RESUMEN
Bleach (HOCl) is a powerful oxidant that kills bacteria in part by causing protein aggregation. It inactivates ATP-dependent chaperones, rendering cellular proteins mostly dependent on holdases. Here we identified Escherichia coli CnoX (YbbN) as a folding factor that, when activated by bleach via chlorination, functions as an efficient holdase, protecting the substrates of the major folding systems GroEL/ES and DnaK/J/GrpE. Remarkably, CnoX uniquely combines this function with the ability to prevent the irreversible oxidation of its substrates. This dual activity makes CnoX the founding member of a family of proteins, the "chaperedoxins." Because CnoX displays a thioredoxin fold and a tetratricopeptide (TPR) domain, two structural motifs conserved in all organisms, this investigation sets the stage for the discovery of additional chaperedoxins in bacteria and eukaryotes that could cooperate with proteins from both the Hsp60 and Hsp70 families.
Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Glutatión/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Repeticiones de Tetratricopéptidos , Tiorredoxinas/metabolismo , Secuencia de Aminoácidos , Blanqueadores/farmacología , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Glutatión/química , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Halogenación , Chaperonas Moleculares/química , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Homología de Secuencia , Tiorredoxinas/químicaRESUMEN
Chlorination is a potent disinfectant against various microorganisms, including bacteria and viruses, by inducing protein modifications and functional changes. Chlorine, in the form of sodium hypochlorite, stands out as the predominant sanitizer choice due to its cost-effectiveness and powerful antimicrobial properties. Upon exposure to chlorination, proteins undergo modifications, with amino acids experiencing alterations through the attachment of chloride or oxygen atoms. These modifications lead to shifts in protein function and the modulation of downstream signaling pathways, ultimately resulting in a bactericidal effect. However, certain survival proteins, such as chaperones or transcription factors, aid organisms in overcoming harsh chlorination conditions. The expression of YabJ, a highly conserved protein from Staphylococcus aureus, is regulated by a stress-activated sigma factor called sigma B (σB). This research revealed that S. aureus YabJ maintains its structural integrity even under intense chlorination conditions and harbors sodium hypochlorite molecules within its surface pocket. Notably, the pocket of S. aureus YabJ is primarily composed of amino acids less susceptible to chlorination-induced damage, rendering it resistant to such effects. This study elucidates how S. aureus YabJ evades the detrimental effects of chlorination and highlights its role in sequestering sodium hypochlorite within its structure. Consequently, this process enhances resilience and facilitates adaptation to challenging environmental conditions.
Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Cloruros/metabolismo , Hipoclorito de Sodio/farmacología , Hipoclorito de Sodio/metabolismo , Proteínas Bacterianas/metabolismo , Aminoácidos/metabolismoRESUMEN
Halogenated methane serves as a universal platform molecule for building high-value chemicals. Utilizing sodium chloride solution for photocatalytic methane chlorination presents an environmentally friendly method for methane conversion. However, competing reactions in gas-solid-liquid systems leads to low efficiency and selectivity in photocatalytic methane chlorination. Here, an in situ method is employed to fabricate a hydrophobic layer of TaOx species on the surface of NaTaO3. Through in-situ XPS and XANES spectra analysis, it is determined that TaOx is a coordination unsaturated species. The TaOx species transforms the surface properties from the inherent hydrophilicity of NaTaO3 to the hydrophobicity of TaOx/NaTaO3, which enhances the accessibility of CH4 for adsorption and activation, and thus promotes the methane chlorination reaction within the gas-liquid-solid three-phase system. The optimized TaOx/NaTaO3 photocatalyst has a good durability for multiple cycles of methane chlorination reactions, yielding CH3Cl at a rate of 233 µmol g-1 h-1 with a selectivity of 83%. In contrast, pure NaTaO3 exhibits almost no activity toward CH3Cl formation, instead catalyzing the over-oxidation of CH4 into CO2. Notably, the activity of the optimized TaOx/NaTaO3 photocatalyst surpasses that of reported noble metal photocatalysts. This research offers an effective strategy for enhancing the selectivity of photocatalytic methane chlorination using inorganic chlorine ions.
RESUMEN
In this study, thiazole derivatives containing sulphonamide, amide, and phenyl amino groups were synthesized to protect the free amino groups of 5-methyl-4-phenyl-2-aminothiazole and 4-phenyl-2-aminothiazole. Halogenated reactions of N-protected thiazole derivatives have been investigated. LCMS, FT-IR, 1H NMR, and 13C NMR spectroscopy techniques were used to elucidate the structures of the synthesized compounds. Inhibition effects of the N-protected thiazole derivatives against human carbonic anhydrase I, II (hCA I, hCA II), and acetylcholinesterase (AChE) were investigated. The best results among the synthesized N-protected thiazole derivatives showed Ki values in the range of 46.85-587.53 nM against hCA I, 35.01-578.06 nM against hCA II, and in the range of 19.58-226.18 nM against AChE. Furthermore, in silico studies with the target enzyme of the thiazole derivatives (9 and 11), which showed the best results experimentally, have examined the binding interactions of the related compounds at the enzyme active site.
RESUMEN
Investigating the fate of persistent organic pollutants in water distribution systems (WDSs) is of great significance for preventing human health risks. The role of iron corrosion scales in the migration and transformation of organics in such systems remains unclear. Herein, we determined that hydroxyl (â¢OH), chlorine, and chlorine oxide radicals are generated by Fenton-like reactions due to the coexistence of oxygen vacancy-related Fe(II) on goethite (a major constituent of iron corrosion scales) and hypochlorous acid (HClO, the main reactive chlorine species of residual chlorine at pH â¼ 7.0). â¢OH contributed mostly to the decomposition of atrazine (ATZ, model compound) more than other radicals, producing a series of relatively low-toxicity small molecular intermediates. A simplified kinetic model consisting of mass transfer of ATZ and HClO, â¢OH generation, and ATZ oxidation by â¢OH on the goethite surface was developed to simulate iron corrosion scale-triggered residual chlorine oxidation of organic compounds in a WDS. The model was validated by comparing the fitting results to the experimental data. Moreover, the model was comprehensively applicable to cases in which various inorganic ions (Ca2+, Na+, HCO3-, and SO42-) and natural organic matter were present. With further optimization, the model may be employed to predict the migration and accumulation of persistent organic pollutants under real environmental conditions in the WDSs.
Asunto(s)
Contaminantes Químicos del Agua , Cinética , Radicales Libres/química , Contaminantes Químicos del Agua/química , Oxidación-Reducción , Hierro/química , Compuestos de Hierro/química , Minerales/químicaRESUMEN
Aniline-related structures are common in anthropogenic chemicals, such as pharmaceuticals and pesticides. Compared with the widely studied phenolic compounds, anilines have received far less assessment of their disinfection byproduct (DBP) formation potential, even though anilines and phenols likely exhibit similar reactivities on their respective aromatic rings. In this study, a suite of 19 aniline compounds with varying N- and ring-substitutions were evaluated for their formation potentials of haloacetonitriles and trihalomethanes under free chlorination and free bromination conditions. Eight of the aniline compounds formed dichloroacetonitrile at yields above 0.50%; the highest yields were observed for 4-nitroaniline, 3-chloroaniline, and 4-(methylsulfonyl)aniline (1.6-2.3%). Free bromination generally resulted in greater haloacetonitrile yields with the highest yield observed for 2-ethylaniline (6.5%). The trihalomethane yields of anilines correlated with their haloacetonitrile yields. Product analysis of aniline chlorination by liquid chromatography-high-resolution mass spectrometry revealed several large-molecule DBPs, including chloroanilines, (chloro)hydroxyanilines, (chloro)benzoquinone imines, and ring-cleavage products. The product time profiles suggested that the reaction pathways include initial ring chlorination and hydroxylation, followed by the formation of benzoquinone imines that eventually led to ring cleavage. This work revealed the potential of aniline-related moieties in micropollutants as potent precursors to haloacetonitriles and other emerging large-molecule DBPs with the expected toxicity.
Asunto(s)
Acetonitrilos , Compuestos de Anilina , Desinfección , Halogenación , Compuestos de Anilina/química , Acetonitrilos/química , Contaminantes Químicos del Agua/químicaRESUMEN
Textile printing and dyeing wastewater is a substantial source of highly toxic halogenated pollutants because of the chlorination decolorization. However, information on the occurrence and fate of the highly toxic halogenated byproducts, which are produced by chlorination decolorization of the textile printing and dyeing wastewater, is very limited. In this study, the occurrence of six categories of halogenated byproducts (haloacetic acids (HAAs), haloacetonitriles (HANs), N-nitrosamines (NAs), trihalomethanes, halogenated ketones, and halonitromethanes) was investigated along the full-scale treatment processes of textile printing and dyeing wastewater treatment plants. Furthermore, the ecological risk of the halogenated byproducts was evaluated. The results showed that the total concentration of halogenated byproducts increased significantly after chlorination. Large amounts of HAAs (average 122.1 µg/L), HANs (average 80.9 µg/L), THMs (average 48.3 µg/L), and NAs (average 2314.3 ng/L) were found in the chlorinated textile wastewater, and the results showed that the generations of HANs and NAs were positively correlated with the BIX and ß/α index, indicating that the HANs and NAs might form from the microbial metabolites. In addition, HAAs and HANs exhibited high ecological risk quotients (>1), suggesting their high potential ecological risk. The results also demonstrated that most halogenated byproducts could be effectively removed by reverse osmosis treatment processes except NAs, with a lower removal rate of 18%. This study is believed to provide an important theoretical basis for controlling and reducing the ecological risks of halogenated byproducts in textile printing and dyeing wastewater effluents.
Asunto(s)
Halogenación , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Medición de Riesgo , Industria Textil , Impresión , Colorantes/química , TextilesRESUMEN
With increasing water scarcity, many utilities are considering the potable reuse of wastewater as a source of drinking water. However, not all chemicals are removed in conventional wastewater treatment, and disinfection byproducts (DBPs) can form from these contaminants when disinfectants are applied during or after reuse treatment, especially if applied upstream of advanced treatment processes to control biofouling. We investigated the chlorination of seven priority emerging contaminants (17ß-estradiol, estrone, 17α-ethinylestradiol, bisphenol A (BPA), diclofenac, p-nonylphenol, and triclosan) in ultrapure water, and we also investigated the impact of chlorination on real samples from different treatment stages of an advanced reuse plant to evaluate the role of chlorination on the associated cytotoxicity and estrogenicity. Many DBPs were tentatively identified via liquid chromatography (LC)- and gas chromatography (GC)-high resolution mass spectrometry, including 28 not previously reported. These encompassed chlorinated, brominated, and oxidized analogs of the parent compounds as well as smaller halogenated molecules. Chlorinated BPA was the least cytotoxic of the DBPs formed but was highly estrogenic, whereas chlorinated hormones were highly cytotoxic. Estrogenicity decreased by â¼4-6 orders of magnitude for 17ß-estradiol and estrone following chlorination but increased 2 orders of magnitude for diclofenac. Estrogenicity of chlorinated BPA and p-nonylphenol were â¼50% of the natural/synthetic hormones. Potential seasonal differences in estrogen activity of unreacted vs reacted advanced wastewater treatment field samples were observed.
Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Halogenación , Aguas Residuales , Estrona , Diclofenaco/análisis , Contaminantes Químicos del Agua/análisis , Desinfectantes/análisis , Desinfectantes/química , Estrógenos , Agua Potable/análisis , Agua Potable/química , Estradiol , Purificación del Agua/métodosRESUMEN
Polyhalogenated dibenzo-p-dioxins/dibenzofurans (PXDD/Fs) are commonly released into the environment as byproducts of combustion processes, accompanied by flue gases. Chlorinated (Cl) and brominated (Br) precursors play crucial roles in forming PXDD/Fs. However, the specific contributions of Cl-precursors and Br-precursors to PXDD/Fs formation have not been fully elucidated. Herein, we demonstrate that the formation of Br-precursors can increase the fraction of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) congeners substituted at specific positions, such as 1,2,3,4,6,7,8-HpCDD, OCDD, 2,3,4,7,8-PeCDF, and 2,3,4,6,7,8-HxCDF. This is attributed to the electrophilic chlorination reaction of the Br-precursors, which includes the Br-to-Cl transformation pathway, following the principle of regioselectivity. The observed formation of polybrominated/chlorinated dibenzo-p-dioxins/benzofurans (PBCDD/Fs) from 1,2-dibromobenzene (1,2-DiBBz) as a Br precursor provides direct evidence supporting the proposed Br-to-Cl transformation. Quantum chemical calculations are employed to discuss the principle of regioselectivity in the Br-to-Cl transformation, clarifying the priority of the position for electrophilic chlorination. Additionally, the concentration of PCDD/Fs formed from 1,2-DiBBz is 1.6 µg/kg, comparable to that of polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) (2.4 µg/kg), highlighting the potential of brominated organic pollutants as precursors for PCDD/Fs formation. This study provides three potential pathways for PCDD/Fs formation from Br-precursors, establishing a theoretical foundation for elucidating the formation mechanism of PXDD/Fs in the coexistence of Cl and Br.
RESUMEN
Substantial natural chlorination processes are a growing concern in diverse terrestrial ecosystems, occurring through abiotic redox reactions or biological enzymatic reactions. Among these, exoenzymatically mediated chlorination is suggested to be an important pathway for producing organochlorines and converting chloride ions (Cl-) to reactive chlorine species (RCS) in the presence of reactive oxygen species like hydrogen peroxide (H2O2). However, the role of natural enzymatic chlorination in antibacterial activity occurring in soil microenvironments remains unexplored. Here, we conceptualized that heme-containing chloroperoxidase (CPO)-catalyzed chlorination functions as a naturally occurring disinfection process in soils. Combining antimicrobial experiments and microfluidic chip-based fluorescence imaging, we showed that the enzymatic chlorination process exhibited significantly enhanced antibacterial activity against Escherichia coli and Bacillus subtilis compared to H2O2. This enhancement was primarily attributed to in situ-formed RCS. Based on semiquantitative imaging of RCS distribution using a fluorescence probe, the effective distance of this antibacterial effect was estimated to be approximately 2 mm. Ultrahigh-resolution mass spectrometry analysis showed over 97% similarity between chlorine-containing formulas from CPO-catalyzed chlorination and abiotic chlorination (by sodium hypochlorite) of model dissolved organic matter, indicating a natural source of disinfection byproduct analogues. Our findings unveil a novel natural disinfection process in soils mediated by indigenous enzymes, which effectively links chlorine-carbon interactions and reactive species dynamics.
Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Cloro/química , Cloro/metabolismo , Halogenación , Peróxido de Hidrógeno , Suelo , Ecosistema , Antibacterianos , CatálisisRESUMEN
Antibiotics and available chlorine coexist in multiple aquatic environments, and thus antibiotics and their chlorinated disinfection by-products (Cl-DBPs) have been a great concern for the nature and human health. Herein, the degradation intermediates and transformation pathways of sulfamethoxazole (SMX) Cl-DBPs in constructed wetlands (CWs) were investigated. A total of five SMX Cl-DBPs and their twenty degradation products in CWs was identified in this study. SMX and its Cl-DBPs influenced the biodegradation rather than the adsorption process in CWs. S1 atom on sulfonyl group of SMX had the strongest nucleophilicity, and was most vulnerable for nucleophilic attack. N5 and N7 on amino groups, and C17 on the methyl group had great electronegativity, and were susceptible to electrophilic reactions. S1-N5 and S1-C8 bonds of SMX are the most prone to cleavage, followed by C11-N5, C16-C17, and C12-N7. The chlorination of SMX mainly occurred at S1, N5, and N7 sites, and went through S-C cleavage, S-N hydrolysis, and desulfonation. The biodegradation of SMX Cl-DBPs in CWs mainly occurred at S1, N5, N7, C8, and C17 sites, and went through processes including oxidation of methyl, hydroxyl and amino groups, desulfonation, decarboxylation, azo bond cleavage, benzene ring cleavage, ß-oxidation of fatty acids under the action of coenzymes. Over half of the SMX Cl-DBPs had greater bioaccumulation potential than their parent SMX, but the environmental risk of SMX Cl-DBPs was effectively reduced through the degradation by CWs.
Asunto(s)
Desinfección , Halogenación , Sulfametoxazol , Contaminantes Químicos del Agua , Humedales , Sulfametoxazol/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Desinfectantes/química , Biodegradación Ambiental , Purificación del Agua/métodosRESUMEN
Developing new fungicides to compensate for the deficiencies of existing fungicides resistance in phytopathogenic fungi is a research hotspot in the field of pesticides. Aiming to discover novel template small molecules with excellent antifungal activity, thirty-eight arylthiazolamine derivatives were synthesized through bromination, cyclization, halogenation, and acylation reactions. The synthesized compounds were screened for antifungal activity against ten typical fungal pathogens, and some halogenated arylthiazolamines and amides exhibited excellent broad-spectrum antifungal activity, especially compounds 4m (3.96-47.76 µg/mL), 5k (0.10-7.70 µg/mL) and 5n (2.08-11.21 µg/mL). Among them, compound 5k provided comparable protection and curative effects to chloroticonil and boscalid against B. dothidea and V. mali infection in apple and apple tree branches, respectively, and it could exert antifungal effects by inhibiting the differentiation of mycelium spores, spore germination, and bud tube growth. This study provides high-efficiency and inexpensive candidate compounds for managing of diseases caused by plant pathogenic fungi.
RESUMEN
Household water treatment (HWT) is recommended when safe drinking water is limited. To understand determinants of HWT adoption, we conducted a cross-sectional survey with 650 households across different regions in Haiti. Data were collected on 71 demographic and psychosocial factors and 2 outcomes (self-reported and confirmed HWT use). Data were transformed into 169 possible determinants of adoption across nine categories. We assessed determinants using logistic regression and, as machine learning methods are increasingly used, random forest analyses. Overall, 376 (58%) respondents self-reported treating or purchasing water, and 123 (19%) respondents had residual chlorine in stored household water. Both logistic regression and machine learning analyses had high accuracy (area under the receiver operating characteristic curve (AUC): 0.77-0.82), and the strongest determinants in models were in the demographics and socioeconomics, risk belief, and WASH practice categories. Determinants that can be influenced inform HWT promotion in Haiti. It is recommended to increase access to HWT products, provide cash and education on water treatment to emergency-impacted populations, and focus future surveys on known determinants of adoption. We found both regression and machine learning methods need informed, thoughtful, and trained analysts to ensure meaningful results and discuss the benefits/drawbacks of analysis methods herein.
Asunto(s)
Composición Familiar , Aprendizaje Automático , Purificación del Agua , Haití , Purificación del Agua/métodos , Humanos , Modelos Logísticos , Estudios Transversales , Agua Potable , Femenino , Masculino , Adulto , Abastecimiento de Agua , Factores SocioeconómicosRESUMEN
Macrophytes are crucial in maintaining the equilibrium of aquatic ecosystems. However, the pattern of macrophyte-derived caffeic acid (CA) release under heavy metal stress is yet to be fully understood. More importantly, due to its functional groups, CA may be a precursor to the formation of disinfection by-products, posing threats to water ecology and even safety of human drinking water. This study analyzed the responses of CA released by Vallisneria natans (V. natans) and Pistia stratiotes (P. Stratiotes) when exposed to Cu2+ and Mn2+ stress. Additionally, the CA levels in two constructed wetland ponds were detected and the degradation kinetics of CA during chlorination were investigated. Results indicated that CA occurred in two constructed wetland ponds with the concentrations of 44.727⯵g/L (planted with V. natans) and 61.607⯵g/L (planted with P. Stratiotes). Notably, heavy metal stress could significantly affect CA release from V. natans and P. Stratiotes. In general, under Cu2+ stress, V. natans secreted far more CA than under Mn2+ stress, the level could reach up to 435.303⯵g/L. However, compared to V. natans, P. Stratiotes was less affected by Cu2+ and Mn2+ stress, releasing a maximum CA content of 55.582⯵g/L under 5â¯mg/L Mn2+ stress. Aquatic macrophytes secreted more CA in response to heavy metal stresses and protected macrophytes from harmful heavy metals. CA degradation followed the pseudo first-order kinetics model, and the chlorination of CA conformed to a second-order reaction. The reaction rate significantly accelerated as NaClO, pH, temperature and Br- concentration increased. A new pathway for CA degradation and a new DBP 2, 2, 3, 3-tetrachloropropanal were observed. These findings pointed at a new direction into the adverse effect of CA, potentially paving the way for new strategies to solve drinking water safety problems.
Asunto(s)
Araceae , Ácidos Cafeicos , Agua Potable , Metales Pesados , Contaminantes Químicos del Agua , Humanos , Ecosistema , Contaminantes Químicos del Agua/análisis , Halogenación , Araceae/metabolismo , Metales Pesados/análisisRESUMEN
Bromhexine and ambroxol are among the mucolytic drugs most widely used to treat acute and chronic respiratory diseases. Entering the municipal wastewater and undergoing transformations during disinfection with active chlorine, these compounds can produce nitrogen- and bromine-containing disinfection by-products (DBPs) that are dangerous for aquatic ecosystems. In the present study, primary and deep degradation products of ambroxol and bromhexine obtained in model aquatic chlorination experiments were studied via the combination of high-performance liquid and gas chromatography with high-resolution mass spectrometry. It was shown that at the initial stages, the reactions of cyclization, hydroxylation, chlorination, electrophilic ipso-substitution of bromine atoms with chlorine, and oxidative N-dealkylation occur. Along with known metabolites, a number of novel primary DBPs were tentatively identified based on their elemental compositions and tandem mass spectra. Deep degradation of bromhexine and ambroxol gives twenty-four identified volatile and semi-volatile compounds of six classes, among which trihalomethanes account for more than 50%. The specific class of bromhexine- and ambroxol-related DBPs are bromine-containing haloanilines. Seven of them, including methoxy derivatives, were first discovered in the present study. One more novel class of DBPs associated with bromhexine and ambroxol is represented by halogenated indazoles formed through dealkylation of the primary transformation products containing pyrazoline or tetrahydropyrimidine cycle in their structure.
Asunto(s)
Ambroxol , Bromhexina , Expectorantes , Halogenación , Contaminantes Químicos del Agua , Ambroxol/química , Bromhexina/química , Expectorantes/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Cloro/químicaRESUMEN
Halogenated methyl parabens are formed readily during water chlorination, with or without bromide ion presence. However, research gaps persist in in vivo toxicological assessments of vertebrates exposed to halo-MePs. To address this gap, this study evaluated acute toxicities at 24-96 h-post-fertilization in zebrafish embryos exposed to methyl paraben and its mono- or di-halogenated derivatives, using various apical endpoints. Significant enhanced toxic effects were confirmed for halo-MePs compared to MeP on embryo coagulation (3-19 fold), heartbeat rate decrement (11-80 fold), deformity rate increment (9-68 fold), and hatching failure (4-33 fold), with parentheses indicating the determined toxic potency ratios. Moreover, halo-MePs showed a significantly higher increase in biochemical levels of reactive oxygen species, catalase, superoxide dismutase, and malondialdehyde, while acetylcholinesterase activity was inhibited compared to NT and MeP. The experimental toxic potencies (log(1/EC50 or LC50)) were compared with the predicted ones (log(1/EC50 or LC50, baseline)) using the baseline toxicity Quantitative Structure-Activity Relationship previously established for zebrafish embryos. Halo-MePs were specific (or reactive) toxicants based on their toxic ratios of more than 10 for apical endpoints including heartbeat rate, deformity rate, and hatching rate, while MeP acted as a baseline toxicant. Overall, this study presents the comprehensive toxicological assessment of halo-MePs in zebrafish embryos, contributing to an essential in vivo toxicity database for halogenated phenolic contaminants in aquatic ecosystems.
RESUMEN
We report on the synthesis and characterization of Mn(III) chloride (MnIIICl3) complexes coordinated with N-oxide ylide ligands, namely trimethyl-N-oxide (Me3NO) and pyridine-N-oxide (PyNO). The compounds are reactive and, while isolable in the solid-state at room temperature, readily decompose into Mn(II). For example, "[MnIIICl3(ONMe3)n]" decomposes into the 2D polymeric network compound complex salt [MnII(µ-Cl)3MnII(µ-ONMe3)]n[MnII(µ-Cl)3]n·(Me3NO·HCl)3n (4). The reaction of MnIIICl3 with PyNO forms varied Mn(III) compounds with PyNO coordination and these react with hexamethylbenzene (HMB) to form the chlorinated organic product 1-cloromethyl-2,3,4,5,6-pentamethylbenzene (8). In contrast to N-oxide coordination to Mn(III), the reaction between [MnIIICl3(OPPh3)2] and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) resulted in electron transfer-forming d5 manganate of the [TEMPO] cation instead of TEMPO-Mn(III) adducts. The reactivity affected by N-oxide coordination is discussed through comparisons with other L-MnIIICl3 complexes within the context of reduction potential.
RESUMEN
In the face of ongoing water pollution challenges, the intricate interplay between dissolved organic matter and disinfectants like chlorine gives rise to potentially harmful disinfection byproducts (DBPs) during water treatment. The exploration of DBP formation originating from amino acids (AA) is a critical focus of global research. Aromatic DBPs, in particular, have garnered considerable attention due to their markedly higher toxicity compared to their aliphatic counterparts. This work seeks to advance the understanding of DBP formation by investigating chlorination disinfection and kinetics using tyrosine (Tyr), phenylalanine (Phe), and tryptophan (Trp) as precursors. Via rigorous experiments, a total of 15 distinct DBPs with accurate molecular structures were successfully identified. The chlorination of all three AAs yielded highly toxic chlorophenylacetonitriles (CPANs), and the disinfectant dosage and pH value of the reaction system potentially influence chlorination kinetics. Notably, Phe exhibited the highest degradation rate compared to Tyr and Trp, at both the CAA:CHOCl ratio of within 1:2 and a wide pH range (6.0 to 9.0). Additionally, a neutral pH environment triggered the maximal reaction rates of the three AAs, while an acidic condition may reduce their reactivity. Overall, this study aims to augment the DBP database and foster a deeper comprehension of the DBP formation and relevant kinetics underlying the chlorination of aromatic AAs.
Asunto(s)
Aminoácidos Aromáticos , Desinfección , Halogenación , Purificación del Agua , Cinética , Aminoácidos Aromáticos/química , Purificación del Agua/métodos , Desinfectantes/química , Contaminantes Químicos del Agua/química , Concentración de Iones de HidrógenoRESUMEN
Reverse osmosis (RO) membrane fouling and biological contamination problems faced by seawater desalination systems are microbiologically related. We used full-length 16S rRNA gene sequencing to assess the bacterial community structure and chlorine-resistant bacteria (CRB) associated with biofilm growth in different treatment processes under the winter mode of a chlorinated seawater desalination system in China. At the outset of the winter mode, certain CRB, such as Acinetobacter, Pseudomonas, and Bacillus held sway over the bacterial community structure, playing a pivotal role in biofouling. At the mode's end, Deinococcus and Paracoccus predominated, with Pseudomonas and Roseovarius following suit, while certain CRB genera still maintained their dominance. RO and chlorination are pivotal factors in shaping the bacterial community structure and diversity, and increases in total heterotrophic bacterial counts and community diversity in safety filters may adversely affect the effectiveness of subsequent RO systems. Besides, the bacterial diversity and culturable biomass in the water produced by the RO system remain high, and some conditionally pathogenic CRBs pose a certain microbial risk as a source of drinking water. Targeted removal of these CRBs will be an important area of research for advancing control over membrane clogging and ensuring water quality safety in the future.
Asunto(s)
Bacterias , Incrustaciones Biológicas , Halogenación , Plantas de Energía Nuclear , ARN Ribosómico 16S , Purificación del Agua , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Purificación del Agua/métodos , Agua de Mar/microbiología , Cloro/químicaRESUMEN
As a strong oxidizing agent, ozone is used in some water treatment facilities for disinfection, taste and odor control, and removal of organic micropollutants. Phenylalanine (Phe) was used as the target amino acid to comprehensively investigate variability of disinfection byproducts (DBPs) formation during chlorine disinfection and residual chlorine conditions subsequent to ozonation. The results showed that subsequent to ozonation, the typical regulated and unregulated DBPs formation potential (DBPsFP), including trichloromethane (TCM), dichloroacetonitrile (DCAN), chloral hydrate (CH), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), and trichloroacetamide (TCAcAm) increased substantially, by 2.4, 3.3, 5.6, 1.2, 2.5, and 6.0 times, respectively, compared with only chlorination. Ozonation also significantly increased the DBPs yield under a 2 day simulated residual chlorine condition that mimicked the water distribution system. DBPs formations followed pseudo first order kinetics. The formation rates of DBPs in the first 6 hr were higher for TCM (0.214 hr-1), DCAN (0.244 hr-1), CH (0.105 hr-1), TCAcAm (0.234 hr-1), DCAA (0.375 hr-1) and TCAA (0.190 hr-1) than thereafter. The peak DBPsFP of TCM, DCAN, CH, TCAcAm, DCAA, and TCAA were obtained when that ozonation time was set at 5-15 min. Ozonation times > 30 min increased the mineralization of Phe and decreased the formation of DBPs upon chlorination. Increasing bromine ion (Br-) concentration increased production of bromine- DBPs and decreased chlorine-DBPs formation by 59.3%-92.2% . Higher ozone dosages and slight alkaline favored to reduce DBP formation and cytotoxicity. The ozonation conditions should be optimized for all application purposes including DBPs reduction.