Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Mol Cell ; 81(3): 584-598.e5, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33444546

RESUMEN

Severe-acute-respiratory-syndrome-related coronavirus 2 (SARS-CoV-2) is the positive-sense RNA virus that causes coronavirus disease 2019 (COVID-19). The genome of SARS-CoV-2 is unique among viral RNAs in its vast potential to form RNA structures, yet as much as 97% of its 30 kilobases have not been structurally explored. Here, we apply a novel long amplicon strategy to determine the secondary structure of the SARS-CoV-2 RNA genome at single-nucleotide resolution in infected cells. Our in-depth structural analysis reveals networks of well-folded RNA structures throughout Orf1ab and reveals aspects of SARS-CoV-2 genome architecture that distinguish it from other RNA viruses. Evolutionary analysis shows that several features of the SARS-CoV-2 genomic structure are conserved across ß-coronaviruses, and we pinpoint regions of well-folded RNA structure that merit downstream functional analysis. The native, secondary structure of SARS-CoV-2 presented here is a roadmap that will facilitate focused studies on the viral life cycle, facilitate primer design, and guide the identification of RNA drug targets against COVID-19.


Asunto(s)
COVID-19 , Genoma Viral , Conformación de Ácido Nucleico , ARN Viral , Elementos de Respuesta , SARS-CoV-2 , COVID-19/genética , COVID-19/metabolismo , Línea Celular Tumoral , Humanos , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
2.
RNA ; 30(3): 213-222, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38164607

RESUMEN

Certain positive-sense single-stranded RNA viruses contain elements at their 3' termini that structurally mimic tRNAs. These tRNA-like structures (TLSs) are classified based on which amino acid is covalently added to the 3' end by host aminoacyl-tRNA synthetase. Recently, a cryoEM reconstruction of a representative tyrosine-accepting tRNA-like structure (TLSTyr) from brome mosaic virus (BMV) revealed a unique mode of recognition of the viral anticodon-mimicking domain by tyrosyl-tRNA synthetase. Some viruses in the hordeivirus genus of Virgaviridae are also selectively aminoacylated with tyrosine, yet these TLS RNAs have a different architecture in the 5' domain that comprises the atypical anticodon loop mimic. Herein, we present bioinformatic and biochemical data supporting a distinct secondary structure for the 5' domain of the hordeivirus TLSTyr compared to those in Bromoviridae Despite forming a different secondary structure, the 5' domain is necessary to achieve robust in vitro aminoacylation. Furthermore, a chimeric RNA containing the 5' domain from the BMV TLSTyr and the 3' domain from a hordeivirus TLSTyr are aminoacylated, illustrating modularity in these structured RNA elements. We propose that the structurally distinct 5' domain of the hordeivirus TLSTyrs performs the same role in mimicking the anticodon loop as its counterpart in the BMV TLSTyr Finally, these structurally and phylogenetically divergent types of TLSTyr provide insight into the evolutionary connections between all classes of viral tRNA-like structures.


Asunto(s)
Bromovirus , Virus ARN , Tirosina-ARNt Ligasa , Secuencia de Bases , Anticodón/genética , ARN Viral/química , ARN de Transferencia/química , Bromovirus/genética , Bromovirus/metabolismo , Virus ARN/genética , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/química , Tirosina-ARNt Ligasa/metabolismo , Tirosina/genética , Tirosina/metabolismo , Conformación de Ácido Nucleico
3.
J Biol Chem ; 300(6): 107317, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677514

RESUMEN

It has become increasingly evident that the structures RNAs adopt are conformationally dynamic; the various structured states that RNAs sample govern their interactions with other nucleic acids, proteins, and ligands to regulate a myriad of biological processes. Although several biophysical approaches have been developed and used to study the dynamic landscape of structured RNAs, technical limitations have limited their application to all classes of RNA due to variable size and flexibility. Recent advances combining chemical probing experiments with next-generation- and direct sequencing have emerged as an alternative approach to exploring the conformational dynamics of RNA. In this review, we provide a methodological overview of the sequencing-based techniques used to study RNA conformational dynamics. We discuss how different techniques have enabled us to better understand the propensity of RNAs from a variety of different classes to sample multiple conformational states. Finally, we present examples of the ways these techniques have reshaped how we think about RNA structure.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Conformación de Ácido Nucleico , ARN , ARN/química , ARN/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nanoporos , Humanos , Análisis de Secuencia de ARN/métodos
4.
RNA ; 29(2): 241-251, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36411056

RESUMEN

4-Thiouridine (s4U) is a modified nucleoside, found at positions 8 and 9 in tRNA from eubacteria and archaea. Studies of the biosynthetic pathway and physiological role of s4U in tRNA are ongoing in the tRNA modification field. s4U has also recently been utilized as a biotechnological tool for analysis of RNAs. Therefore, a selective and sensitive system for the detection of s4U is essential for progress in the fields of RNA technologies and tRNA modification. Here, we report the use of biotin-coupled 2-aminoethyl-methanethiosulfonate (MTSEA biotin-XX) for labeling of s4U and demonstrate that the system is sensitive and quantitative. This technique can be used without denaturation; however, addition of a denaturation step improves the limit of detection. Thermus thermophilus tRNAs, which abundantly contain 5-methyl-2-thiouridine, were tested to investigate the selectivity of the MTSEA biotin-XX s4U detection system. The system did not react with 5-methyl-2-thiouridine in tRNAs from a T. thermophilus tRNA 4-thiouridine synthetase (thiI) gene deletion strain. Thus, the most useful advantage of the MTSEA biotin-XX s4U detection system is that MTSEA biotin-XX reacts only with s4U and not with other sulfur-containing modified nucleosides such as s2U derivatives in tRNAs. Furthermore, the MTSEA biotin-XX s4U detection system can analyze multiple samples in a short time span. The MTSEA biotin-XX s4U detection system can also be used for the analysis of s4U formation in tRNA. Finally, we demonstrate that the MTSEA biotin-XX system can be used to visualize newly transcribed tRNAs in S. cerevisiae cells.


Asunto(s)
ARN , Tiouridina , ARN/metabolismo , Saccharomyces cerevisiae/genética , Biotina/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(25): e2201237119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35696576

RESUMEN

RNA structure plays roles in myriad cellular events including transcription, translation, and RNA processing. Genome-wide analyses of RNA secondary structure in vivo by chemical probing have revealed critical structural features of mRNAs and long ncRNAs. Here, we examine the in vivo secondary structure of a small RNA class, tRNAs. Study of tRNA structure is challenging because tRNAs are heavily modified and strongly structured. We introduce "tRNA structure-seq," a new workflow that accurately determines in vivo secondary structures of tRNA. The workflow combines dimethyl sulfate (DMS) probing, ultra-processive RT, and mutational profiling (MaP), which provides mutations opposite DMS and natural modifications thereby allowing multiple modifications to be identified in a single read. We applied tRNA structure-seq to E. coli under control and stress conditions. A leading folding algorithm predicts E. coli tRNA structures with only ∼80% average accuracy from sequence alone. Strikingly, tRNA structure-seq, by providing experimental restraints, improves structure prediction under in vivo conditions to ∼95% accuracy, with more than 14 tRNAs predicted completely correctly. tRNA structure-seq also quantifies the relative levels of tRNAs and their natural modifications at single nucleotide resolution, as validated by LC-MS/MS. Our application of tRNA structure-seq yields insights into tRNA structure in living cells, revealing that it is not immutable but has dynamics, with partial unfolding of secondary and tertiary tRNA structure under heat stress that is correlated with a loss of tRNA abundance. This method is applicable to other small RNAs, including those with natural modifications and highly structured regions.


Asunto(s)
Escherichia coli , Respuesta al Choque Térmico , ARN de Transferencia , Cromatografía Liquida , Escherichia coli/genética , Estudio de Asociación del Genoma Completo , Respuesta al Choque Térmico/genética , Conformación de Ácido Nucleico , ARN de Transferencia/química , Análisis de Secuencia de ARN/métodos , Espectrometría de Masas en Tándem
6.
J Biol Chem ; 299(4): 103028, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36805339

RESUMEN

The emergence of SARS-CoV-2, which is responsible for the COVID-19 pandemic, has highlighted the need for rapid characterization of viral mechanisms associated with cellular pathogenesis. Viral UTRs represent conserved genomic elements that contribute to such mechanisms. Structural details of most CoV UTRs are not available, however. Experimental approaches are needed to allow for the facile generation of high-quality viral RNA tertiary structural models, which can facilitate comparative mechanistic efforts. By integrating experimental and computational techniques, we herein report the efficient characterization of conserved RNA structures within the 5'UTR of the HCoV-OC43 genome, a lab-tractable model coronavirus. We provide evidence that the 5'UTR folds into a structure with well-defined stem-loops (SLs) as determined by chemical probing and direct detection of hydrogen bonds by NMR. We combine experimental base-pair restraints with global structural information from SAXS to generate a 3D model that reveals that SL1-4 adopts a topologically constrained structure wherein SLs 3 and 4 coaxially stack. Coaxial stacking is mediated by short linker nucleotides and allows SLs 1 to 2 to sample different cojoint orientations by pivoting about the SL3,4 helical axis. To evaluate the functional relevance of the SL3,4 coaxial helix, we engineered luciferase reporter constructs harboring the HCoV-OC43 5'UTR with mutations designed to abrogate coaxial stacking. Our results reveal that the SL3,4 helix intrinsically represses translation efficiency since the destabilizing mutations correlate with increased luciferase expression relative to wildtype without affecting reporter mRNA levels, thus highlighting how the 5'UTR structure contributes to the viral mechanism.


Asunto(s)
Regiones no Traducidas 5' , Coronavirus Humano OC43 , ARN Viral , Coronavirus Humano OC43/genética , Luciferasas/genética , Dispersión del Ángulo Pequeño , Difracción de Rayos X , ARN Viral/genética
7.
Amino Acids ; 56(1): 14, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38340233

RESUMEN

Glycogen phosphorylase (GP) is biologically active as a dimer of identical subunits, each activated by phosphorylation of the serine-14 residue. GP exists in three interconvertible forms, namely GPa (di-phosphorylated form), GPab (mono-phosphorylated form), and GPb (non-phosphorylated form); however, information on GPab remains scarce. Given the prevailing view that the two GP subunits collaboratively determine their catalytic characteristics, it is essential to conduct GPab characterization to gain a comprehensive understanding of glycogenolysis regulation. Thus, in the present study, we prepared rabbit muscle GPab from GPb, using phosphorylase kinase as the catalyst, and identified it using a nonradioactive phosphate-affinity gel electrophoresis method. Compared with the half-half GPa/GPb mixture, the as-prepared GPab showed a unique AMP-binding affinity. To further investigate the intersubunit communication in GP, its catalytic site was probed using pyridylaminated-maltohexaose (a maltooligosaccharide-based substrate comprising the essential dextrin structure for GP; abbreviated as PA-0) and a series of specifically modified PA-0 derivatives (substrate analogs lacking part of the essential dextrin structure). By comparing the initial reaction rates toward the PA-0 derivative (Vderivative) and PA-0 (VPA-0), we demonstrated that the Vderivative/VPA-0 ratio for GPab was significantly different from that for the half-half GPa/GPb mixture. This result indicates that the interaction between the two GP subunits significantly influences substrate recognition at the catalytic sites, thereby providing GPab its unique substrate recognition profile.


Asunto(s)
Dextrinas , Glucógeno Fosforilasa , Animales , Conejos , Dominio Catalítico , Glucógeno Fosforilasa/metabolismo , Músculos/metabolismo , Comunicación
8.
RNA ; 27(6): 653-664, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33811147

RESUMEN

Structured RNA elements are common in the genomes of RNA viruses, often playing critical roles during viral infection. Some viral RNA elements use forms of tRNA mimicry, but the diverse ways this mimicry can be achieved are poorly understood. Histidine-accepting tRNA-like structures (TLSHis) are examples found at the 3' termini of some positive-sense single-stranded RNA (+ssRNA) viruses where they interact with several host proteins, induce histidylation of the RNA genome, and facilitate processes important for infection, to include genome replication. As only five TLSHis examples had been reported, we explored the possible larger phylogenetic distribution and diversity of this TLS class using bioinformatic approaches. We identified many new examples of TLSHis, yielding a rigorous consensus sequence and secondary structure model that we validated by chemical probing of representative TLSHis RNAs. We confirmed new examples as authentic TLSHis by demonstrating their ability to be histidylated in vitro, then used mutational analyses to imply a tertiary interaction that is likely analogous to the D- and T-loop interaction found in canonical tRNAs. These results expand our understanding of how diverse RNA sequences achieve tRNA-like structure and function in the context of viral RNA genomes and lay the groundwork for high-resolution structural studies of tRNA mimicry by histidine-accepting TLSs.


Asunto(s)
Virus ARN Monocatenarios Positivos/química , ARN de Transferencia de Histidina/química , Aminoacilación , Conformación de Ácido Nucleico , Filogenia , Virus ARN Monocatenarios Positivos/clasificación , Virus ARN Monocatenarios Positivos/genética , Virus ARN Monocatenarios Positivos/metabolismo , ARN de Transferencia de Histidina/genética , ARN de Transferencia de Histidina/metabolismo , Saccharomyces cerevisiae
9.
Crit Rev Biochem Mol Biol ; 55(6): 662-690, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33043695

RESUMEN

Long non-coding RNAs (lncRNAs) are recently-discovered transcripts that regulate vital cellular processes and are crucially connected to diseases. Despite their unprecedented molecular complexity, it is emerging that lncRNAs possess distinct structural motifs. Remarkably, the 3D shape and topology of full-length, native lncRNAs have been visualized for the first time in the last year. These studies reveal that lncRNA structures dictate lncRNA functions. Here, we review experimentally determined lncRNA structures and emphasize that lncRNA structural characterization requires synergistic integration of computational, biochemical and biophysical approaches. Based on these emerging paradigms, we discuss how to overcome the challenges posed by the complex molecular architecture of lncRNAs, with the goal of obtaining a detailed understanding of lncRNA functions and molecular mechanisms in the future.


Asunto(s)
ARN Largo no Codificante/metabolismo , Evolución Molecular , Unión Proteica , ARN/química , ARN/metabolismo , ARN Largo no Codificante/química
10.
RNA ; 26(4): 512-528, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31980578

RESUMEN

Programmed -1 ribosomal frameshifts (-1 PRFs) are commonly used by viruses to regulate their enzymatic and structural protein levels. Human T-cell leukemia virus type 1 (HTLV-1) is a carcinogenic retrovirus that uses two independent -1 PRFs to express viral enzymes critical to establishing new HTLV-1 infections. How the cis-acting RNA elements in this viral transcript function to induce frameshifting is unknown. The objective of this work was to conclusively define the 3' boundary of and the RNA elements within the HTLV-1 pro-pol frameshift site. We hypothesized that the frameshift site structure was a pseudoknot and that its 3' boundary would be defined by the pseudoknot's 3' end. To test these hypotheses, the in vitro frameshift efficiencies of three HTLV-1 pro-pol frameshift sites with different 3' boundaries were quantified. The results indicated that nucleotides included in the longest construct were essential to highly efficient frameshift stimulation. Interestingly, only this construct could form the putative frameshift site pseudoknot. Next, the secondary structure of this frameshift site was determined. The dominant structure was an H-type pseudoknot which, together with the slippery sequence, stimulated frameshifting to 19.4(±0.3)%. The pseudoknot's critical role in frameshift stimulation was directly revealed by examining the impact of structural changes on HTLV-1 pro-pol -1 PRF. As predicted, mutations that occluded pseudoknot formation drastically reduced the frameshift efficiency. These results are significant because they demonstrate that a pseudoknot is important to HTLV-1 pro-pol -1 PRF and define the frameshift site's 3' boundary.


Asunto(s)
Sistema de Lectura Ribosómico , Virus Linfotrópico T Tipo 1 Humano/genética , ARN Mensajero/genética , Regulación Viral de la Expresión Génica , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Motivos de Nucleótidos , ARN Mensajero/química , Ribosomas/metabolismo
11.
J Struct Biol ; 213(2): 107728, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33753203

RESUMEN

HOTAIR is a large, multi-exon spliced non-coding RNA proposed to function as a molecular scaffold and competes with chromatin to bind to histone modification enzymes. Previous sequence analysis and biochemical experiments identified potential conserved regions and characterized the full length HOTAIR secondary structure. Here, we examine the thermodynamic folding properties and structural propensity of the individual exonic regions of HOTAIR using an array of biophysical methods and NMR spectroscopy. We demonstrate that different exons of HOTAIR contain variable degrees of heterogeneity, and identify one exonic region, exon 4, that adopts a stable and compact fold under low magnesium concentrations. Close agreement of NMR spectroscopy and chemical probing unambiguously confirm conserved base pair interactions within the structural element, termed helix 10 of exon 4, located within domain I of human HOTAIR. This combined exon-biased and integrated biophysical approach introduces a new strategy to examine conformational heterogeneity in lncRNAs and emphasizes NMR as a key method to validate base pair interactions and corroborate large RNA secondary structures.


Asunto(s)
Exones , ARN Largo no Codificante/química , Humanos , Espectroscopía de Resonancia Magnética , Conformación de Ácido Nucleico , Pliegue del ARN , ARN Largo no Codificante/genética , Ultracentrifugación
12.
RNA ; 25(1): 135-146, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30389828

RESUMEN

Deciphering the conformations of RNAs in their cellular environment allows identification of RNA elements with potentially functional roles within biological contexts. Insight into the conformation of RNA in cells has been achieved using chemical probes that were developed to react specifically with flexible RNA nucleotides, or the Watson-Crick face of single-stranded nucleotides. The most widely used probes are either selective SHAPE (2'-hydroxyl acylation and primer extension) reagents that probe nucleotide flexibility, or dimethyl sulfate (DMS), which probes the base-pairing at adenine and cytosine but is unable to interrogate guanine or uracil. The constitutively charged carbodiimide N-cyclohexyl-N'-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate (CMC) is widely used for probing G and U nucleotides, but has not been established for probing RNA in cells. Here, we report the use of a smaller and conditionally charged reagent, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), as a chemical probe of RNA conformation, and the first reagent validated for structure probing of unpaired G and U nucleotides in intact cells. We showed that EDC demonstrates similar reactivity to CMC when probing transcripts in vitro. We found that EDC specifically reacted with accessible nucleotides in the 7SK noncoding RNA in intact cells. We probed structured regions within the Xist lncRNA with EDC and integrated these data with DMS probing data. Together, EDC and DMS allowed us to refine predicted structure models for the 3' extension of repeat C within Xist. These results highlight how complementing DMS probing experiments with EDC allows the analysis of Watson-Crick base-pairing at all four nucleotides of RNAs in their cellular context.


Asunto(s)
Carbodiimidas , Sondas Moleculares , ARN/química , Animales , Emparejamiento Base , Secuencia de Bases , Células Cultivadas , Indicadores y Reactivos , Ratones , Técnicas de Sonda Molecular , Estructura Molecular , Conformación de Ácido Nucleico , ARN/genética , ARN Largo no Codificante/química , ARN Largo no Codificante/genética , Ésteres del Ácido Sulfúrico
13.
Methods ; 183: 68-75, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32251733

RESUMEN

RNA structure is critically important to RNA viruses in every part of the replication cycle. RNA structure is also utilized by DNA viruses in order to regulate gene expression and interact with host factors. Advances in next-generation sequencing have greatly enhanced the utility of chemical probing in order to analyze RNA structure. This review will cover some recent viral RNA structural studies using chemical probing and next-generation sequencing as well as the advantages of dimethyl sulfate (DMS)-mutational profiling and sequencing (MaPseq). DMS-MaPseq is a robust assay that can easily modify RNA in vitro, in cell and in virion. A detailed protocol for whole-genome DMS-MaPseq from cells transfected with HIV-1 and the structure of TAR as determined by DMS-MaPseq is presented. DMS-MaPseq has the ability to answer a variety of integral questions about viral RNA, including how they change in different environments and when interacting with different host factors.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Virus ARN/genética , ARN Viral/genética , Análisis de Secuencia de ARN/métodos , Genoma Viral , Mutágenos/química , Mutación/efectos de los fármacos , Conformación de Ácido Nucleico/efectos de los fármacos , ARN Viral/química , ARN Viral/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Ésteres del Ácido Sulfúrico/química
14.
RNA ; 24(6): 769-777, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29487104

RESUMEN

Prp8 is an essential protein that regulates spliceosome assembly and conformation during pre-mRNA splicing. Recent cryo-EM structures of the spliceosome model Prp8 as a scaffold for the spliceosome's catalytic U snRNA components. Using a new amino acid probing strategy, we identified a dynamic region in human Prp8 that is positioned to stabilize the pre-mRNA in the spliceosome active site through interactions with U5 snRNA. Mutagenesis of the identified Prp8 residues in yeast indicates a role in 5' splice site recognition. Genetic interactions with spliceosome proteins Isy1, which buttresses the intron branch point, and Snu114, a regulatory GTPase that directly contacts Prp8, further corroborate a role for the same Prp8 residues in substrate positioning and activation. Together the data suggest that adjustments in interactions between Prp8 and U5 snRNA help establish proper positioning of the pre-mRNA into the active site to enhance 5' splice site fidelity.


Asunto(s)
Precursores del ARN/genética , Sitios de Empalme de ARN , ARN Nuclear Pequeño/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Saccharomyces cerevisiae/genética , Dominio Catalítico , Humanos , Proteínas de Unión al ARN/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U5/genética , Saccharomyces cerevisiae/metabolismo , Empalmosomas
15.
RNA ; 24(12): 1615-1624, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30143552

RESUMEN

The revolution in sequencing technology demands new tools to interpret the genetic code. As in vivo transcriptome-wide chemical probing techniques advance, new challenges emerge in the RNA folding problem. The emphasis on one sequence folding into a single minimum free energy structure is fading as a new focus develops on generating RNA structural ensembles and identifying functional structural features in ensembles. This review describes an efficient combinatorially complete method and three free energy minimization approaches to predicting RNA structures with more than one functional fold, as well as two methods for analysis of a thermodynamics-based Boltzmann ensemble of structures. The review then highlights two examples of viral RNA 3'-UTR regions that fold into more than one conformation and have been characterized by single molecule fluorescence energy resonance transfer or NMR spectroscopy. These examples highlight the different approaches and challenges in predicting structure and function from sequence for RNA with multiple biological roles and folds. More well-defined examples and new metrics for measuring differences in RNA structures will guide future improvements in prediction of RNA structure and function from sequence.


Asunto(s)
Pliegue del ARN/genética , ARN Viral/química , ARN/química , Termodinámica , Algoritmos , Biología Computacional , Conformación de Ácido Nucleico , ARN/genética , ARN Viral/genética , Programas Informáticos
16.
RNA ; 24(2): 143-148, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29114018

RESUMEN

Mutational profiling (MaP) enables detection of sites of chemical modification in RNA as sequence changes during reverse transcription (RT), subsequently read out by massively parallel sequencing. We introduce ShapeMapper 2, which integrates careful handling of all classes of adduct-induced sequence changes, sequence variant correction, basecall quality filters, and quality-control warnings to now identify RNA adduct sites as accurately as achieved by careful manual analysis of electrophoresis data, the prior highest-accuracy standard. MaP and ShapeMapper 2 provide a robust, experimentally concise, and accurate approach for reading out nucleic acid chemical probing experiments.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , ARN/química , Análisis de Secuencia de ARN/métodos , Emparejamiento Base , Programas Informáticos
17.
Methods ; 162-163: 108-127, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31145972

RESUMEN

Determination of the tridimensional structure of ribonucleic acid molecules is fundamental for understanding their function in the cell. A common method to investigate RNA structures of large molecules is the use of chemical probes such as SHAPE (2'-hydroxyl acylation analyzed by primer extension) reagents, DMS (dimethyl sulfate) and CMCT (1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfate), the reaction of which is dependent on the local structural properties of each nucleotide. In order to understand the interplay between local flexibility, sugar pucker, canonical pairing and chemical reactivity of the probes, we performed all-atom molecular dynamics simulations on a set of RNA molecules for which both tridimensional structure and chemical probing data are available and we analyzed the correlations between geometrical parameters and the chemical reactivity. Our study confirms that SHAPE reactivity is guided by the local flexibility of the different chemical moieties but suggests that a combination of multiple parameters is needed to better understand the implications of the reactivity at the molecular level. This is also the case for DMS and CMCT for which the reactivity appears to be more complex than commonly accepted.


Asunto(s)
Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Nucleótidos/química , ARN/química , Acilación , CME-Carbodiimida/análogos & derivados , CME-Carbodiimida/química , Enlace de Hidrógeno , Radical Hidroxilo/química , Indicadores y Reactivos/química , ARN/genética , ARN/metabolismo , Ésteres del Ácido Sulfúrico/química
18.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340379

RESUMEN

The synthesis of ribosomes is one of the central and most resource demanding processes in each living cell. As ribosome biogenesis is tightly linked with the regulation of the cell cycle, perturbation of ribosome formation can trigger severe diseases, including cancer. Eukaryotic ribosome biogenesis starts in the nucleolus with pre-rRNA transcription and the initial assembly steps, continues in the nucleoplasm and is finished in the cytoplasm. From start to end, this process is highly dynamic and finished within few minutes. Despite the tremendous progress made during the last decade, the coordination of the individual maturation steps is hard to unravel by a conventional methodology. In recent years small molecular compounds were identified that specifically block either rDNA transcription or distinct steps within the maturation pathway. As these inhibitors diffuse into the cell rapidly and block their target proteins within seconds, they represent excellent tools to investigate ribosome biogenesis. Here we review how the inhibitors affect ribosome biogenesis and discuss how these effects can be interpreted by taking the complex self-regulatory mechanisms of the pathway into account. With this we want to highlight the potential of low molecular weight inhibitors to approach the dynamic nature of the ribosome biogenesis pathway.


Asunto(s)
Regulación de la Expresión Génica , Proteínas Ribosómicas/biosíntesis , Ribosomas/metabolismo , Animales , Descubrimiento de Drogas , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Sondas Moleculares , Unión Proteica , Biosíntesis de Proteínas , ARN Ribosómico/genética , Ribosomas/química
19.
RNA ; 23(1): 6-13, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27803152

RESUMEN

Many RNA molecules fold into complex secondary and tertiary structures that play critical roles in biological function. Among the best-established methods for examining RNA structure are chemical probing experiments, which can report on local nucleotide structure in a concise and extensible manner. While probing data are highly useful for inferring overall RNA secondary structure, these data do not directly measure through-space base-pairing interactions. We recently introduced an approach for single-molecule correlated chemical probing with dimethyl sulfate (DMS) that measures RNA interaction groups by mutational profiling (RING-MaP). RING-MaP experiments reveal diverse through-space interactions corresponding to both secondary and tertiary structure. Here we develop a framework for using RING-MaP data to directly and robustly identify canonical base pairs in RNA. When applied to three representative RNAs, this framework identified 20%-50% of accepted base pairs with a <10% false discovery rate, allowing detection of 88% of duplexes containing four or more base pairs, including pseudoknotted pairs. We further show that base pairs determined from RING-MaP analysis significantly improve secondary structure modeling. RING-MaP-based correlated chemical probing represents a direct, experimentally concise, and accurate approach for detection of individual base pairs and helices and should greatly facilitate structure modeling for complex RNAs.


Asunto(s)
Nucleótidos/genética , ARN/química , Algoritmos , Emparejamiento Base , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , ARN/genética , Programas Informáticos
20.
RNA Biol ; 16(10): 1346-1354, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31213125

RESUMEN

Structural models of large and dynamic molecular complexes are appearing in increasing numbers, in large part because of recent technical advances in cryo-electron microscopy. However, the inherent complexity of such biological assemblies comprising dozens of moving parts often limits the resolution of structural models and leaves the puzzle as to how each functional configuration transitions to the next. Orthogonal biochemical information is crucial to understanding the molecular interactions that drive those rearrangements. We present a two-step method for chemical probing detected by tandem mass-spectrometry to globally assess the reactivity of lysine residues within purified macromolecular complexes. Because lysine side chains often balance the negative charge of RNA in ribonucleoprotein complexes, the method is especially useful for detecting changes in protein-RNA interactions. By probing the E. coli 30S ribosome subunit, we established that the reactivity pattern of lysine residues quantitatively reflects structure models derived from X-ray crystallography. We also used the strategy to assess differences in three conformations of purified human spliceosomes in the context of recent cryo-electron microscopy models. Our results demonstrate that the probing method yields powerful biochemical information that helps contextualize architectural rearrangements of intermediate resolution structures of macromolecular complexes, often solved in multiple conformations.


Asunto(s)
Lisina/química , Sustancias Macromoleculares/química , Modelos Moleculares , Conformación Molecular , Acetilación , Cristalografía por Rayos X , Humanos , Péptidos/química , ARN/química , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Empalmosomas/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA