Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Dev Biol ; 515: 79-91, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39019425

RESUMEN

The trigeminal ganglion, the largest of the vertebrate cranial ganglia, is comprised of sensory neurons that relay sensations of pain, touch, and temperature to the brain. These neurons are derived from two embryonic cell types, the neural crest and ectodermal placodes, whose interactions are critical for proper ganglion formation. While the T-cell leukemia homeobox 3 (Tlx3) gene is known to be expressed in placodally-derived sensory neurons and necessary for their differentiation, little was known about Tlx3 expression and/or function in the neural crest-derived component of the developing trigeminal ganglion. By combining lineage labeling with in situ hybridization in the chick embryo, we show that neural crest-derived cells that contribute to the cranial trigeminal ganglion express Tlx3 at a time point that coincides with the onset of ganglion condensation. Importantly, loss of Tlx3 function in vivo diminishes the overall size and abundance of neurons within the trigeminal ganglion. Conversely, ectopic expression of Tlx3 in migrating cranial neural crest results in their premature neuronal differentiation. Taken together, our results demonstrate a critical role for Tlx3 in neural crest-derived cells during chick trigeminal gangliogenesis.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Cresta Neural , Ganglio del Trigémino , Animales , Ganglio del Trigémino/metabolismo , Ganglio del Trigémino/embriología , Ganglio del Trigémino/citología , Embrión de Pollo , Cresta Neural/metabolismo , Cresta Neural/embriología , Cresta Neural/citología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Neuronas/metabolismo , Neurogénesis/genética , Movimiento Celular , Linaje de la Célula
2.
Dev Dyn ; 252(1): 81-103, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35972036

RESUMEN

Sensory neurons of the head are the ones that transmit the information about the external world to our brain for its processing. Axons from cranial sensory neurons sense different chemoattractant and chemorepulsive molecules during the journey and in the target tissue to establish the precise innervation with brain neurons and/or receptor cells. Here, we aim to unify and summarize the available information regarding molecular mechanisms guiding the different afferent sensory axons of the head. By putting the information together, we find the use of similar guidance cues in different sensory systems but in distinct combinations. In vertebrates, the number of genes in each family of guidance cues has suffered a great expansion in the genome, providing redundancy, and robustness. We also discuss recently published data involving the role of glia and mechanical forces in shaping the axon paths. Finally, we highlight the remaining questions to be addressed in the field.


Asunto(s)
Orientación del Axón , Axones , Animales , Axones/fisiología , Células Receptoras Sensoriales , Neuroglía , Órganos de los Sentidos
3.
Genesis ; 59(12): e23453, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34664392

RESUMEN

The vertebrate Six (Sine oculis homeobox) family of homeodomain transcription factors plays critical roles in the development of several organs. Six1 plays a central role in cranial placode development, including the precursor tissues of the inner ear, as well as other cranial sensory organs and the kidney. In humans, mutations in SIX1 underlie some cases of Branchio-oto-renal (BOR) syndrome, which is characterized by moderate-to-severe hearing loss. We utilized CRISPR/Cas9 technology to establish a six1 mutant line in Xenopus tropicalis that is available to the research community. We demonstrate that at larval stages, the six1-null animals show severe disruptions in gene expression of putative Six1 target genes in the otic vesicle, cranial ganglia, branchial arch, and neural tube. At tadpole stages, six1-null animals display dysmorphic Meckel's, ceratohyal, and otic capsule cartilage morphology. This mutant line will be of value for the study of the development of several organs as well as congenital syndromes that involve these tissues.


Asunto(s)
Síndrome Branquio Oto Renal/genética , Anomalías Congénitas/genética , Pérdida Auditiva/genética , Proteínas de Homeodominio/genética , Proteínas de Xenopus/genética , Animales , Región Branquial/crecimiento & desarrollo , Región Branquial/patología , Síndrome Branquio Oto Renal/fisiopatología , Sistemas CRISPR-Cas/genética , Anomalías Congénitas/patología , Desarrollo Embrionario/genética , Ganglios Parasimpáticos/crecimiento & desarrollo , Ganglios Parasimpáticos/patología , Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Pérdida Auditiva/fisiopatología , Humanos , Tubo Neural/crecimiento & desarrollo , Tubo Neural/patología , Cráneo/crecimiento & desarrollo , Cráneo/patología , Factores de Transcripción/genética , Xenopus/genética , Xenopus/crecimiento & desarrollo
4.
Dev Biol ; 457(1): 69-82, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31539539

RESUMEN

Vertebrate ear progenitors are induced by fibroblast growth factor signalling, however the molecular mechanisms leading to the coordinate activation of downstream targets are yet to be discovered. The ear, like other sensory placodes, arises from the pre-placodal region at the border of the neural plate. Using a multiplex NanoString approach, we determined the response of these progenitors to FGF signalling by examining the changes of more than 200 transcripts that define the otic and other placodes, neural crest and neural plate territories. This analysis identifies new direct and indirect FGF targets during otic induction. Investigating changes in histone marks by ChIP-seq reveals that FGF exposure of pre-placodal cells leads to rapid deposition of active chromatin marks H3K27ac near FGF-response genes, while H3K27ac is depleted in the vicinity of non-otic genes. Genomic regions that gain H3K27ac act as cis-regulatory elements controlling otic gene expression in time and space and define a unique transcription factor signature likely to control their activity. Finally, we show that in response to FGF signalling the transcription factor dimer AP1 recruits the histone acetyl transferase p300 to selected otic enhancers. Thus, during ear induction FGF signalling modifies the chromatin landscape to promote enhancer activation and chromatin accessibility.


Asunto(s)
Oído/embriología , Elementos de Facilitación Genéticos , Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Animales , Proteínas Aviares/metabolismo , Embrión de Pollo , Factores de Transcripción Forkhead/metabolismo , Código de Histonas , Proteínas Oncogénicas v-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factores de Transcripción p300-CBP/metabolismo
5.
Development ; 145(14)2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29980564

RESUMEN

The origin of the vertebrate head is one of the great unresolved issues in vertebrate evolutionary developmental biology. Although many of the novelties in the vertebrate head and pharynx derive from the neural crest, it is still unknown how early vertebrates patterned the neural crest within the ancestral body plan they inherited from invertebrate chordates. Here, using a basal vertebrate, the sea lamprey, we show that homologs of Semaphorin3F (Sema3F) ligand and its Neuropilin (Nrp) receptors show complementary and dynamic patterns of expression that correlate with key periods of neural crest development (migration and patterning of cranial neural crest-derived structures). Using CRISPR/Cas9-mediated mutagenesis, we demonstrate that lamprey Sema3F is essential for patterning of neural crest-derived melanocytes, cranial ganglia and the head skeleton, but is not required for neural crest migration or patterning of trunk neural crest derivatives. Based on comparisons with jawed vertebrates, our results suggest that the deployment of Nrp-Sema3F signaling, along with other intercellular guidance cues, was pivotal in allowing early vertebrates to organize and pattern cranial neural crest cells into many of the hallmark structures that define the vertebrate head.


Asunto(s)
Tipificación del Cuerpo , Cabeza/embriología , Cresta Neural/embriología , Neuropilinas/metabolismo , Semaforinas/metabolismo , Transducción de Señal , Animales , Sistemas CRISPR-Cas , Movimiento Celular , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Lampreas/genética , Melanocitos/citología , Melanocitos/metabolismo , Cresta Neural/citología , Neuropilinas/genética , Filogenia , Semaforinas/genética , Células Receptoras Sensoriales/metabolismo , Cráneo/citología
6.
Clin Genet ; 99(4): 588-593, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33439489

RESUMEN

Congenital cranial dysinnervation disorders (CCDDs) are a heterogeneous group of neurodevelopmental phenotypes caused by a primary disturbance of innervation due to deficient, absent, or misguided cranial nerves. Although some CCDDs genes are known, several clinical phenotypes and their aetiologies remain to be elucidated. We describe a 12-year-old boy with hypotonia, developmental delay, sensorineural hearing loss, and keratoconjunctivitis due to lack of corneal reflex. He had a long expressionless face, severe oromotor dysfunction, bilateral agenesis/severe hypoplasia of the VIII nerve with marked atresia of the internal auditory canals and cochlear labyrinth malformation. Trio-exome sequencing identified a homozygous loss of function variant in the NEUROG1 gene (NM_006161.2: c.202G > T, p.Glu68*). NEUROG1 is considered a causal candidate for CCDDs based on (i) the previous report of a patient with a homozygous gene deletion and developmental delay, deafness due to absent bilateral VIII nerves, and severe oromotor dysfunction; (ii) a second patient with a homozygous NEUROG1 missense variant and corneal opacity, absent corneal reflex and intellectual disability; and (iii) the knockout mouse model phenotype which highly resembles the disorder observed in humans. Our findings support the growing compelling evidence that loss of NEUROG1 leads to a very distinctive disorder of cranial nerves development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Nervio Coclear/anomalías , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Nervio Trigémino/anomalías , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Niño , Discapacidades del Desarrollo/genética , Enanismo/genética , Pérdida Auditiva Sensorineural/genética , Humanos , Discapacidad Intelectual/genética , Queratoconjuntivitis/genética , Masculino , Hipotonía Muscular/genética , Proteínas del Tejido Nervioso/fisiología
7.
Genesis ; 58(5): e23356, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32049434

RESUMEN

Vertebrates possess paired cranial sensory ganglia derived from two embryonic cell populations, neural crest and placodes. Cranial sensory ganglia arose prior to the divergence of jawed and jawless vertebrates, but the developmental mechanisms that facilitated their evolution are unknown. Using gene expression and cell lineage tracing experiments in embryos of the sea lamprey, Petromyzon marinus, we find that in the cranial ganglia we targeted, development consists of placode-derived neuron clusters in the core of ganglia, with neural crest cells mostly surrounding these neuronal clusters. To dissect functional roles of neural crest and placode cell associations in these developing cranial ganglia, we used CRISPR/Cas9 gene editing experiments to target genes critical for the development of each population. Genetic ablation of SoxE2 and FoxD-A in neural crest cells resulted in differentiated cranial sensory neurons with abnormal morphologies, whereas deletion of DlxB in cranial placodes resulted in near-total loss of cranial sensory neurons. Taken together, our cell-lineage, gene expression, and gene editing results suggest that cranial neural crest cells may not be required for cranial ganglia specification but are essential for shaping the morphology of these sensory structures. We propose that the association of neural crest and placodes in the head of early vertebrates was a key step in the organization of neurons and glia into paired sensory ganglia.


Asunto(s)
Ganglios Sensoriales/crecimiento & desarrollo , Lampreas/crecimiento & desarrollo , Cresta Neural/crecimiento & desarrollo , Neurogénesis , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Ganglios Sensoriales/citología , Ganglios Sensoriales/metabolismo , Lampreas/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción SOX/genética , Factores de Transcripción SOX/metabolismo , Cráneo/crecimiento & desarrollo
8.
Dev Biol ; 425(1): 85-99, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28315296

RESUMEN

Cranial sensory ganglia are components of the peripheral nervous system that possess a significant somatosensory role and include neurons within the trigeminal and epibranchial nerve bundles. Although it is well established that these ganglia arise from interactions between neural crest and neurogenic placode cells, the molecular basis of ganglia assembly is still poorly understood. Members of the Annexin protein superfamily play key roles in sensory nervous system development throughout metazoans. Annexin A6 is expressed in chick trigeminal and epibranchial placode cell-derived neuroblasts and neurons, but its function in cranial ganglia formation has not been elucidated. To this end, we interrogated the role of Annexin A6 using gene perturbation studies in the chick embryo. Our data reveal that placode cell-derived neuroblasts with reduced Annexin A6 levels ingress and migrate normally to the ganglionic anlage, where neural crest cell corridors correctly form around them. Strikingly, while Annexin A6-depleted placode cell-derived neurons still express mature neuronal markers, they fail to form two long processes, which are considered morphological features of mature neurons, and no longer innervate their designated targets due to the absence of this bipolar morphology. Moreover, overexpression of Annexin A6 causes some placode cell-derived neurons to form extra protrusions alongside these bipolar processes. These data demonstrate that the molecular program associated with neuronal maturation is distinct from that orchestrating changes in neuronal morphology, and, importantly, reveal Annexin A6 to be a key membrane scaffolding protein during sensory neuron membrane biogenesis. Collectively, our results provide novel insight into mechanisms underscoring morphological changes within placode cell-derived neurons that are essential for cranial gangliogenesis.


Asunto(s)
Anexina A6/metabolismo , Proteínas Aviares/metabolismo , Membrana Celular/metabolismo , Ganglios Sensoriales/metabolismo , Células Receptoras Sensoriales/metabolismo , Cráneo/inervación , Empalme Alternativo , Animales , Anexina A6/genética , Proteínas Aviares/genética , Secuencia de Bases , Embrión de Pollo , Pollos , Ganglios Sensoriales/citología , Ganglios Sensoriales/embriología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Immunoblotting , Microscopía Confocal , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células Receptoras Sensoriales/citología , Homología de Secuencia de Ácido Nucleico
9.
J Anat ; 232(3): 431-439, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29235648

RESUMEN

There is growing evidence of a direct influence of vasculature on the development of neurons in the brain. The development of the cranial vasculature has been well described in zebrafish but its anatomical relationship with the adjacent developing sensory ganglia has not been addressed. Here, by 3D imaging of fluorescently labelled blood vessels and sensory ganglia, we describe for the first time the spatial organization of the cranial vasculature in relation to the cranial ganglia during zebrafish development. We show that from 24 h post-fertilization (hpf) onwards, the statoacoustic ganglion (SAG) develops in direct contact with two main blood vessels, the primordial hindbrain channel and the lateral dorsal aortae (LDA). At 48 hpf, the LDA is displaced medially, losing direct contact with the SAG. The relationship of the other cranial ganglia with the vasculature is evident for the medial lateral line ganglion and for the vagal ganglia that grow along the primary head sinus (PHS). We also observed that the innervation of the anterior macula runs over the PHS vessel. Our spatiotemporal anatomical map of the cranial ganglia and the head vasculature indicates physical interactions between both systems and suggests a possible functional interaction during development.


Asunto(s)
Vasos Sanguíneos/embriología , Encéfalo/irrigación sanguínea , Encéfalo/embriología , Nervios Craneales/irrigación sanguínea , Pez Cebra/embriología , Animales , Nervios Craneales/embriología , Ganglios/irrigación sanguínea , Ganglios/embriología
10.
Dev Genes Evol ; 227(5): 319-338, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28871438

RESUMEN

COE genes encode transcription factors that have been found in all metazoans examined to date. They possess a distinctive domain structure that includes a DNA-binding domain (DBD), an IPT/TIG domain and a helix-loop-helix (HLH) domain. An intriguing feature of the COE HLH domain is that in jawed vertebrates it is composed of three helices, compared to two in invertebrates. We report the isolation and expression of two COE genes from the brook lamprey Lampetra planeri and compare these to COE genes from the lampreys Lethenteron japonicum and Petromyzon marinus. Molecular phylogenetic analyses do not resolve the relationship of lamprey COE genes to jawed vertebrate paralogues, though synteny mapping shows that they all derive from duplication of a common ancestral genomic region. All lamprey genes encode conserved DBD, IPT/TIG and HLH domains; however, the HLH domain of lamprey COE-A genes encodes only two helices while COE-B encodes three helices. We also identified COE-B splice variants encoding either two or three helices in the HLH domain, along with other COE-A and COE-B splice variants affecting the DBD and C-terminal transactivation regions. In situ hybridisation revealed expression in the lamprey nervous system including the brain, spinal cord and cranial sensory ganglia. We also detected expression of both genes in mesenchyme in the pharyngeal arches and underlying the notochord. This allows us to establish the primitive vertebrate expression pattern for COE genes and compare this to that of invertebrate chordates and other animals to develop a model for COE gene evolution in chordates.


Asunto(s)
Cordados/genética , Evolución Molecular , Proteínas de Peces/genética , Lampreas/genética , Empalme del ARN , Sintenía , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Linaje de la Célula , Cordados/crecimiento & desarrollo , Cordados/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genoma , Lampreas/crecimiento & desarrollo , Lampreas/metabolismo , Filogenia , Homología de Secuencia , Factores de Transcripción/química , Factores de Transcripción/metabolismo
11.
Dev Genes Evol ; 226(6): 423-428, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27392729

RESUMEN

Nkx5 family members are homeobox transcription factors important for sensory organ development. Several members of the Nkx5 family are expressed in the eye, brain, developing ear, and lateral line. Members of this family have been previously identified in medaka, chick, and mouse. Here, we characterize two members of the Nkx5 family, Nkx5.3 and SOHo, in Xenopus laevis. We verify the identity of X. laevis Nkx5.3 and SOHo by phylogenetic comparison to chicken, medaka, and zebrafish orthologs. Both Nkx5.3 and SOHo are expressed in the developing eye, ear, lateral line system, and cranial neurons as determined by in situ hybridization.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Órganos de los Sentidos/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/crecimiento & desarrollo , Secuencia de Aminoácidos , Animales , Ganglios/metabolismo , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Hibridación in Situ , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Filogenia , Órganos de los Sentidos/metabolismo , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Xenopus laevis/anatomía & histología , Xenopus laevis/metabolismo
12.
Dev Dyn ; 244(2): 181-210, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25403746

RESUMEN

BACKGROUND: Six1 plays an important role in the development of several vertebrate organs, including cranial sensory placodes, somites, and kidney. Although Six1 mutations cause one form of branchio-otic syndrome (BOS), the responsible gene in many patients has not been identified; genes that act downstream of Six1 are potential BOS candidates. RESULTS: We sought to identify novel genes expressed during placode, somite and kidney development by comparing gene expression between control and Six1-expressing ectodermal explants. The expression patterns of 19 of the significantly up-regulated and 11 of the significantly down-regulated genes were assayed from cleavage to larval stages. A total of 28/30 genes are expressed in the otocyst, a structure that is functionally disrupted in BOS, and 26/30 genes are expressed in the nephric mesoderm, a structure that is functionally disrupted in the related branchio-otic-renal (BOR) syndrome. We also identified the chick homologues of five genes and show that they have conserved expression patterns. CONCLUSIONS: Of the 30 genes selected for expression analyses, all are expressed at many of the developmental times and appropriate tissues to be regulated by Six1. Many have the potential to play a role in the disruption of hearing and kidney function seen in BOS/BOR patients.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Riñón/embriología , Cráneo/embriología , Somitos/embriología , Proteínas de Xenopus/metabolismo , Animales , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Riñón/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Cráneo/citología , Somitos/citología , Proteínas de Xenopus/genética , Xenopus laevis
13.
Ann Anat ; 256: 152323, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39209048

RESUMEN

Fibroblast growth factors (FGFs) are required for the specification and formation of the epibranchial placodes, which give rise to the distal part of the cranial sensory ganglia. However, it remains unclear whether FGFs play a role in regulating the neurite outgrowth of the epibranchial placode-derived ganglia during further development. Previous studies have shown that Fibroblast growth factor 8 (FGF8) promotes neurite outgrowth from the statoacoustic ganglion in vitro. However, these studies did not distinguish between the neural crest- and placode-derived components of the sensory ganglia. In this study, we focused on the petrosal and nodose ganglia as representatives of the epibranchial ganglia and investigated their axonal outgrowth under the influence of FGF8 signaling protein in vitro. To precisely isolate the placode-derived ganglion part, we labeled the placode and its derivatives with enhanced green fluorescent protein (EGFP) through electroporation. The isolated ganglia were then collected for qRT-PCR assay and cultured in a collagen gel with and without FGF8 protein. Our findings revealed that both placode-derived petrosal and nodose ganglia expressed FGFR1 and FGFR2. In culture, FGF8 exerted a neural trophic effect on the axon outgrowth of both ganglia. While the expression levels of FGFR1/2 were similar between the two ganglia, the petrosal ganglion exhibited greater sensitivity to FGF8 compared to the nodose ganglion. This indicates that the placode-derived ganglia have differential responsiveness to FGF8 signaling during axonal extension. Thus, FGF8 is not only required for the early development of the epibranchial placode, as shown in previous studies, but also promotes neurite outgrowth of placode-derived ganglia.


Asunto(s)
Factor 8 de Crecimiento de Fibroblastos , Proyección Neuronal , Animales , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Proyección Neuronal/fisiología , Ganglio Nudoso/citología , Ganglio Nudoso/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Ratones , Neuritas/fisiología
14.
Front Physiol ; 11: 531933, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192541

RESUMEN

Development of the vertebrate head is a complex and dynamic process, which requires integration of all three germ layers and their derivatives. Of special importance are ectoderm-derived cells that form the cranial placodes, which then differentiate into the cranial ganglia and sensory organs. Critical to a fully functioning head, defects in cranial placode and sensory organ development can result in congenital craniofacial anomalies. In a forward genetic screen aimed at identifying novel regulators of craniofacial development, we discovered an embryonically lethal mouse mutant, snouty, which exhibits malformation of the facial prominences, cranial nerves and vasculature. The snouty mutation was mapped to a single nucleotide change in a ubiquitously expressed gene, Med23, which encodes a subunit of the global transcription co-factor complex, Mediator. Phenotypic analyses revealed that the craniofacial anomalies, particularly of the cranial ganglia, were caused by a failure in the proper specification of cranial placode neuronal precursors. Molecular analyses determined that defects in cranial placode neuronal differentiation in Med23 sn/sn mutants were associated with elevated WNT/ß-catenin signaling, which can be partially rescued through combined Lrp6 and Wise loss-of-function. Our work therefore reveals a surprisingly tissue specific role for the ubiquitously expressed mediator complex protein Med23 in placode differentiation during cranial ganglia development. This highlights the importance of coupling general transcription to the regulation of WNT signaling during embryogenesis.

15.
PeerJ ; 8: e10479, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33391871

RESUMEN

BACKGROUND: The neurotrophic tyrosine kinase receptor (Ntrk) gene family plays a critical role in the survival of somatosensory neurons. Most vertebrates have three Ntrk genes each of which encode a Trk receptor: TrkA, TrkB, or TrkC. The function of the Trk receptors is modulated by the p75 neurotrophin receptors (NTRs). Five ntrk genes and one p75 NTR gene (ngfrb) have been discovered in zebrafish. To date, the expression of these genes in the initial stages of neuron specification have not been investigated. PURPOSE: The present work used whole mount in situ hybridization to analyze expression of the five ntrk genes and ngfrb in zebrafish at a timepoint when the first sensory neurons of the zebrafish body are being established (16.5 hpf). Because expression of multiple genes were not found at this time point, we also checked expression at 24 hpf to ensure the functionality of our six probes. RESULTS: At 16.5 hpf, we found tissue specific expression of ntrk1 in cranial ganglia, and tissue specific expression of ntrk2a in cranial ganglia and in the spinal cord. Other genes analyzed at 16.5 hpf were either diffuse or not detected. At 24 hpf, we found expression of both ntrk1 and ntrk2a in the spinal cord as well as in multiple cranial ganglia, and we identified ngfrb expression in cranial ganglia at 24 hpf. ntrk2b, ntrk3a and ntrk3b were detected in the developing brain at 24 hpf. CONCLUSION: These data are the first to demonstrate that ntrk1 and ntrk2a are the initial neurotrophic tyrosine kinase receptors expressed in sensory neurons during the development of the zebrafish body, and the first to establish expression patterns of ngfrb during early zebrafish development. Our data indicate co-expression of ntrk1, ntrk2a and ngfrb, and we speculate that these overlapping patterns indicate relatedness of function.

16.
Gene Expr Patterns ; 18(1-2): 21-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25976293

RESUMEN

The cranial trigeminal and epibranchial ganglia are components of the peripheral nervous system that possess an important somatosensory role. These ganglia arise from the intermixing and coalescence of two different migratory cell types, neural crest cells and neurogenic placodes cells, and thus typify the phenomena of cell migration and intercellular interactions for their creation. The underlying molecular mechanisms of ganglia formation, however, are still poorly understood. To address this, we have analyzed the spatio-temporal expression profile of Annexin A6 during chick gangliogenesis, as Annexin proteins play important, conserved roles in ganglia development and physiology. We observe Annexin A6 protein in cranial neural crest cells prior to, during and after their emergence from the neural tube. Fully migratory cranial neural crest cells, however, are devoid of Annexin A6. Interestingly, we note Annexin A6 protein in trigeminal and epibranchial placode cells as these cells ingress from the ectoderm to initiate ganglia formation. This expression is also maintained in the sensory placodes later on when they coalesce with neural crest cells to assemble the cranial ganglia. These results suggest that the dynamic expression of Annexin A6 in various embryonic cell types may allow Annexin A6 to serve distinct functions throughout embryonic development.


Asunto(s)
Anexina A6/metabolismo , Diferenciación Celular , Ectodermo/metabolismo , Ganglios/citología , Cresta Neural/metabolismo , Cráneo/crecimiento & desarrollo , Animales , Movimiento Celular , Embrión de Pollo , Ganglios/metabolismo , Cresta Neural/citología , Tubo Neural/metabolismo , Cráneo/citología , Cráneo/metabolismo
17.
J Chem Neuroanat ; 55: 18-23, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24269509

RESUMEN

We have examined whether calcitonin gene-related peptide-immunoreactive (CGRP-ir) neurons in the vagal and glossopharyngeal ganglia innervate the larynx. Many CGRP-ir neurons were located mostly in the superior glossopharyngeal-jugular ganglion complex that was fused the superior glossopharyngeal ganglion and the jugular ganglion in the cranial cavity. When Fluorogold was applied to the cut end of the superior laryngeal nerve (SLN) or the recurrent laryngeal nerve (RLN), many Fluorogold-labeled neurons were found in the superior glossopharyngeal-jugular ganglion complex and the nodose ganglion. Double-labeling for CGRP and Fluorogold showed that about 80% of Fluorogold-labeled neurons in the superior glossopharyngeal-jugular ganglion complex expressed CGRP-like immunoreactivity in the case of application to the SLN, and about 50% of Fluorogold-labeled neurons expressed CGRP-like immunoreactivity in the case of the RLN. Only a few double-labeled neurons were found in the nodose ganglion. The number of the Fluorogold-labeled neurons and double-labeled neurons in the superior glossopharyngeal-jugular ganglion complex in the case of the SLN was larger than that in the case of the RLN. These results indicate that sensory information from the larynx might be conveyed by many CGRP-ir neurons located in the superior glossopharyngeal-jugular ganglion complex by way of the SLN and the RLN.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Ganglios Sensoriales/metabolismo , Nervio Glosofaríngeo/metabolismo , Nervios Laríngeos/metabolismo , Nervio Vago/metabolismo , Animales , Inmunohistoquímica , Laringe/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/metabolismo
18.
Front Neuroanat ; 8: 158, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25565981

RESUMEN

The establishment of a functional nervous system requires a highly orchestrated process of neural proliferation and differentiation. The evolutionary conserved Notch signaling pathway is a key regulator of this process, regulating basic helix-loop-helix (bHLH) transcriptional repressors and proneural genes. However, little is known about downstream Notch targets and subsequently genes required for neuronal specification. In this report, the expression pattern of Transgelin 3 (Tagln3), Chromogranin A (Chga) and Contactin 2 (Cntn2) was described in detail during early chick embryogenesis. Expression of these genes was largely restricted to the nervous system including the early axon scaffold populations, cranial ganglia and spinal motor neurons. Their temporal and spatial expression were compared with the neuronal markers Nescient Helix-Loop-Helix 1 (Nhlh1), Stathmin 2 (Stmn2) and HuC/D. We show that Tagln3 is an early marker for post-mitotic neurons whereas Chga and Cntn2 are expressed in mature neurons. We demonstrate that inhibition of Notch signaling during spinal cord neurogenesis enhances expression of these markers. This data demonstrates that Tagln3, Chga and Cntn2 represent strong new candidates to contribute to the sequential progression of vertebrate neurogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA