Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(7): e2310479121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38335255

RESUMEN

Metabolic reprogramming is critical during clear cell renal cell carcinoma (ccRCC) tumorigenesis, manifested by accumulation of lipid droplets (LDs), organelles that have emerged as new hallmarks of cancer. Yet, regulation of their biogenesis is still poorly understood. Here, we demonstrate that MYC inhibition in ccRCC cells lacking the von Hippel Lindau (VHL) gene leads to increased triglyceride content potentiating LD formation in a glutamine-dependent manner. Importantly, the concurrent inhibition of MYC signaling and glutamine metabolism prevented LD accumulation and reduced tumor burden in vivo. Furthermore, we identified the hypoxia-inducible lipid droplet-associated protein (HILPDA) as the key driver for induction of MYC-driven LD accumulation and demonstrated that conversely, proliferation, LD formation, and tumor growth are impaired upon its downregulation. Finally, analysis of ccRCC tissue as well as healthy renal control samples postulated HILPDA as a specific ccRCC biomarker. Together, these results provide an attractive approach for development of alternative therapeutic interventions for the treatment of this type of renal cancer.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Gotas Lipídicas , Proteínas Proto-Oncogénicas c-myc , Humanos , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glutamina/metabolismo , Neoplasias Renales/patología , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/metabolismo , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Regulación hacia Arriba , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
2.
J Biol Chem ; 300(5): 107297, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641065

RESUMEN

A growing body of evidence shows that vasculogenic mimicry (VM) is closely related to the invasion and metastasis of many tumor cells. Although the estrogen receptor (ER) can promote initiation and progression of renal cell carcinoma (RCC), how the downstream biomolecules are involved, and the detailed mechanisms of how ER expression is elevated in RCC remain to be further elucidated. Here, we discovered that long noncoding RNA (LncRNA)-SERB is highly expressed in tumor cells of RCC patients. We used multiple RCC cells and an in vivo mouse model for our study, and results indicated that LncRNA-SERB could boost RCC VM formation and cell invasion in vitro and in vivo. Although a previous report showed that ERß can affect the VM formation in RCC, it is unclear which factor could upregulate ERß. This is the first study to show LncRNA-SERB can be the upstream regulator of ERß to control RCC progression. Mechanistically, LncRNA-SERB may increase ERß via binding to the promoter area, and ERß functions through transcriptional regulation of zinc finger E-box binding homeobox 1 (ZEB1) to regulate VM formation. These results suggest that LncRNA-SERB promotes RCC cell VM formation and invasion by upregulating the ERß/ZEB1 axis and that therapeutic targeting of this newly identified pathway may better inhibit RCC progression.


Asunto(s)
Carcinoma de Células Renales , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Neovascularización Patológica , ARN Largo no Codificante , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Neoplasias Renales/genética , Animales , Ratones , Neovascularización Patológica/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Receptor beta de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Línea Celular Tumoral , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Metástasis de la Neoplasia , Ratones Desnudos , Masculino , Femenino , Invasividad Neoplásica
3.
Eur J Immunol ; 54(6): e2350878, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581345

RESUMEN

Tumor-associated macrophages (TAM) are abundant in several tumor types and usually correlate with poor prognosis. Previously, we demonstrated that anti-inflammatory macrophages (M2) inhibit NK cell effector functions. Here, we explored the impact of TAM on NK cells in the context of clear-cell renal cell carcinoma (ccRCC). Bioinformatics analysis revealed that an exhausted NK cell signature strongly correlated with an M2 signature. Analysis of TAM from human ccRCC samples confirmed that they exhibited an M2-skewed phenotype and inhibited IFN-γ production by NK cells. Moreover, human M0 macrophages cultured with conditioned media from ccRCC cell lines generated macrophages with an M2-skewed phenotype (TAM-like), which alike TAM, displayed suppressive activity on NK cells. Moreover, TAM depletion in the mouse Renca ccRCC model resulted in delayed tumor growth and reduced volume, accompanied by an increased frequency of IFN-γ-producing tumor-infiltrating NK cells that displayed heightened expression of T-bet and NKG2D and reduced expression of the exhaustion-associated co-inhibitory molecules PD-1 and TIM-3. Therefore, in ccRCC, the tumor microenvironment polarizes TAM toward an immunosuppressive profile that promotes tumor-infiltrating NK cell dysfunction, contributing to tumor progression. In addition, immunotherapy strategies targeting TAM may result in NK cell reinvigoration, thereby counteracting tumor progression.


Asunto(s)
Carcinoma de Células Renales , Interferón gamma , Neoplasias Renales , Células Asesinas Naturales , Macrófagos Asociados a Tumores , Células Asesinas Naturales/inmunología , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Interferón gamma/metabolismo , Interferón gamma/inmunología , Humanos , Animales , Ratones , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Progresión de la Enfermedad , Línea Celular Tumoral , Microambiente Tumoral/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Receptor de Muerte Celular Programada 1/metabolismo
4.
Exp Cell Res ; 437(1): 113977, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373588

RESUMEN

Serine metabolic reprogramming is known to be associated with oncogenesis and tumor development. The key metabolic enzyme PSAT1 has been identified as a potential prognostic marker for various cancers, but its role in ccRCC remains unkown. In this study, we investigated expression of PSAT1 in ccRCC using the TCGA database and clinical specimens. Our results showed that PSAT1 exhibited lower expression in tumor tissue compared to adjacent normal tissue, but its expression level increased with advancing stages and grades of ccRCC. Patients with elevated expression level of PSAT1 exhibited an unfavorable prognosis. Functional experiments have substantiated that the depletion of PSAT1 shows an effective activity in inhibiting the proliferation, migration and invasion of ccRCC cells, concurrently promoting apoptosis. RNA sequencing analysis has revealed that the attenuation of PSAT1 can diminish tumor resistance to therapeutic drugs. Furthermore, the xenograft model has indicated that the inhibition of PSAT1 can obviously impact the tumorigenic potential of ccRCC and mitigate lung metastasis. Notably, pharmacological targeting PSAT1 by Aminooxyacetic Acid (AOA) or knockdown of PSAT1 increased the susceptibility of sunitinib-resistant cells. Inhibition of PSAT1 increased the sensitivity of drug-resistant tumors to sunitinib in vivo. Collectively, our investigation identifies PSAT1 as an independent prognostic biomarker for advanced ccRCC patients and as a prospective therapeutic target.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Resistencia a Medicamentos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Sunitinib , Regulación hacia Arriba/genética
5.
J Cell Mol Med ; 28(6): e18186, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38445803

RESUMEN

Clear cell renal cell carcinoma (ccRCC) represents a significant challenge in oncology, primarily due to its resistance to conventional therapies. Understanding the tumour microenvironment (TME) is crucial for developing new treatment strategies. This study focuses on the role of amyloid precursor protein (APP) in tumour-associated macrophages (TAMs) within the ccRCC TME, exploring its potential as a prognostic biomarker. Basing TAM-related genes, the prognostic model was important to constructed. Employing advanced single-cell transcriptomic analysis, this research dissects the TME of ccRCC at an unprecedented cellular resolution. By isolating and examining the gene expression profiles of individual cells, particularly focusing on TAMs, the study investigates the expression levels of APP and their association with the clinical outcomes of ccRCC patients. The analysis reveals a significant correlation between the expression of APP in TAMs and patient prognosis in ccRCC. Patients with higher APP expression in TAMs showed differing clinical outcomes compared to those with lower expression. This finding suggests that APP could serve as a novel prognostic biomarker for ccRCC, providing insights into the disease progression and potential therapeutic targets. This study underscores the importance of single-cell transcriptomics in understanding the complex dynamics of the TME in ccRCC. The correlation between APP expression in TAMs and patient prognosis highlights APP as a potential prognostic biomarker. However, further research is needed to validate these findings and explore the regulatory mechanisms and therapeutic implications of APP in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Precursor de Proteína beta-Amiloide , Biomarcadores , Carcinoma de Células Renales/genética , Perfilación de la Expresión Génica , Neoplasias Renales/genética , Microambiente Tumoral/genética
6.
BMC Genomics ; 25(1): 413, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671348

RESUMEN

BACKGROUND: Disulfidptosis is a novel form of programmed cell death induced by high SLC7A11 expression under glucose starvation conditions, unlike other known forms of cell death. However, the roles of disulfidptosis in cancers have yet to be comprehensively well-studied, particularly in ccRCC. METHODS: The expression profiles and somatic mutation of DGs from the TCGA database were investigated. Two DGs clusters were identified by unsupervised consensus clustering analysis, and a disulfidptosis-related prognostic signature (DR score) was constructed. Furthermore, the predictive capacity of the DR score in prognosis was validated by several clinical cohorts. We also developed a nomogram based on the DR score and clinical features. Then, we investigated the differences in the clinicopathological information, TMB, tumor immune landscapes, and biological characteristics between the high- and low-risk groups. We evaluated whether the DR score is a robust tool for predicting immunotherapy response by the TIDE algorithm, immune checkpoint genes, submap analysis, and CheckMate immunotherapy cohort. RESULTS: We identified two DGs clusters with significant differences in prognosis, tumor immune landscapes, and clinical features. The DR score has been demonstrated as an independent risk factor by several clinical cohorts. The high-risk group patients had a more complicated tumor immune microenvironment and suffered from more tumor immune evasion in immunotherapy. Moreover, patients in the low-risk group had better prognosis and response to immunotherapy, particularly in anti-PD1 and anti-CTLA-4 inhibitors, which were verified in the CheckMate immunotherapy cohort. CONCLUSION: The DR score can accurately predict the prognosis and immunotherapy response and assist clinicians in providing a personalized treatment regime for ccRCC patients.


Asunto(s)
Carcinoma de Células Renales , Inmunoterapia , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/terapia , Pronóstico , Neoplasias Renales/genética , Neoplasias Renales/inmunología , Neoplasias Renales/terapia , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Biomarcadores de Tumor/genética , Nomogramas , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica , Mutación , Apoptosis
7.
J Cell Biochem ; 125(7): e30572, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38706121

RESUMEN

Clear cell renal cell carcinoma (ccRCC) represents the most common subtype of renal tumor. Despite recent advances in identifying novel target molecules, the prognosis of patients with ccRCC continues to be poor, mainly due to the lack of sensitivity to chemo- and radiotherapy and because of one-third of renal cell carcinoma patients displays metastatic disease at diagnosis. Thus, identifying new molecules for early detection and for developing effective targeted therapies is mandatory. In this work, we focused on paraoxonase-2 (PON2), an intracellular membrane-bound enzyme ubiquitously expressed in human tissues, whose upregulation has been reported in a variety of malignancies, thus suggesting its possible role in cancer cell survival and proliferation. To investigate PON2 involvement in tumor cell metabolism, human ccRCC cell lines were transfected with plasmid vectors coding short harpin RNAs targeting PON2 transcript and the impact of PON2 silencing on cell viability, migration, and response to chemotherapeutic treatment was then explored. Our results showed that PON2 downregulation was able to trigger a decrease in proliferation and migration of ccRCC cells, as well as an enhancement of cell sensitivity to chemotherapy. Thus, taken together, data reported in this study suggest that the enzyme may represent an interesting therapeutic target for ccRCC.


Asunto(s)
Arildialquilfosfatasa , Carcinoma de Células Renales , Neoplasias Renales , ARN Interferente Pequeño , Humanos , Arildialquilfosfatasa/genética , Arildialquilfosfatasa/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
8.
Lab Invest ; 104(5): 102041, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38431116

RESUMEN

A specific splicing isoform of RNASET2 is associated with worse oncologic outcomes in clear cell renal cell carcinoma (ccRCC). However, the interplay between wild-type RNASET2 and its splice variant and how this might contribute to the pathogenesis of ccRCC remains poorly understood. We sought to better understand the relationship of RNASET2 in the pathogenesis of ccRCC and the interplay with a pathogenic splicing isoform (RNASET2-SV) and the tumor immune microenvironment. Using data from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium, we correlated clinical variables to RNASET2 expression and the presence of a specific RNASET2-SV. Immunohistochemical staining with matched RNA sequencing of ccRCC patients was then utilized to understand the spatial relationships of RNASET2 with immune cells. Finally, in vitro studies were performed to demonstrate the oncogenic role of RNASET2 and highlight its potential mechanisms. RNASET2 gene expression is associated with higher grade tumors and worse overall survival in The Cancer Genome Atlas cohort. The presence of the RNASET2-SV was associated with increased expression of the wild-type RNASET2 protein and epigenetic modifications of the gene. Immunohistochemical staining revealed increased intracellular accumulation of RNASET2 in patients with increased RNA expression of RNASET2-SV. In vitro experiments reveal that this accumulation results in increased cell proliferation, potentially from altered metabolic pathways. RNASET2 exhibits a tumor-promoting role in the pathogenesis of ccRCC that is increased in the presence of a specific RNASET2-SV and associated with changes in the cellular localization of the protein.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Ribonucleasas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Ribonucleasas/genética , Ribonucleasas/metabolismo , Microambiente Tumoral , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
9.
Mol Cancer ; 23(1): 34, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360682

RESUMEN

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer with high aggressive phenotype and poor prognosis. Accumulating evidence suggests that circRNAs have been identified as pivotal mediators in cancers. However, the role of circRNAs in ccRCC progression remains elusive. METHODS: The differentially expressed circRNAs in 4 paired human ccRCC and adjacent noncancerous tissues ccRCC were screened using circRNA microarrays and the candidate target was selected based on circRNA expression level using weighted gene correlation network analysis (WGCNA) and the gene expression omnibus (GEO) database. CircPDHK1 expression in ccRCC and adjacent noncancerous tissues (n = 148) were evaluated along with clinically relevant information. RT-qPCR, RNase R digestion, and actinomycin D (ActD) stability test were conducted to identify the characteristics of circPDHK1. The subcellular distribution of circPDHK1 was analyzed by subcellular fractionation assay and fluorescence in situ hybridization (FISH). Immunoprecipitation-mass spectrometry (IP-MS) and immunofluorescence (IF) were employed to evaluate the protein-coding ability of circPDHK1. ccRCC cells were transfected with siRNAs, plasmids or lentivirus approach, and cell proliferation, migration and invasion, as well as tumorigenesis and metastasis in nude mice were assessed to clarify the functional roles of circPDHK1 and its encoded peptide PDHK1-241aa. RNA-sequencing, western blot analysis, immunoprecipitation (IP) and chromatin immunoprecipitation (ChIP) assays were further employed to identify the underlying mechanisms regulated by PDHK1-241aa. RESULTS: CircPDHK1 was upregulated in ccRCC tissues and closely related to WHO/ISUP stage, T stage, distant metastasis, VHL mutation and Ki-67 levels. CircPDHK1 had a functional internal ribosome entry site (IRES) and encoded a novel peptide PDHK1-241aa. Functionally, we confirmed that PDHK1-241aa and not the circPDHK1 promoted the proliferation, migration and invasion of ccRCC. Mechanistically, circPDHK1 was activated by HIF-2A at the transcriptional level. PDHK1-241aa was upregulated and interacted with PPP1CA, causing the relocation of PPP1CA to the nucleus. This thereby inhibited AKT dephosphorylation and activated the AKT-mTOR signaling pathway. CONCLUSIONS: Our data indicated that circPDHK1-encoded PDHK1-241aa promotes ccRCC progression by interacting with PPP1CA to inhibit AKT dephosphorylation. This study provides novel insights into the multiplicity of circRNAs and highlights the potential use of circPDHK1 or PDHK1-241aa as a therapeutic target for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Ratones , Humanos , Carcinoma de Células Renales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular/genética , Ratones Desnudos , Hibridación Fluorescente in Situ , Línea Celular Tumoral , Transducción de Señal/genética , Neoplasias Renales/genética , Serina-Treonina Quinasas TOR/metabolismo , Proliferación Celular/genética , Péptidos/genética , Regulación Neoplásica de la Expresión Génica , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo
10.
Mol Cancer ; 23(1): 56, 2024 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-38491381

RESUMEN

One of the major hurdles that has hindered the success of chimeric antigen receptor (CAR) T cell therapies against solid tumors is on-target off-tumor (OTOT) toxicity due to sharing of the same epitopes on normal tissues. To elevate the safety profile of CAR-T cells, an affinity/avidity fine-tuned CAR was designed enabling CAR-T cell activation only in the presence of a highly expressed tumor associated antigen (TAA) but not when recognizing the same antigen at a physiological level on healthy cells. Using direct stochastic optical reconstruction microscopy (dSTORM) which provides single-molecule resolution, and flow cytometry, we identified high carbonic anhydrase IX (CAIX) density on clear cell renal cell carcinoma (ccRCC) patient samples and low-density expression on healthy bile duct tissues. A Tet-On doxycycline-inducible CAIX expressing cell line was established to mimic various CAIX densities, providing coverage from CAIX-high skrc-59 tumor cells to CAIX-low MMNK-1 cholangiocytes. Assessing the killing of CAR-T cells, we demonstrated that low-affinity/high-avidity fine-tuned G9 CAR-T has a wider therapeutic window compared to high-affinity/high-avidity G250 that was used in the first anti-CAIX CAR-T clinical trial but displayed serious OTOT effects. To assess the therapeutic effect of G9 on patient samples, we generated ccRCC patient derived organotypic tumor spheroid (PDOTS) ex vivo cultures and demonstrated that G9 CAR-T cells exhibited superior efficacy, migration and cytokine release in these miniature tumors. Moreover, in an RCC orthotopic mouse model, G9 CAR-T cells showed enhanced tumor control compared to G250. In summary, G9 has successfully mitigated OTOT side effects and in doing so has made CAIX a druggable immunotherapeutic target.


Asunto(s)
Anhidrasas Carbónicas , Carcinoma de Células Renales , Neoplasias Renales , Receptores Quiméricos de Antígenos , Animales , Ratones , Humanos , Anhidrasa Carbónica IX/genética , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/patología , Receptores Quiméricos de Antígenos/genética , Anhidrasas Carbónicas/metabolismo , Anhidrasas Carbónicas/uso terapéutico , Antígenos de Neoplasias , Anticuerpos , Linfocitos T/metabolismo
11.
Curr Issues Mol Biol ; 46(4): 3236-3250, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38666933

RESUMEN

Radiogenomics, a burgeoning field in biomedical research, explores the correlation between imaging features and genomic data, aiming to link macroscopic manifestations with molecular characteristics. In this review, we examine existing radiogenomics literature in clear cell renal cell carcinoma (ccRCC), the predominant renal cancer, and von Hippel-Lindau (VHL) gene mutation, the most frequent genetic mutation in ccRCC. A thorough examination of the literature was conducted through searches on the PubMed, Medline, Cochrane Library, Google Scholar, and Web of Science databases. Inclusion criteria encompassed articles published in English between 2014 and 2022, resulting in 10 articles meeting the criteria out of 39 initially retrieved articles. Most of these studies applied computed tomography (CT) images obtained from open source and institutional databases. This literature review investigates the role of radiogenomics, with and without texture analysis, in predicting VHL gene mutation in ccRCC patients. Radiogenomics leverages imaging modalities such as CT and magnetic resonance imaging (MRI), to analyze macroscopic features and establish connections with molecular elements, providing insights into tumor heterogeneity and biological behavior. The investigations explored diverse mutations, with a specific focus on VHL mutation, and applied CT imaging features for radiogenomic analysis. Moreover, radiomics and machine learning techniques were employed to predict VHL gene mutations based on CT features, demonstrating promising results. Additional studies delved into the relationship between VHL mutation and body composition, revealing significant associations with adipose tissue distribution. The review concludes by highlighting the potential role of radiogenomics in guiding targeted and selective therapies.

12.
Cancer Sci ; 115(6): 1791-1807, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38480904

RESUMEN

Dissolving the lipid droplets in tissue section with alcohol during a hematoxylin and eosin (H&E) stain causes the tumor cells to appear like clear soap bubbles under a microscope, which is a key pathological feature of clear cell renal cell carcinoma (ccRCC). Mitochondrial dynamics have been reported to be closely associated with lipid metabolism and tumor development. However, the relationship between mitochondrial dynamics and lipid metabolism reprogramming in ccRCC remains to be further explored. We conducted bioinformatics analysis to identify key genes regulating mitochondrial dynamics differentially expressed between tumor and normal tissues and immunohistochemistry and Western blot to confirm. After the target was identified, we created stable ccRCC cell lines to test the impact of the target gene on mitochondrial morphology, tumorigenesis in culture cells and xenograft models, and profiles of lipid metabolism. It was found that mitofusin 2 (MFN2) was downregulated in ccRCC tissues and associated with poor prognosis in patients with ccRCC. MFN2 suppressed mitochondrial fragmentation, proliferation, migration, and invasion of ccRCC cells and growth of xenograft tumors. Furthermore, MFN2 impacted lipid metabolism and reduced the accumulation of lipid droplets in ccRCC cells. MFN2 suppressed disease progression and improved prognosis for patients with ccRCC possibly by interrupting cellular lipid metabolism and reducing accumulation of lipid droplets.


Asunto(s)
Carcinoma de Células Renales , GTP Fosfohidrolasas , Neoplasias Renales , Gotas Lipídicas , Metabolismo de los Lípidos , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Gotas Lipídicas/metabolismo , Ratones Desnudos , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales , Pronóstico
13.
Cancer Sci ; 115(8): 2588-2601, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38811341

RESUMEN

Insufficient understanding about the immune evasion mechanism leads to the inability in predicting current immunotherapy effects in clear cell renal cell carcinoma (ccRCC) and sensitizing ccRCC to immunotherapy. RNA binding proteins (RBPs) can promote tumor progression and immune evasion. However, research on RBPs, particularly m6A reader YTHDF3, in ccRCC development and immune evasion is limited. In this study, we found that YTHDF3 level was downregulated in ccRCC and was an independent prognostic biomarker for ccRCC. Decreased YTHDF3 expression was correlated with the malignancy, immune evasion, and poor response to anti-programmed death ligand 1 (PD-L1)/CTLA-4 in ccRCC. YTHDF3 overexpression restrained ccRCC cell malignancy, PD-L1 expression, CD8+ T cell infiltration and activities in vivo, indicating its inhibitory role in ccRCC development and immune evasion. Mechanistically, YTHDF3 WT was found to have phase separation characteristics and suppress ccRCC malignancy and immune evasion. Whereas YTHDF3 mutant, which disrupted phase separation, abolished its function. YTHDF3 enhanced the degradation of its target mRNA HSPA13 by phase separation and recruiting DDX6, resulting in the downregulation of the downstream immune checkpoint PD-L1. HSPA13 overexpression restored ccRCC malignancy and immune evasion suppressed by YTHDF3 overexpression. In all, our results identify a new model of YTHDF3 in regulating ccRCC progression and immune evasion through phase separation.


Asunto(s)
Antígeno B7-H1 , Carcinoma de Células Renales , Proteínas HSP70 de Choque Térmico , Neoplasias Renales , Proteínas de Unión al ARN , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/inmunología , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Neoplasias Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/inmunología , Animales , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Ratones , Línea Celular Tumoral , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Femenino , Masculino , Regulación Neoplásica de la Expresión Génica , Pronóstico , Evasión Inmune , Regulación hacia Abajo , Escape del Tumor/genética , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Separación de Fases
14.
Cancer Sci ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105355

RESUMEN

High expression of truncated O-glycans Tn antigen predicts adverse clinical outcome in patients with clear cell renal cell carcinoma (ccRCC). To understand the biosynthetic underpinnings of Tn antigen changes in ccRCC, we focused on N-acetylgalactosaminyltransferases (GALNTs, also known as GalNAcTs) known to be involved in Tn antigen synthesis. Data from GSE15641 profile and local cohort showed that GALNT6 was significantly upregulated in ccRCC tissues. The current study aimed to determine the role of GALNT6 in ccRCC, and whether GALNT6-mediated O-glycosylation aggravates malignant behaviors. Gain- and loss-of-function experiments showed that overexpression of GALNT6 accelerated ccRCC cell proliferation, migration, and invasion, as well as promoted ccRCC-derived xenograft tumor growth and lung metastasis. In line with this, silencing of GALNT6 yielded the opposite results. Mechanically, high expression of GALNT6 led to the accumulation of Tn antigen in ccRCC cells. By undertaking immunoprecipitation coupled with liquid chromatography/mass spectrometry, vicia villosa agglutinin blot, and site-directed mutagenesis assays, we found that O-glycosylation of prohibitin 2 (PHB2) at Ser161 was required for the GALNT6-induced ccRCC cell proliferation, migration, and invasion. Additionally, we identified lens epithelium-derived growth factor (LEDGF) as a key regulator of GALNT6 transcriptional induction in ccRCC growth and an upstream contributor to ccRCC aggressive behavior. Collectively, our findings indicate that GALNT6-mediated abnormal O-glycosylation promotes ccRCC progression, which provides a potential therapeutic target in ccRCC development.

15.
Apoptosis ; 29(7-8): 1051-1069, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38553613

RESUMEN

Dysregulation of deubiquitination contributes to various diseases, including cancer, and aberrant expression of deubiquitinating enzymes is involved in carcinoma progression. As a member of the ovarian tumor (OTU) deubiquitinases, OTUD4 is considered a tumor suppressor in many kinds of malignancies. The biological characteristics and mechanisms of OTUD4 in clear cell renal cell carcinoma (ccRCC) remain unclear. The downregulation of OTUD4 in ccRCC was confirmed based on the TCGA database and a validation cohort of 30-paired ccRCC and para-carcinoma samples. Moreover, OTUD4 expression was detected by immunohistochemistry in 50 cases of ccRCC tissues, and patients with lower levels of OTUD4 showed larger tumor size (p = 0.015). TCGA data revealed that patients with high expression of OTUD4 had a longer overall survival rate. In vitro and in vivo studies revealed that downregulation of OTUD4 was essential for tumor cell growth and metastasis in ccRCC, and OTUD4 overexpression inhibited these malignant phenotypes. We further found that OTUD4 sensitized ccRCC cells to Erastin-induced ferroptosis, and ferrostain-1 inhibited OTUD4-induced ferroptotic cell death. Mechanistic studies indicated that OTUD4 functioned as an anti-proliferative and anti-metastasic factor through the regulation of RNA-binding protein 47 (RBM47)-mediated activating transcription factor 3 (ATF3). OTUD4 directly interacted with RBM47 and promoted its stability via deubiquitination events. RBM47 was critical in ccRCC progression by regulating ATF3 mRNA stability, thereby promoting ATF3-mediated ferroptosis. RBM47 interference abolished the suppressive role of OTUD4 overexpression in ccRCC. Our findings provide mechanistic insight into OTUD4 of ccRCC progression and indicate a novel critical pathway OTUD4/RBM47/ATF3 may serve as a potential therapeutic pathway for ccRCC.


Asunto(s)
Factor de Transcripción Activador 3 , Carcinoma de Células Renales , Neoplasias Renales , Proteínas de Unión al ARN , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Factor de Transcripción Activador 3/metabolismo , Factor de Transcripción Activador 3/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Ferroptosis/genética , Ferroptosis/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Ratones Desnudos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
16.
Funct Integr Genomics ; 24(4): 122, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980439

RESUMEN

Renal cell carcinoma (RCC) is a malignant tumor originating from the epithelial cells of the renal tubules. The clear cell RCC subtype is closely linked to a poor prognosis due to its rapid progression. Circular RNA (circRNA) is a novel class of regulatory RNA molecules that play a role in the development of ccRCC, although their functions have not been fully elucidated. In this study, we identified a significant downregulation of circ-IP6K2 in ccRCC tissues based on data from the GSE100186 dataset. The decreased expression of circ-IP6K2 correlated with the progression of TNM stage and histological grade, and was also associated with decreased overall survival rates in ccRCC patients. Moreover, our findings revealed that circ-IP6K2 expression suppressed proliferation, migration, and invasion capabilities in vitro, and inhibited xenograft growth in vivo. Mechanistically, circ-IP6K2 acted as a sponge for miR-1292-5p in ccRCC cells, which in turn targeted the 3'UTR of CAMK2N1, leading to a decrease in its expression. CAMK2N1 was identified as a tumor suppressor that negatively regulated the ß-catenin/c-Myc oncogenic signaling pathway. Additionally, we confirmed a positive correlation between the expression of circ-IP6K2 and CAMK2N1 in ccRCC. Circ-IP6K2 functions to impede the progression of ccRCC by modulating the miR-1292-5p/CAMK2N1 axis. These findings shed new light on the molecular mechanisms driving ccRCC progression and suggest potential therapeutic targets for the treatment of ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , Fosfotransferasas (Aceptor del Grupo Fosfato) , ARN Circular , Animales , Femenino , Humanos , Masculino , Ratones , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Transducción de Señal , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo
17.
Cancer Immunol Immunother ; 73(5): 95, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607586

RESUMEN

BACKGROUND: Homologous recombination deficiency (HRD), though largely uncharacterized in clear cell renal cell carcinoma (ccRCC), was found associated with RAD51 loss of expression. PBRM1 is the second most common mutated genes in ccRCC. Here, we introduce a HRD function-based PBRM1-RAD51 ccRCC classification endowed with diverse immune checkpoint blockade (ICB) responses. METHODS: Totally 1542 patients from four independent cohorts were enrolled, including our localized Zhongshan hospital (ZSHS) cohort and Zhongshan hospital metastatic RCC (ZSHS-mRCC) cohort, The Cancer Genome Atlas (TCGA) cohort and CheckMate cohort. The genomic profile and immune microenvironment were depicted by genomic, transcriptome data and immunohistochemistry. RESULTS: We observed that PBRM1-loss ccRCC harbored enriched HRD-associated mutational signature 3 and loss of RAD51. Dual-loss of PBRM1 and RAD51 identified patients hyper-sensitive to immunotherapy. This dual-loss subtype was featured by M1 macrophage infiltration. Dual-loss was, albeit homologous recombination defective, with high chromosomal stability. CONCLUSIONS: PBRM1 and RAD51 dual-loss ccRCC indicates superior responses to immunotherapy. Dual-loss ccRCC harbors an immune-desert microenvironment but enriched with M1 macrophages. Dual-loss ccRCC is susceptible to defective homologous recombination but possesses high chromosomal stability.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/terapia , Inmunoterapia , Neoplasias Renales/genética , Neoplasias Renales/terapia , Inestabilidad Cromosómica , Microambiente Tumoral , Recombinasa Rad51 , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
18.
Mol Carcinog ; 63(5): 951-961, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38362840

RESUMEN

Empty spiracles homeobox 2 (EMX2) is initially identified as a key transcription factor that plays an essential role in the regulation of neuronal development and some brain disorders. Recently, several studies emphasized that EMX2 could as a tumor suppressor, but its role in human clear cell renal cell carcinoma (ccRCC) remains unclear. In the present study, we investigated the role and underlying mechanism of EMX2 in the regulation of ccRCC progress. Our results demonstrated that EMX2 expression was markedly decreased in ccRCC tissues and cell lines, and low EMX2 expression predicted the poor prognosis of ccRCC patients. In addition, forced expression of EMX2 significantly inhibited the cell growth, migration, and invasion in vitro, as well as ccRCC tumor growth in nude mice, via, at least in part, regulating Akt/FOXO3a pathway. In detail, EMX2 could attenuate the phosphorylation levels of Akt and FOXO3a, and increase FOXO3a expression without affecting total Akt expression in vivo and in vitro. Meanwhile, shRNA-mediated knockdown of FOXO3a expression could obviously attenuate the effects of EMX2 on cell growth, migration, invasion, and tumor growth. Furthermore, EMX2 could significantly attenuate the interaction between Akt and FOXO3a. Taken together, our results demonstrated that EMX2 could inhibit ccRCC progress through, at least in part, modulating Akt/FOXO3a signaling pathway, thus representing a novel role and underlying mechanism of EMX2 in the regulation of ccRCC progress.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Humanos , Ratones , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Ratones Desnudos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína Forkhead Box O3/metabolismo
19.
J Transl Med ; 22(1): 607, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951896

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is a prevalent malignancy with complex heterogeneity within epithelial cells, which plays a crucial role in tumor progression and immune regulation. Yet, the clinical importance of the malignant epithelial cell-related genes (MECRGs) in ccRCC remains insufficiently understood. This research aims to undertake a comprehensive investigation into the functions and clinical relevance of malignant epithelial cell-related genes in ccRCC, providing valuable understanding of the molecular mechanisms and offering potential targets for treatment strategies. Using data from single-cell sequencing, we successfully identified 219 MECRGs and established a prognostic model MECRGS (MECRGs' signature) by synergistically analyzing 101 machine-learning models using 10 different algorithms. Remarkably, the MECRGS demonstrated superior predictive performance compared to traditional clinical features and 92 previously published signatures across six cohorts, showcasing its independence and accuracy. Upon stratifying patients into high- and low-MECRGS subgroups using the specified cut-off threshold, we noted that patients with elevated MECRGS scores displayed characteristics of an immune suppressive tumor microenvironment (TME) and showed worse outcomes after immunotherapy. Additionally, we discovered a distinct ccRCC tumor cell subtype characterized by the high expressions of PLOD2 (procollagen-lysine,2-oxoglutarate 5-dioxygenase 2) and SAA1 (Serum Amyloid A1), which we further validated in the Renji tissue microarray (TMA) cohort. Lastly, 'Cellchat' revealed potential crosstalk patterns between these cells and other cell types, indicating their potential role in recruiting CD163 + macrophages and regulatory T cells (Tregs), thereby establishing an immunosuppressive TME. PLOD2 + SAA1 + cancer cells with intricate crosstalk patterns indeed show promise for potential therapeutic interventions.


Asunto(s)
Carcinoma de Células Renales , Células Epiteliales , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Microambiente Tumoral , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Microambiente Tumoral/genética , Neoplasias Renales/genética , Neoplasias Renales/patología , Pronóstico , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Masculino , Perfilación de la Expresión Génica , Aprendizaje Automático
20.
J Transl Med ; 22(1): 533, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831470

RESUMEN

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a common disease in the urinary system, with a high incidence and poor prognosis in advanced stages. Although γ-interferon-inducible protein 16 (IFI16) has been reported to play a role in various tumors, its involvement in ccRCC remains poorly documented, and the molecular mechanisms are not yet clear. METHODS: We conducted bioinformatics analysis to study the expression of IFI16 in ccRCC using public databases. Additionally, we analyzed and validated clinical specimens that we collected. Subsequently, we explored the impact of IFI16 on ccRCC cell proliferation, migration, and invasion through in vitro and in vivo experiments. Furthermore, we predicted downstream molecules and pathways using transcriptome analysis and confirmed them through follow-up experimental validation. RESULTS: IFI16 was significantly upregulated in ccRCC tissue and correlated with poor patient prognosis. In vitro, IFI16 promoted ccRCC cell proliferation, migration, and invasion, while in vivo, it facilitated subcutaneous tumor growth and the formation of lung metastatic foci. Knocking down IFI16 suppressed its oncogenic function. At the molecular level, IFI16 promoted the transcription and translation of IL6, subsequently activating the PI3K/AKT signaling pathway and inducing epithelial-mesenchymal transition (EMT). CONCLUSION: IFI16 induced EMT through the IL6/PI3K/AKT axis, promoting the progression of ccRCC.


Asunto(s)
Carcinoma de Células Renales , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Interleucina-6 , Neoplasias Renales , Proteínas Nucleares , Fosfatidilinositol 3-Quinasas , Fosfoproteínas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Línea Celular Tumoral , Interleucina-6/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Animales , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Invasividad Neoplásica , Masculino , Femenino , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA