into clinical practice, such as disease risk assessment, prenatal testing and reproductive genomics, cancer diagnostics and prognostication, and therapeutic decision making. Despite the promise of genomic technologies, their full potential remains untapped without including individuals of diverse ancestries and integrating social determinants of health (SDOHs). The NHGRI launched the 2020 Strategic Vision with ten bold predictions by 2030, including "individuals from ancestrally diverse backgrounds will benefit equitably from advances in human genomics." Meeting this goal requires a holistic approach that brings together genomic advancements with careful consideration to healthcare access as well as SDOHs to ensure that translation of genetics research is inclusive, affordable, and accessible and ultimately narrows rather than widens health disparities. With this prediction in mind, this review delves into the two paramount applications of genetic testing-reproductive genomics and precision oncology. When discussing these applications of genomic advancements, we evaluate current accessibility limitations, highlight challenges in achieving representativeness, and propose paths forward to realize the ultimate goal of their equitable applications.


Asunto(s)
Genómica , Medicina de Precisión , Humanos , Genómica/métodos , Medicina de Precisión/métodos , Genoma Humano , Pruebas Genéticas , Neoplasias/genética , Accesibilidad a los Servicios de Salud
8.
Proc Natl Acad Sci U S A ; 121(25): e2322452121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38861600

RESUMEN

Intrinsically disordered proteins (IDPs) play a crucial role in various biological phenomena, dynamically changing their conformations in response to external environmental cues. To gain a deeper understanding of these proteins, it is essential to identify the determinants that fix their structures at the atomic level. Here, we developed a pipeline for rapid crystal structure analysis of IDP using a cell-free protein crystallization (CFPC) method. Through this approach, we successfully demonstrated the determination of the structure of an IDP to uncover the key determinants that stabilize its conformation. Specifically, we focused on the 11-residue fragment of c-Myc, which forms an α-helix through dimerization with a binding partner protein. This fragment was strategically recombined with an in-cell crystallizing protein and was expressed in a cell-free system. The resulting crystal structures of the c-Myc fragment were successfully determined at a resolution of 1.92 Å and we confirmed that they are identical to the structures of the complex with the native binding partner protein. This indicates that the environment of the scaffold crystal can fix the structure of c-Myc. Significantly, these crystals were obtained directly from a small reaction mixture (30 µL) incubated for only 72 h. Analysis of eight crystal structures derived from 22 mutants revealed two hydrophobic residues as the key determinants responsible for stabilizing the α-helical structure. These findings underscore the power of our CFPC screening method as a valuable tool for determining the structures of challenging target proteins and elucidating the essential molecular interactions that govern their stability.


Asunto(s)
Sistema Libre de Células , Cristalización , Proteínas Intrínsecamente Desordenadas , Proteínas Proto-Oncogénicas c-myc , Proteínas Intrínsecamente Desordenadas/química , Cristalografía por Rayos X/métodos , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Humanos , Conformación Proteica , Modelos Moleculares , Unión Proteica
9.
Trends Genet ; 39(4): 285-307, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36792446

RESUMEN

Liquid biopsies (LBs), particularly using circulating tumor DNA (ctDNA), are expected to revolutionize precision oncology and blood-based cancer screening. Recent technological improvements, in combination with the ever-growing understanding of cell-free DNA (cfDNA) biology, are enabling the detection of tumor-specific changes with extremely high resolution and new analysis concepts beyond genetic alterations, including methylomics, fragmentomics, and nucleosomics. The interrogation of a large number of markers and the high complexity of data render traditional correlation methods insufficient. In this regard, machine learning (ML) algorithms are increasingly being used to decipher disease- and tissue-specific signals from cfDNA. Here, we review recent insights into biological ctDNA features and how these are incorporated into sophisticated ML applications.


Asunto(s)
Ácidos Nucleicos Libres de Células , ADN Tumoral Circulante , Neoplasias Hematológicas , Neoplasias , Humanos , Ácidos Nucleicos Libres de Células/genética , Neoplasias/genética , Medicina de Precisión , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/análisis , Aprendizaje Automático
10.
Am J Hum Genet ; 110(10): 1616-1627, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37802042

RESUMEN

At least 5% of cancer diagnoses are attributed to a causal pathogenic or likely pathogenic germline genetic variant (hereditary cancer syndrome-HCS). These individuals are burdened with lifelong surveillance monitoring organs for a wide spectrum of cancers. This is associated with substantial uncertainty and anxiety in the time between screening tests and while the individuals are awaiting results. Cell-free DNA (cfDNA) sequencing has recently shown potential as a non-invasive strategy for monitoring cancer. There is an opportunity for high-yield cancer early detection in HCS. To assess clinical validity of cfDNA in individuals with HCS, representatives from eight genetics centers from across Canada founded the CHARM (cfDNA in Hereditary and High-Risk Malignancies) Consortium in 2017. In this perspective, we discuss operationalization of this consortium and early data emerging from the most common and well-characterized HCSs: hereditary breast and ovarian cancer, Lynch syndrome, Li-Fraumeni syndrome, and Neurofibromatosis type 1. We identify opportunities for the incorporation of cfDNA sequencing into surveillance protocols; these opportunities are backed by examples of earlier cancer detection efficacy in HCSs from the CHARM Consortium. We seek to establish a paradigm shift in early cancer surveillance in individuals with HCSs, away from highly centralized, regimented medical screening visits and toward more accessible, frequent, and proactive care for these high-risk individuals.


Asunto(s)
Ácidos Nucleicos Libres de Células , Síndromes Neoplásicos Hereditarios , Femenino , Humanos , Predisposición Genética a la Enfermedad , Síndromes Neoplásicos Hereditarios/diagnóstico , Síndromes Neoplásicos Hereditarios/genética , Síndromes Neoplásicos Hereditarios/epidemiología , Pruebas Genéticas/métodos , Biopsia Líquida , Ácidos Nucleicos Libres de Células/genética
11.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385880

RESUMEN

We present a language model Affordable Cancer Interception and Diagnostics (ACID) that can achieve high classification performance in the diagnosis of cancer exclusively from using raw cfDNA sequencing reads. We formulate ACID as an autoregressive language model. ACID is pretrained with language sentences that are obtained from concatenation of raw sequencing reads and diagnostic labels. We benchmark ACID against three methods. On testing set subjected to whole-genome sequencing, ACID significantly outperforms the best benchmarked method in diagnosis of cancer [Area Under the Receiver Operating Curve (AUROC), 0.924 versus 0.853; P < 0.001] and detection of hepatocellular carcinoma (AUROC, 0.981 versus 0.917; P < 0.001). ACID can achieve high accuracy with just 10 000 reads per sample. Meanwhile, ACID achieves the best performance on testing sets that were subjected to bisulfite sequencing compared with benchmarked methods. In summary, we present an affordable, simple yet efficient end-to-end paradigm for cancer detection using raw cfDNA sequencing reads.


Asunto(s)
Carcinoma Hepatocelular , Ácidos Nucleicos Libres de Células , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Área Bajo la Curva , Ácidos Nucleicos Libres de Células/genética , Lenguaje , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética
12.
Trends Immunol ; 44(3): 188-200, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36739208

RESUMEN

Despite the emergence of mitochondria as key regulators of innate immunity, the mechanisms underlying the generation and release of immunostimulatory alarmins by stressed mitochondria remains nebulous. We propose that the major mitochondrial alarmin in myeloid cells is oxidized mitochondrial DNA (Ox-mtDNA). Fragmented Ox-mtDNA enters the cytosol where it activates the NLRP3 inflammasome and generates IL-1ß, IL-18, and cGAS-STING to induce type I interferons and interferon-stimulated genes. Inflammasome activation further enables the circulatory release of Ox-mtDNA by opening gasdermin D pores. We summarize new data showing that, in addition to being an autoimmune disease biomarker, Ox-mtDNA converts beneficial transient inflammation into long-lasting immunopathology. We discuss how Ox-mtDNA induces short- and long-term immune activation, and highlight its homeostatic and immunopathogenic functions.


Asunto(s)
ADN Mitocondrial , Inflamasomas , Humanos , Transducción de Señal/fisiología , Mitocondrias , Inmunidad Innata
13.
Trends Immunol ; 44(5): 356-364, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37012121

RESUMEN

Immune and inflammatory processes occurring within tissues are often undetectable by blood cell counts, standard circulating biomarkers, or imaging, representing an unmet biomedical need. Here, we outline recent advances indicating that liquid biopsies can broadly inform human immune system dynamics. Nucleosome-size fragments of cell-free DNA (cfDNA) released from dying cells into blood contain rich epigenetic information such as methylation, fragmentation, and histone mark patterns. This information allows to infer the cfDNA cell of origin, as well as pre-cell death gene expression patterns. We propose that the analysis of epigenetic features of immune cell-derived cfDNA can shed light on immune cell turnover dynamics in healthy people, and inform the study and diagnosis of cancer, local inflammation, infectious or autoimmune diseases, as well as responses to vaccination.


Asunto(s)
Ácidos Nucleicos Libres de Células , Metilación de ADN , Humanos , Biopsia Líquida/métodos , Biomarcadores , Ácidos Nucleicos Libres de Células/genética , Inflamación/genética , Epigénesis Genética
14.
Proc Natl Acad Sci U S A ; 120(33): e2303385120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549284

RESUMEN

Excessive cell-free DNA (cfDNA) in the serum and synovium is considered a causative factor of rheumatoid arthritis (RA). Thus, cfDNA scavenging by using cationic polymers has been an effective therapeutic avenue, while these stratagems still suffer from systemic toxicity and unstable capture of cfDNA. Here, inspired by the biological charge-trapping effects and active degradation function of enzyme-containing organelles in vivo, we proposed a cationic peptide dendrimer nanogel with deoxyribonuclease I (DNase I) conjugation for the treatment of RA. Benefitting from their naturally derived peptide components, the resultant nanogels were highly biocompatible. More attractively, by tailoring them with a larger size and higher surface charge density, these cationic nanogels could achieve the fastest targeting capability, highest accumulation amounts, longer persistence time, and superior DNA scavenging capacity in inflamed joints. Based on these features, we have demonstrated that the organelle mimicking cationic nanogels could significantly down-regulate toll-like receptor (TLR)-9 signaling pathways and attenuate RA symptoms in collagen-induced arthritis mice. These results make the bioinspired DNase I conjugated cationic nanogels an ideal candidate for treating RA and other immune dysregulation diseases.


Asunto(s)
Artritis Reumatoide , Ácidos Nucleicos Libres de Células , Ratones , Animales , Nanogeles/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Péptidos/uso terapéutico , Desoxirribonucleasa I
15.
Proc Natl Acad Sci U S A ; 120(30): e2220358120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37463216

RESUMEN

Dynamic, multi-input gene regulatory networks (GRNs) are ubiquitous in nature. Multilayer CRISPR-based genetic circuits hold great promise for building GRNs akin to those found in naturally occurring biological systems. We develop an approach for creating high-performing activatable promoters that can be assembled into deep, wide, and multi-input CRISPR-activation and -interference (CRISPRa/i) GRNs. By integrating sequence-based design and in vivo screening, we engineer activatable promoters that achieve up to 1,000-fold dynamic range in an Escherichia coli-based cell-free system. These components enable CRISPRa GRNs that are six layers deep and four branches wide. We show the generalizability of the promoter engineering workflow by improving the dynamic range of the light-dependent EL222 optogenetic system from 6-fold to 34-fold. Additionally, high dynamic range promoters enable CRISPRa systems mediated by small molecules and protein-protein interactions. We apply these tools to build input-responsive CRISPRa/i GRNs, including feedback loops, logic gates, multilayer cascades, and dynamic pulse modulators. Our work provides a generalizable approach for the design of high dynamic range activatable promoters and enables classes of gene regulatory functions in cell-free systems.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Regiones Promotoras Genéticas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Redes Reguladoras de Genes , Sistemas CRISPR-Cas/genética
16.
Proc Natl Acad Sci U S A ; 120(28): e2305236120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399400

RESUMEN

Plasma cell-free DNA (cfDNA) is a noninvasive biomarker for cell death of all organs. Deciphering the tissue origin of cfDNA can reveal abnormal cell death because of diseases, which has great clinical potential in disease detection and monitoring. Despite the great promise, the sensitive and accurate quantification of tissue-derived cfDNA remains challenging to existing methods due to the limited characterization of tissue methylation and the reliance on unsupervised methods. To fully exploit the clinical potential of tissue-derived cfDNA, here we present one of the largest comprehensive and high-resolution methylation atlas based on 521 noncancer tissue samples spanning 29 major types of human tissues. We systematically identified fragment-level tissue-specific methylation patterns and extensively validated them in orthogonal datasets. Based on the rich tissue methylation atlas, we develop the first supervised tissue deconvolution approach, a deep-learning-powered model, cfSort, for sensitive and accurate tissue deconvolution in cfDNA. On the benchmarking data, cfSort showed superior sensitivity and accuracy compared to the existing methods. We further demonstrated the clinical utilities of cfSort with two potential applications: aiding disease diagnosis and monitoring treatment side effects. The tissue-derived cfDNA fraction estimated from cfSort reflected the clinical outcomes of the patients. In summary, the tissue methylation atlas and cfSort enhanced the performance of tissue deconvolution in cfDNA, thus facilitating cfDNA-based disease detection and longitudinal treatment monitoring.


Asunto(s)
Ácidos Nucleicos Libres de Células , Aprendizaje Profundo , Humanos , Ácidos Nucleicos Libres de Células/genética , Metilación de ADN , Biomarcadores , Regiones Promotoras Genéticas , Biomarcadores de Tumor/genética
17.
Proc Natl Acad Sci U S A ; 120(19): e2218610120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126679

RESUMEN

Cells use signal transduction across their membranes to sense and respond to a wide array of chemical and physical signals. Creating synthetic systems which can harness cellular signaling modalities promises to provide a powerful platform for biosensing and therapeutic applications. As a first step toward this goal, we investigated how bacterial two-component systems (TCSs) can be leveraged to enable transmembrane-signaling with synthetic membranes. Specifically, we demonstrate that a bacterial two-component nitrate-sensing system (NarX-NarL) can be reproduced outside of a cell using synthetic membranes and cell-free protein expression systems. We find that performance and sensitivity of the TCS can be tuned by altering the biophysical properties of the membrane in which the histidine kinase (NarX) is integrated. Through protein engineering efforts, we modify the sensing domain of NarX to generate sensors capable of detecting an array of ligands. Finally, we demonstrate that these systems can sense ligands in relevant sample environments. By leveraging membrane and protein design, this work helps reveal how transmembrane sensing can be recapitulated outside of the cell, adding to the arsenal of deployable cell-free systems primed for real world biosensing.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Regulación Bacteriana de la Expresión Génica , Proteínas de Unión al ADN/metabolismo
18.
Annu Rev Genomics Hum Genet ; 23: 413-425, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35316613

RESUMEN

With the widespread clinical adoption of noninvasive screening for fetal chromosomal aneuploidies based on cell-free DNA analysis from maternal plasma, more researchers are turning their attention to noninvasive prenatal assessment for single-gene disorders. The development of a spectrum of approaches to analyze cell-free DNA in maternal circulation, including relative mutation dosage, relative haplotype dosage, and size-based methods, has expanded the scope of noninvasive prenatal testing to sex-linked and autosomal recessive disorders. Cell-free fetal DNA analysis for several of the more prevalent single-gene disorders has recently been introduced into clinical service. This article reviews the analytical approaches currently available and discusses the extent of the clinical implementation of noninvasive prenatal testing for single-gene disorders.


Asunto(s)
Ácidos Nucleicos Libres de Células , Aneuploidia , ADN/genética , Femenino , Feto , Humanos , Embarazo , Diagnóstico Prenatal/métodos
19.
EMBO J ; 40(23): e108299, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34672004

RESUMEN

Continuous translation elongation, irrespective of amino acid sequences, is a prerequisite for living organisms to produce their proteomes. However, nascent polypeptide products bear an inherent risk of elongation abortion. For example, negatively charged sequences with occasional intermittent prolines, termed intrinsic ribosome destabilization (IRD) sequences, weaken the translating ribosomal complex, causing certain nascent chain sequences to prematurely terminate translation. Here, we show that most potential IRD sequences in the middle of open reading frames remain cryptic and do not interrupt translation, due to two features of the nascent polypeptide. Firstly, the nascent polypeptide itself spans the exit tunnel, and secondly, its bulky amino acid residues occupy the tunnel entrance region, thereby serving as a bridge and protecting the large and small ribosomal subunits from dissociation. Thus, nascent polypeptide products have an inbuilt ability to ensure elongation continuity.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sistemas de Lectura Abierta , Péptidos/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Péptidos/genética , Proteínas Ribosómicas/genética , Ribosomas/genética , Ribosomas/metabolismo
20.
RNA ; 29(12): 1960-1972, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37793791

RESUMEN

Cell-free protein synthesis (CFPS) systems enable easy in vitro expression of proteins with many scientific, industrial, and therapeutic applications. Here we present an optimized, highly efficient human cell-free translation system that bypasses many limitations of currently used in vitro systems. This CFPS system is based on extracts from human HEK293T cells engineered to endogenously express GADD34 and K3L proteins, which suppress phosphorylation of translation initiation factor eIF2α. Overexpression of GADD34 and K3L proteins in human cells before cell lysate preparation significantly simplifies lysate preparation. We find that expression of the GADD34 and K3L accessory proteins before cell lysis maintains low levels of phosphorylation of eIF2α in the extracts. During in vitro translation reactions, eIF2α phosphorylation increases moderately in a GCN2-dependent fashion that can be inhibited by GCN2 kinase inhibitors. This new CFPS system should be useful for exploring human translation mechanisms in more physiological conditions outside the cell.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Proteínas , Humanos , Células HEK293 , Fosforilación , Proteínas/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Sistema Libre de Células/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA