Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 119: 154-170, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38570101

RESUMEN

Hyperglycemia-induced pathological microglial responses and subsequent neuronal damage are notable characteristics of diabetes-associated cognitive impairment (DACI). Cholesterol accumulation in the brain is a prevalent consequence of diabetes mellitus (DM), exacerbating pathological microglial responses. Regarding disordered glucose and lipid metabolism, the Sterol Regulatory Element-Binding Protein (SREBP) cleavage-activating protein (SCAP), a cholesterol sensor, exhibits increased expression and abnormal translocation from the endoplasmic reticulum to the Golgi, amplifying the inflammatory response. Therefore, we hypothesized that overexpression of microglia-SCAP and cholesterol accumulation in DM mice could induce pathological microglial responses associated with DACI. Our type 2 DM mice model presented an abnormal increase in microglial SCAP expression. The functional loss of microglia-specific SCAP in DM mice improved cognitive impairment, neuronal synaptic plasticity deficits, and abnormal microglial responses. Mechanistically, the accumulated SCAP directly bound to and enhanced the activation of the microglial-specific inflammatory amplifier, NLRP3 inflammasome, in Golgi, thereby increasing pathological microglial responses and promoting neuronal damage. These findings indicate an important regulatory axis of microglial responses from SCAP to the NLRP3 inflammasome pathway in microglia. These underscore the crosstalk between cholesterol disorders and pathological microglial responses, offering a promising avenue for pharmaceutical interventions in DACI.


Asunto(s)
Disfunción Cognitiva , Inflamasomas , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Ratones Endogámicos C57BL , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedades Neuroinflamatorias , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Microglía/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Ratones , Inflamasomas/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Proteínas de la Membrana/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Colesterol/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Plasticidad Neuronal , Neuronas/metabolismo , Encéfalo/metabolismo
2.
FASEB J ; 36(7): e22411, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35695805

RESUMEN

NgBR is the Nogo-B receptor, encoded by NUS1 gene. As NgBR contains a C-terminal domain that is similar to cis-isoprenyltransferase (cis-IPTase), NgBR was speculated to stabilize nascent Niemann-Pick type C 2 (NPC2) to facilitate cholesterol transport out of lysosomes. Mutations in the NUS1 were known as risk factors for Parkinson's disease (PD). In our previous study, it was shown that knockdown of Drosophila NUS1 orthologous gene tango14 causes decreased climbing ability, loss of dopaminergic neurons, and decreased dopamine contents. In this study, tango14 mutant flies were generated with a mutation in the C-terminal enzyme activity region using CRISPR/Cas9. Tango14 mutant showed a reduced lifespan with locomotive defects and cholesterol accumulation in Malpighian tubules and brains, especially in dopaminergic neurons. Multilamellar bodies were found in tango14 mutants using electron microscopy. Neurodegenerative-related brain vacuolization was also detected in tango14 knockdown flies in an age-dependent manner. In addition, tango14 knockdown increased α-synuclein (α-syn) neurotoxicity in α-syn-overexpressing flies, with decreased locomotive activities, dopamine contents, and the numbers of dopaminergic neurons in aging flies. Thus, these observations suggest a role of NUS1, the ortholog of tango14, in PD-related pathogenesis.


Asunto(s)
Enfermedad de Parkinson , Animales , Colesterol , Dopamina , Neuronas Dopaminérgicas/patología , Drosophila/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , alfa-Sinucleína/genética
3.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37047399

RESUMEN

Atherosclerosis is the most common cardiovascular disease and is the number one cause of death worldwide. Today, atherosclerosis is a multifactorial chronic inflammatory disease with an autoimmune component, accompanied by the accumulation of cholesterol in the vessel wall and the formation of atherosclerotic plaques, endothelial dysfunction, and chronic inflammation. In the process of accumulation of atherogenic lipids, cells of the immune system, such as monocytes, macrophages, dendritic cells, etc., play an important role, producing and/or activating the production of various cytokines-interferons, interleukins, chemokines. In this review, we have tried to summarize the most important cytokines involved in the processes of atherogenesis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Citocinas , Aterosclerosis/etiología , Placa Aterosclerótica/complicaciones , Macrófagos , Colesterol , Inflamación
4.
Adv Exp Med Biol ; 1372: 119-143, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35503178

RESUMEN

High plasma levels of lipids and/or lipoproteins are risk factors for atherosclerosis, nonalcoholic fatty liver disease (NAFLD), obesity, and diabetes. These four conditions have also been identified as risk factors leading to the development of chronic kidney disease (CKD). Although many pathways that generate high plasma levels of these factors have been identified, most clinical and physiologic dysfunction results from aberrant assembly and secretion of lipoproteins. The results of several published studies suggest that elevated levels of low-density lipoprotein (LDL)-cholesterol are a risk factor for atherosclerosis, myocardial infarction, coronary artery calcification associated with type 2 diabetes, and NAFLD. Cholesterol metabolism has also been identified as an important pathway contributing to the development of CKD; clinical treatments designed to alter various steps of the cholesterol synthesis and metabolism pathway are currently under study. Cholesterol synthesis and catabolism contribute to a multistep process with pathways that are regulated at the cellular level in renal tissue. Cholesterol metabolism may also be regulated by the balance between the influx and efflux of cholesterol molecules that are capable of crossing the membrane of renal proximal tubular epithelial cells and podocytes. Cellular accumulation of cholesterol can result in lipotoxicity and ultimately kidney dysfunction and failure. Thus, further research focused on cholesterol metabolism pathways will be necessary to improve our understanding of the impact of cholesterol restriction, which is currently a primary intervention recommended for patients with dyslipidemia.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Insuficiencia Renal Crónica , Colesterol/metabolismo , Femenino , Humanos , Lipoproteínas/metabolismo , Masculino , Insuficiencia Renal Crónica/terapia
5.
Nano Lett ; 21(5): 2339-2346, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33472003

RESUMEN

While the neuropathological characteristics of Niemann-Pick disease type C (NPC) result in a fatal diagnosis, the development of clinically available therapeutic agent remains a challenge. Here we propose graphene quantum dots (GQDs) as a potential candidate for the impaired functions in NPC in vivo. In addition to the previous findings that GQDs exhibit negligible long-term toxicity and are capable of penetrating the blood-brain barrier, GQD treatment reduces the aggregation of cholesterol in the lysosome through expressed physical interactions. GQDs also promote autophagy and restore defective autophagic flux, which, in turn, decreases the atypical accumulation of autophagic vacuoles. More importantly, the injection of GQDs inhibits the loss of Purkinje cells in the cerebellum while also demonstrating reduced activation of microglia. The ability of GQDs to alleviate impaired functions in NPC proves the promise and potential of the use of GQDs toward resolving NPC and other related disorders.


Asunto(s)
Grafito , Enfermedad de Niemann-Pick Tipo C , Puntos Cuánticos , Autofagia , Humanos , Lisosomas , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico
6.
Molecules ; 27(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35897875

RESUMEN

Cardiovascular diseases associated with atherosclerosis are the major cause of death in developed countries. Early prevention and treatment of atherosclerosis are considered to be an important aspect of the therapy of cardiovascular disease. Preparations based on natural products affect the main pathogenetic steps of atherogenesis, and so represent a perspective for the long-term prevention of atherosclerosis development. Numerous experimental and clinical studies have demonstrated the multiple beneficial effects of licorice and its bioactive compounds-anti-inflammatory, anti-cytokine, antioxidant, anti-atherogenic, and anti-platelet action-which allow us to consider licorice as a promising atheroprotective agent. In this review, we summarized the current knowledge on the licorice anti-atherosclerotic mechanisms of action based on the results of experimental studies, including the results of the in vitro study demonstrating licorice effect on the ability of blood serum to reduce intracellular cholesterol accumulation in cultured macrophages, and presented the results of clinical studies confirming the ameliorating activity of licorice in regard to traditional cardiovascular risk factors as well as the direct anti-atherosclerotic effect of licorice.


Asunto(s)
Aterosclerosis , Glycyrrhiza , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
7.
Fish Physiol Biochem ; 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36044098

RESUMEN

Bile acids (BAs) are a class of cholesterol-derived amphipathic molecules approved as new animal feed additives. However, the functional researches mainly focused on BAs mixture, and the influence of the individual BA on fishes was still limited. In the present study, Nile tilapia were fed basal diet with three levels of sodium taurocholate at 0 mg/kg (CON), 300 mg/kg (TCAL), and 600 mg/kg (TCAH) for 8 weeks. The results indicated that addition of sodium taurocholate did not significantly influence the growth performance. Instead, TCAH group had higher cholesterol accumulation with liver fibrosis. In TCAH group, the level of nuclear factor E2-related factor 2 (nrf2) signaling-associated oxidative stress factors significantly increased in the liver. Additionally, fish in TCAH group had the highest expression level of genes encoding endoplasmic reticulum (ER) stress and inflammatory cytokines in the liver. In conclusion, 300 mg/kg of sodium taurocholate did not significantly influence the growth performance of fish, while 600 mg/kg of sodium taurocholate markedly induced cholesterol accumulation and liver injury, suggesting that the application of taurocholic acid in aquafeed should be re-evaluated.

8.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502342

RESUMEN

Our previous studies have demonstrated that specific peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists play a fundamental role in oligodendrocyte progenitor (OP) differentiation, protecting them against oxidative and inflammatory damage. The antihypertensive drug Telmisartan (TLM) was shown to act as a PPAR-γ modulator. This study investigates the TLM effect on OP differentiation and validates its capability to restore damage in a pharmacological model of Niemann-Pick type C (NPC) disease through a PPAR-γ-mediated mechanism. For the first time in purified OPs, we demonstrate that TLM-induced PPAR-γ activation downregulates the type 1 angiotensin II receptor (AT1), the level of which naturally decreases during differentiation. Like other PPAR-γ agonists, we show that TLM promotes peroxisomal proliferation and promotes OP differentiation. Furthermore, TLM can offset the OP maturation arrest induced by a lysosomal cholesterol transport inhibitor (U18666A), which reproduces an NPC1-like phenotype. In the NPC1 model, TLM also reduces cholesterol accumulation within peroxisomal and lysosomal compartments and the contacts between lysosomes and peroxisomes, revealing that TLM can regulate intracellular cholesterol transport, crucial for myelin formation. Altogether, these data indicate a new potential use of TLM in hypomyelination pathologies such as NPC1, underlining the possible repositioning of the drug already used in other pathologies.


Asunto(s)
Antihipertensivos/farmacología , Diferenciación Celular , Colesterol/metabolismo , Oligodendroglía/efectos de los fármacos , PPAR gamma/metabolismo , Sustancias Protectoras/farmacología , Telmisartán/farmacología , Animales , Oligodendroglía/metabolismo , PPAR gamma/genética , Ratas , Ratas Wistar
9.
Exp Cell Res ; 383(2): 111512, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31356817

RESUMEN

Previous studies have shown that oxysterol binding protein like 2 (OSBPL2) knockdown is closely related to cholesterol metabolism. However, whether there is a direct relation between OSBPL2 and cholesterol synthesis is unknown. This study explored the mechanism of OSBPL2 deficiency in the upregulation of squalene epoxidase (SQLE) and the subsequent accumulation of intracellular cholesterol and cholesteryl ester. Here, we constructed an OSBPL2-deleted HeLa cell line using CRISPR/Cas9 technology, screened differentially expressed genes and examined the transcriptional regulation of SQLE using a dual-luciferase reporter gene. RNA-seq analysis showed that SQLE was upregulated significantly and the dual luciferase reporter gene assay revealed that two new functional transcription factor binding sites of Sp1 transcription factor (SP1) and sterol regulatory element-binding transcription factor 2 (SREBF2) in the SQLE promoter participated in the SQLE transcription and expression. In addition, we also observed that OSBPL2 deletion inhibited the AMPK signalling pathway and that the inhibition of AMPK signalling promoted SP1 and SREBF2 entry into the nuclear to upregulate SQLE expression. Therefore, these data support that OSBPL2 deficiency upregulates SQLE expression and increases the accumulation of cholesterol and cholesteryl ester by suppressing AMPK signalling, which provides new evidence of the connection between OSBPL2 and cholesterol synthesis.


Asunto(s)
Adenilato Quinasa/metabolismo , Ésteres del Colesterol/biosíntesis , Colesterol/biosíntesis , Receptores de Esteroides/genética , Factor de Transcripción Sp1/metabolismo , Escualeno-Monooxigenasa/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Eliminación de Gen , Regulación Enzimológica de la Expresión Génica/genética , Células HEK293 , Células HeLa , Humanos , Redes y Vías Metabólicas/genética , Transporte de Proteínas/genética , Receptores de Esteroides/fisiología , Escualeno-Monooxigenasa/metabolismo , Regulación hacia Arriba/genética
10.
Traffic ; 17(9): 1054-7, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27187581

RESUMEN

Dipyrromethene difluoride-cholesterol (TopFluor-Cholesterol, TF-Chol) is a widely used cholesterol analogue due to its excellent fluorescence properties and considerable similarity with natural cholesterol in terms of membrane partitioning. However, the suitability of TF-Chol for detecting lysosomal cholesterol deposition has recently been questioned. Here, we highlight the fact that the method of lipid delivery and the analysis of time-point both affect the membrane distribution and labeling pattern of TF-Chol, similarly as with radiolabeled cholesterol. Lysosomal sterol accumulation characteristic to a lysosomal storage disease is most readily detected when the probe is introduced via the physiological route, i.e. as a sterol fatty acid ester in low-density lipoprotein particles. When administered to cells from solvent, lysosomal sterol sequestration becomes evident after an overnight equilibration between membranes.


Asunto(s)
Compuestos de Boro/química , Membrana Celular/metabolismo , Colesterol/metabolismo , Fibroblastos/metabolismo , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Transporte Biológico , Proteínas Portadoras/genética , Línea Celular , Colesterol/química , Esterificación , Humanos , Péptidos y Proteínas de Señalización Intracelular , Enfermedades por Almacenamiento Lisosomal/diagnóstico , Enfermedades por Almacenamiento Lisosomal/metabolismo , Glicoproteínas de Membrana/genética , Microscopía Fluorescente , Proteína Niemann-Pick C1
11.
Bioorg Chem ; 80: 396-407, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29986186

RESUMEN

Bile acids, initially discovered as endogenous ligands of farnesoid X receptor (FXR), play a central role in the regulation of triglyceride and cholesterol metabolism and have recently emerged as a privileged structure for interacting with nuclear receptors relevant to a large array of metabolic processes. In this paper, phenoxy containing cholic acid derivatives with excellent drug-likeness have been designed, synthesized, and assayed as agents against cholesterol accumulation in Raw264.7 macrophages. The most active compound 14b reduced total cholesterol accumulation in Raw264.7 cells up to 30.5% at non-toxic 10 µM and dosage-dependently attenuated oxLDL-induced foam cell formation. Western blotting and qPCR results demonstrate that 14b reduced both cholesterol and lipid in Raw264.7 cells through (1) increasing the expression of cholesterol transporters ABCA1 and ABCG1, (2) accelerating ApoA1-mediated cholesterol efflux. Through a cell-based luciferase reporter assay and molecular docking analysis, LXR was identified as the potential target for 14b. Interestingly, unlike conventional LXR agonist, 14b did not increase lipogenesis gene SREBP-1c expression. Overall, these diverse properties disclosed herein highlight the potential of 14b as a promising lead for further development of multifunctional agents in the therapy of cardiovascular disease.


Asunto(s)
Colesterol/metabolismo , Ácido Cólico/química , Ácido Cólico/farmacología , Diseño de Fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Animales , Anticolesterolemiantes/síntesis química , Anticolesterolemiantes/química , Anticolesterolemiantes/farmacología , Ácido Cólico/síntesis química , Descubrimiento de Drogas , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos
12.
Lipids Health Dis ; 17(1): 285, 2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30545366

RESUMEN

BACKGROUND: The focus of studies on high-density lipoproteins (HDL) has shifted from HDL-cholesterol (HDL-C) to HDL function. We recently demonstrated that low USF1 expression in mice and humans associates with high plasma HDL-C and low triglyceride levels, as well as protection against obesity, insulin resistance, and atherosclerosis. Here, we studied the impact of USF1 deficiency on HDL functional capacity and macrophage atherogenic functions, including inflammation, cholesterol efflux, and cholesterol accumulation. METHODS: We used a congenic Usf1 deficient mice in C57Bl/6JRccHsd background and blood samples were collected to isolate HDL for structural and functional studies. Lentiviral preparations containing the USF1 silencing shRNA expression vector were used to silence USF1 in human THP-1 and Huh-7 cells. Cholesterol efflux from acetyl-LDL loaded THP-1 macrophages was measured using HDL and plasma as acceptors. Gene expression analysis from USF1 silenced peritoneal macrophages was carried out using Affymetrix protocols. RESULTS: We show that Usf1 deficiency not only increases HDL-C levels in vivo, consistent with elevated ABCA1 protein expression in hepatic cell lines, but also improves the functional capacity of HDL particles. HDL particles derived from Usf1 deficient mice remove cholesterol more efficiently from macrophages, attributed to their higher contents of phospholipids. Furthermore, silencing of USF1 in macrophages enhanced the cholesterol efflux capacity of these cells. These findings are consistent with reduced inflammatory burden of USF1 deficient macrophages, manifested by reduced secretion of pro-inflammatory cytokines MCP-1 and IL-1ß and protection against inflammation-induced macrophage cholesterol accumulation in a cell-autonomous manner. CONCLUSIONS: Our findings identify USF1 as a novel factor regulating HDL functionality, showing that USF1 inactivation boosts cholesterol efflux, reduces macrophage inflammation and attenuates macrophage cholesterol accumulation, linking improved macrophage cholesterol metabolism and inflammatory pathways to the antiatherogenic function of USF1 deficiency.


Asunto(s)
HDL-Colesterol/genética , Colesterol/genética , Lipoproteínas HDL/genética , Factores Estimuladores hacia 5'/genética , Transportador 1 de Casete de Unión a ATP/genética , Animales , Quimiocina CCL2/genética , Colesterol/sangre , Expresión Génica/genética , Humanos , Inflamación/sangre , Inflamación/genética , Inflamación/patología , Resistencia a la Insulina/genética , Lipoproteínas HDL/sangre , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/patología , Masculino , Ratones , Ratones Noqueados , Obesidad/sangre , Obesidad/genética , Obesidad/patología
13.
Clin Exp Pharmacol Physiol ; 41(9): 671-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24827906

RESUMEN

Cholesterol accumulation is a critical step during the development and progression of atherosclerosis. Recently, Wnt5a expression has been found to be markedly upregulated in both murine and human atherosclerotic lesions. However, the effect and mechanism of Wnt5a in atherosclerosis is poorly understood. In the present study, we investigated the effects and potential mechanisms of Wnt5a on cholesterol accumulation during atherosclerosis. We used RAW264.7 and vascular smooth muscle cells (VSMC) treated with oxidized low-density lipoprotein (oxLDL) as lipid-loaded cell models. We found that expression of Wnt5a protein was increased in a concentration (25, 50, 75 and 100 µg/mL)- and time (24, 48 and 72 h)-dependent manner by oxLDL treatment. To explore the underlying mechanism, we used Wnt5a short interference (si) RNA to knockdown Wnt5a expression in both RAW264.7 cells and VSMC, or applied recombinant Wnt5a (rWnt5a) to stimulate Wnt5a signalling. After Wnt5a knockdown, total cholesterol (TC) and free cholesterol (FC) content in both cell types increased significantly (P < 0.05) upon exposure to oxLDL. Conversely, the TC and FC content decreased markedly (P < 0.05) after treatment of cells with rWnt5a. More importantly, both protein and mRNA expression of Caveolin-1 and ATP-binding cassette transporter A1 (ABCA1) was significantly reduced after exposure of wnt5a siRNA-treated cells to oxLDL, whereas rWnt5a treatment of cells resulted in increased Caveolin-1 and ABCA1 protein expression after exposure of cells to oxLDL. Together, these findings demonstrate, for the first time, that Wnt5a reduces the accumulation of cholesterol in lipid-loaded cells by regulating the mRNA expression of Caveolin-1 and ABCA1, which are involved in reverse cholesterol transport. This may present a novel mechanism of Wnt5a-mediated cholesterol transportation in macrophages and VSMC. Therefore, targeting the Wnt5a signalling pathway may have clinical implications in atherosclerosis.


Asunto(s)
Colesterol/metabolismo , Proteínas Wnt/metabolismo , Transportador 1 de Casete de Unión a ATP/biosíntesis , Animales , Aterosclerosis/metabolismo , Caveolina 1/biosíntesis , Células Cultivadas , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Lipoproteínas LDL/farmacología , Masculino , Ratones , ARN Interferente Pequeño/farmacología , Ratas , Proteínas Wnt/biosíntesis , Proteínas Wnt/genética , Vía de Señalización Wnt , Proteína Wnt-5a
14.
bioRxiv ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39026816

RESUMEN

Caveolins are lipid-binding proteins that can organize membrane remodeling and oligomerize into the 8S-complex. The CAV1 8S-complex comprises a disk-like structure, about 15nm in diameter, with a central beta barrel. Further oligomerization of 8S-complexes remodels the membrane into caveolae vessels, with a dependence on cholesterol concentration. However, the molecular mechanisms behind membrane remodeling and cholesterol filtering are still not understood. Performing atomistic Molecular Dynamics simulations in combination with advanced sampling techniques, we describe how the CAV1-8S complex bends the membrane and accumulates cholesterol. Here, our simulations show an enhancing effect by the palmitoylations of CAV1, and we predict that the CAV1-8S complex can extract cholesterol molecules from the lipid bilayer and accommodate them in its beta barrel. Through backmapping to the all-atom level we also conclude that the Martini v2 coarse-grained forcefield overestimates membrane bending, as the atomistic simulations exhibit only very localized bending.

15.
Redox Biol ; 71: 103074, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38367511

RESUMEN

Brain iron accumulation constitutes a pathognomonic indicator in several neurodegenerative disorders. Metal accumulation associated with dopaminergic neuronal death has been documented in Parkinson's disease. Through the use of in vivo and in vitro models, we demonstrated that lipid dysregulation manifests as a neuronal and glial response during iron overload. In this study, we show that cholesterol content and triacylglycerol (TAG) hydrolysis were strongly elevated in mice midbrain. Lipid cacostasis was concomitant with the loss of dopaminergic neurons, astrogliosis and elevated expression of α-synuclein. Exacerbated lipid peroxidation and markers of ferroptosis were evident in the midbrain from mice challenged with iron overload. An imbalance in the activity of lipolytic and acylation enzymes was identified, favoring neutral lipid hydrolysis, and consequently reducing TAG and cholesteryl ester levels. Notably, these observed alterations were accompanied by motor impairment in iron-treated mice. In addition, neuronal and glial cultures along with their secretomes were used to gain further insight into the mechanism underlying TAG hydrolysis and cholesterol accumulation as cellular responses to iron accumulation. We demonstrated that TAG hydrolysis in neurons is triggered by astrocyte secretomes. Moreover, we found that the ferroptosis inhibitor, ferrostatin-1, effectively prevents cholesterol accumulation both in neurons and astrocytes. Taken together, these results indicate that lipid disturbances occur in iron-overloaded mice as a consequence of iron-induced oxidative stress and depend on neuron-glia crosstalk. Our findings suggest that developing therapies aimed at restoring lipid homeostasis may lead to specific treatment for neurodegeneration associated with ferroptosis and brain iron accumulation.


Asunto(s)
Ferroptosis , Sobrecarga de Hierro , Trastornos Motores , Ratones , Animales , Metabolismo de los Lípidos , Trastornos Motores/metabolismo , Hierro/metabolismo , Peroxidación de Lípido , Neuronas Dopaminérgicas/metabolismo , Colesterol/metabolismo , Lípidos
17.
Cell Rep ; 42(10): 113183, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37777962

RESUMEN

Recent developments in genome sequencing have expanded the knowledge of genetic factors associated with late-onset Alzheimer's disease (AD). Among them, genetic variant ε4 of the APOE gene (APOE4) confers the greatest disease risk. Dysregulated glucose metabolism is an early pathological feature of AD. Using isogenic ApoE3 and ApoE4 astrocytes derived from human induced pluripotent stem cells, we find that ApoE4 increases glycolytic activity but impairs mitochondrial respiration in astrocytes. Ultrastructural and autophagy flux analyses show that ApoE4-induced cholesterol accumulation impairs lysosome-dependent removal of damaged mitochondria. Acute treatment with cholesterol-depleting agents restores autophagic activity, mitochondrial dynamics, and associated proteomes, and extended treatment rescues mitochondrial respiration in ApoE4 astrocytes. Taken together, our study provides a direct link between ApoE4-induced lysosomal cholesterol accumulation and abnormal oxidative phosphorylation.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Humanos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Astrocitos/metabolismo , Fosforilación Oxidativa , Células Cultivadas , Células Madre Pluripotentes Inducidas/metabolismo , Apolipoproteína E3/metabolismo , Colesterol/metabolismo , Enfermedad de Alzheimer/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1867(12): 159235, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36113825

RESUMEN

Excessive cholesterol constitutes a major risk factor for vascular disease. Within cells, cholesterol is distributed in detergent-sensitive and detergent-resistant fractions, with the largest amount of cholesterol residing in cellular membranes. We set out to determine whether various arteries differ in their ability to accumulate esterified and non-esterified cholesterol in detergent-sensitive versus detergent-resistant fractions throughout the course of a high-cholesterol diet. Male Sprague-Dawley rats were placed on 2 % cholesterol diet while a control group was receiving iso-caloric standard chow. Liver, aorta, and pulmonary, mesenteric, and cerebral arteries were collected at 2-6, 8-12, 14-18, and 20-24 weeks from the start of high-cholesterol diet. After fraction separation, esterified and free non-esterified cholesterol levels were measured. In all arteries, largest cholesterol amounts were present in detergent-sensitive fractions in the non-esterified form. Overall, cholesterol in aorta and cerebral arteries was elevated during 14-18 weeks of high-cholesterol diet. Cerebral arteries also exhibited increase in esterified cholesterol within detergent-sensitive domains, as well as increase in cholesterol level in the detergent-resistant fraction at earlier time-points of diet. Pulmonary artery and mesenteric artery were largely resistant to cholesterol accumulation. Quantitative polymerase chain reaction (qPCR) analysis revealed up-regulation of low-density lipoprotein receptor (Ldlr) and low-density lipoprotein receptor-related protein 1 (Lrp1) gene expression in cerebral arteries when compared to mesenteric and pulmonary arteries, respectively. In summary, we unveiled the differential ability of arteries to accumulate cholesterol over the course of a high-cholesterol diet. The differential accumulation of cholesterol seems to correlate with the up-regulated gene expression of proteins responsible for cholesterol uptake.


Asunto(s)
Detergentes , Hipercolesterolemia , Animales , Arterias/metabolismo , Colesterol/metabolismo , Dieta , Lipoproteínas LDL , Masculino , Ratas , Ratas Sprague-Dawley
19.
Front Immunol ; 13: 1028953, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466902

RESUMEN

Inflammatory Bowel Disease (IBD) is characterized by a loss of intestinal barrier function caused by an aberrant interaction between the immune response and the gut microbiota. In IBD, imbalance in cholesterol homeostasis and mitochondrial bioenergetics have been identified as essential events for activating the inflammasome-mediated response. Mitochondrial alterations, such as reduced respiratory complex activities and reduced production of tricarboxylic acid (TCA) cycle intermediates (e.g., citric acid, fumarate, isocitric acid, malate, pyruvate, and succinate) have been described in in vitro and clinical studies. Under inflammatory conditions, mitochondrial architecture in intestinal epithelial cells is dysmorphic, with cristae destruction and high dynamin-related protein 1 (DRP1)-dependent fission. Likewise, these alterations in mitochondrial morphology and bioenergetics promote metabolic shifts towards glycolysis and down-regulation of antioxidant Nuclear erythroid 2-related factor 2 (Nrf2)/Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) signaling. Although the mechanisms underlying the mitochondrial dysfunction during mucosal inflammation are not fully understood at present, metabolic intermediates and cholesterol may act as signals activating the NLRP3 inflammasome in IBD. Notably, dietary phytochemicals exhibit protective effects against cholesterol imbalance and mitochondrial function alterations to maintain gastrointestinal mucosal renewal in vitro and in vivo conditions. Here, we discuss the role of cholesterol and mitochondrial metabolism in IBD, highlighting the therapeutic potential of dietary phytochemicals, restoring intestinal metabolism and function.


Asunto(s)
Inflamasomas , Enfermedades Inflamatorias del Intestino , Humanos , Mitocondrias , Colesterol , Enfermedad Crónica , Glucólisis , Ácido Pirúvico
20.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35890112

RESUMEN

Recently, multiple studies have shown that chronic inflammation disturbs cholesterol homeostasis and promotes its accumulation in the liver. The underlying molecular mechanism remains to be revealed. The relationship between the toll-like receptor 4 (TLR4) inflammatory signaling pathway and cholesterol accumulation was investigated in HepG2 cells treated with lipopolysaccharide (LPS) or palmitic acid (PA) for different lengths of time. In addition, the effects of pretreatment with 20µmol/L ST2825 (MyD88 inhibitor) were also studied in LPS- or PA-treated HepG2 cells and myeloid differentiation factor 88 (MyD88)-overexpressing HEK293T cells. The intracellular total and free cholesterol levels were measured using a commercial kit and filipin staining, respectively. The expression levels of sterol regulatory element-binding protein-2 (SREBP-2) and components in the TLR4 signaling pathway were determined using Western blotting. The treatments with LPS for 12 h and with PA for 24 h significantly increased the contents of intracellular total and free cholesterol, as well as the expression levels of SREBP-2 and components in the TLR4 signaling pathway. The inhibition of MyD88 by ST2825 significantly decreased the cholesterol content and the expression levels of SREBP-2 and components of the TLR4/MyD88/NF-κB pathway in HepG2 cells, as well as MyD88-overexpressing HEK293T cells. These results indicated that LPS and PA treatments increase SREBP-2-mediated cholesterol accumulation via the activation of the TLR4/MyD88/NF-κB signaling pathway in HepG2 cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA