Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
Más filtros

Intervalo de año de publicación
1.
Endocr J ; 71(4): 317-333, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38346749

RESUMEN

Soybean is a source of protein, fibers, and phytochemical isoflavones which are considered to have numerous health benefits for children and adulthood. On the other hand, isoflavones are widely known as phytoestrogens that exert their action via the estrogen signaling pathway. With this regard, isoflavones are also considered as endocrine-disrupting chemicals. Endogenous estrogen plays a crucial role in brain development through binding to estrogen receptors (ERs) or G protein-coupled estrogen receptors 1 (GPER1) and regulates morphogenesis, migration, functional maturation, and intracellular metabolism of neurons and glial cells. Soy isoflavones can also bind to ERs, GPER1, and, furthermore, other receptors to modulate their action. Therefore, soy isoflavone consumption may affect brain development during the pre-and post-natal periods. This review summarizes the current knowledge on the mechanisms of isoflavone action, particularly in the early stages of brain development by introducing representative human, and animal models, and in vitro studies, and discusses their beneficial and adverse impact on neurobehavior. As a conclusion, the soy product consumption during the pre-and post-natal periods under proper range of dose showed beneficial effects in neurobehavior development, including improvement of anxiety, aggression, hyperactive behavior, and cognition, whereas their adverse effect by taking higher doses cannot be excluded. We also present novel research lines to further assess the effect of soy isoflavone administration during brain development.


Asunto(s)
Encéfalo , Glycine max , Isoflavonas , Transducción de Señal , Isoflavonas/farmacología , Humanos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos , Animales , Glycine max/química , Fitoestrógenos/farmacología , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo
2.
Metab Brain Dis ; 39(1): 199-215, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37855935

RESUMEN

Depression is one of the most prevalent severe CNS disorders, which negatively affects social lives, the ability to work, and the health of people. As per the World Health Organisation (WHO), it is a psychological disorder that is estimated to be a leading disease by 2030. Clinically, various medicines have been formulated to treat depression but they are having a setback due to their side effects, slow action, or poor bioavailability. Nowadays, flavonoids are regarded as an essential component in a variety of nutraceutical, pharmaceutical and medicinal. Isoflavones are a distinctive and important subclass of flavonoids that are generally obtained from soybean, chickpeas, and red clover. The molecules of this class have been extensively explored in various CNS disorders including depression and anxiety. Isoflavones such as genistein, daidzein, biochanin-A, formononetin, and glycitein have been reported to exert an anti-depressant effect through the modulation of different mediators. Fatty acid amide hydrolase (FAAH) mediated depletion of anandamide and hypothalamic-pituitary-adrenal (HPA) axis-mediated modulation of brain-derived neurotrophic factor (BDNF), monoamine oxidase (MAO) mediated depletion of biogenic amines and inflammatory signaling are the important underlying pathways leading to depression. Upregulation in the levels of BDNF, anandamide, antioxidants and monoamines, along with inhibition of MAO, FAAH, HPA axis, and inflammatory stress are the major modulations produced by different isoflavones in the observed anti-depressant effect. Therefore, the present review has been designed to explore the mechanistic interplay of various mediators involved in mediating the anti-depressant action of different isoflavones.


Asunto(s)
Ácidos Araquidónicos , Factor Neurotrófico Derivado del Encéfalo , Endocannabinoides , Isoflavonas , Alcamidas Poliinsaturadas , Humanos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Isoflavonas/farmacología , Flavonoides , Monoaminooxidasa/metabolismo
3.
Phytother Res ; 38(8): 3973-3985, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38847155

RESUMEN

Continuing research is being conducted on novel preventive and therapeutic drugs for cardiovascular diseases (CVDs). Daidzein has shown potential beneficial effects regarding various CVDs and risk factors. However, data in this regard are inconsistent, and there is an urge to accumulate. Therefore, we reviewed the effects of daidzein and daidzin on CVDs. We conducted a search through Scopus, PubMed, Google Scholar, and Web of Science from inception up to October 2023 to find studies with the primary intention of assessing the impacts of daidzein and daidzin on cardiovascular disease in various in vitro, animal, and clinical settings. In vitro and animal studies showed that daidzein and daidzin are effective in terms of reducing inflammation, oxidative stress, hyperlipidemia, myocardial infarction, thromboembolism, hypertension, and aneurysms. However, clinical studies only confirmed a relatively small portion of the previous findings of the in vitro and animal investigations, including anti-hyperlipidemic effects. In conclusion, in vitro and animal studies have reported potential therapeutic effects for daidzein and daidzin regarding CVDs. However, most of the clinical studies were unable to exhibit the same results. Hence, further clinical studies are required to determine the outcomes of administering daidzein and its derivatives for an extended period and in various doses.


Asunto(s)
Enfermedades Cardiovasculares , Isoflavonas , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Humanos , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos
4.
Molecules ; 29(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675529

RESUMEN

It is well known that daidzein has various significant medicinal values and health benefits, such as anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, cholesterol lowering, neuroprotective, cardioprotective and so on. To our disappointment, poor solubility, low permeability and inferior bioavailability seriously limit its clinical application and market development. To optimize the solubility, permeability and bioavailability of daidzein, the cocrystal of daidzein and piperazine was prepared through a scientific and reasonable design, which was thoroughly characterized by single-crystal X-ray diffraction, powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. Combining single-crystal X-ray diffraction analysis with theoretical calculation, detailed structural information on the cocrystal was clarified and validated. In addition, a series of evaluations on the pharmacogenetic properties of the cocrystal were investigated. The results indicated that the cocrystal of daidzein and piperazine possessed the favorable stability, increased solubility, improved permeability and optimized bioavailability of daidzein. Compared with the parent drug, the formation of cocrystal, respectively, resulted in 3.9-, 3.1-, 4.9- and 60.8-fold enhancement in the solubility in four different media, 4.8-fold elevation in the permeability and 3.2-fold in the bioavailability of daidzein. Targeting the pharmaceutical defects of daidzein, the surprising elevation in the solubility, permeability and bioavailability of daidzein was realized by a clever cocrystal strategy, which not only devoted assistance to the market development and clinical application of daidzein but also paved a new path to address the drug-forming defects of insoluble drugs.


Asunto(s)
Disponibilidad Biológica , Isoflavonas , Permeabilidad , Piperazina , Solubilidad , Isoflavonas/química , Isoflavonas/farmacocinética , Piperazina/química , Cristalización , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Animales , Cristalografía por Rayos X , Rastreo Diferencial de Calorimetría , Humanos
5.
Plant Cell Physiol ; 64(5): 486-500, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36718526

RESUMEN

Plant specialized metabolites (PSMs) are often stored as glycosides within cells and released from the roots with some chemical modifications. While isoflavones are known to function as symbiotic signals with rhizobia and to modulate the soybean rhizosphere microbiome, the underlying mechanisms of root-to-soil delivery are poorly understood. In addition to transporter-mediated secretion, the hydrolysis of isoflavone glycosides in the apoplast by an isoflavone conjugate-hydrolyzing ß-glucosidase (ICHG) has been proposed but not yet verified. To clarify the role of ICHG in isoflavone supply to the rhizosphere, we have isolated two independent mutants defective in ICHG activity from a soybean high-density mutant library. In the root apoplastic fraction of ichg mutants, the isoflavone glycoside contents were significantly increased, while isoflavone aglycone contents were decreased, indicating that ICHG hydrolyzes isoflavone glycosides into aglycones in the root apoplast. When grown in a field, the lack of ICHG activity considerably reduced isoflavone aglycone contents in roots and the rhizosphere soil, although the transcriptomes showed no distinct differences between the ichg mutants and wild-types (WTs). Despite the change in isoflavone contents and composition of the root and rhizosphere of the mutants, root and rhizosphere bacterial communities were not distinctive from those of the WTs. Root bacterial communities and nodulation capacities of the ichg mutants did not differ from the WTs under nitrogen-deficient conditions either. Taken together, these results indicate that ICHG elevates the accumulation of isoflavones in the soybean rhizosphere but is not essential for isoflavone-mediated plant-microbe interactions.


Asunto(s)
Isoflavonas , Isoflavonas/química , Glycine max/genética , Glycine max/metabolismo , beta-Glucosidasa/genética , beta-Glucosidasa/química , Rizosfera , Glicósidos/metabolismo , Bacterias/metabolismo , Suelo
6.
Oral Dis ; 29(3): 1226-1233, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34942044

RESUMEN

CONTEXT: Daidzein is a kind of isoflavone compound with many biological functions. However, the specific mechanism regarding the treatment of periodontitis with daidzein is still unclear. OBJECTIVE: To investigate the effect of daidzein on the proliferation and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and its mechanism. MATERIALS AND METHODS: Human periodontal ligament stem cells from clinical samples were isolated in vitro and identified by flow cytometry. hPDLSCs were treated with different concentrations of daidzein. Cell proliferation ability and viability were measured by MTT assay and cell colony formation assay. Osteogenic differentiation and calcification of hPDLSCs were observed by alkaline phosphatase (ALP) staining and alizarin red staining. Western blot was used to detect the expression of c-myc, CyclinD1, osteogenic differentiation-related proteins, and Wnt/ß-catenin signaling pathway proteins in hPDLSCs. RESULTS: human periodontal ligament stem cells were positive for surface antigens CD146, STRO-1, and CD90 expression, but negative for CD45 expression, indicating the successful isolation of hPDLSCs. In addition, daidzein could significantly promote the proliferation, cell viability, ALP activity, and osteogenic differentiation of hPDLSC. At the same time, daidzein could notably increase the expression levels of c-myc, CyclinD1, osteogenic differentiation-related proteins, and Wnt/ß-catenin signaling pathway proteins, while an inhibitor of Wnt/ ß-catenin pathway, XAV-939, could reverse the effect caused by daidzein. DISCUSSION AND CONCLUSION: Daidzein promotes the proliferation and osteogenic differentiation of hPDLSCs by activating Wnt/ß-catenin signaling pathway.


Asunto(s)
Osteogénesis , Ligamento Periodontal , Humanos , Células Cultivadas , Diferenciación Celular , Células Madre , Proliferación Celular
7.
J Appl Toxicol ; 43(12): 1916-1925, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37551860

RESUMEN

The isoflavones genistein and daidzein are flavonoid compounds mainly found in legumes, especially in soybeans and their derived products. These flavonoids can be present in agricultural, domestic and industrial wastewater effluents as a result of anthropogenic activities and may be discharged in the environment. Due to the large growth of the aquaculture sector in recent decades, new and cost-effective fish feeds are being sought, but there is also a particular need to determine the effects of exposed flavonoids on fish in the aquatic environment, as this is the main route of exposure of organisms to endocrine disruptors. This study evaluated the possible effects of these isoflavones on juveniles of Solea senegalensis and Solea solea. After 48-96 h of exposure, the acetylcholinesterase activity in the sole head tissues was measured, and the cholinesterase activity in juveniles of common sole (S. solea) was determined. Experiments were carried out to determine the optimal pH, investigate the specificity of three substrates (acetylthiocholine, butyrylthiocholine, propionylthiocholine) on cholinesterase activity and determine the kinetic parameters (Vmax and Km ). The results obtained showed that neither genistein nor daidzein exposure to S. senegalensis and S. solea inhibited the activity of acetylcholinesterase at the tested concentrations (genistein: 1.25, 2.5, 5, 10 and 20 mg/L; daidzein: 0.625, 1.25, 2.5, 5 and 10 mg/L).


Asunto(s)
Peces Planos , Isoflavonas , Animales , Genisteína/toxicidad , Acetilcolinesterasa , Isoflavonas/farmacología , Metamorfosis Biológica
8.
Phytother Res ; 37(6): 2578-2604, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37118928

RESUMEN

Daidzein, 7-hydroxy-3-(4-hydroxyphenyl)-4H-chromen-4-one is a naturally occurring compound present in leguminous plants, especially in soybeans. Chemically it belongs to the isoflavone class and possesses high nutritive value. Daidzein acts on estrogen receptor and is non-steroidal in nature hence it can also be called as non-steroidal phytoestrogenic compound. Daidzein has been studied by many researchers for its pharmacological activities. Daidzein metabolites were also studied in detail for their health benefits. Researchers have developed novel formulations of daidzein in the past few years to improve its aqueous solubility and bioavailability. Self-emulsified daidzein, poly(lactic-co-glycolic) acid daidzein nanoparticles, nanoemulsion, nanoemulsion gel, and co-crystals are a few of them. The present review provides detailed information on the chemistry, drug development aspects, pharmacokinetics, and pharmacodynamics of daidzein. A literature search was performed using various datasets like PubMed, EBSCO, ProQuest Scopus, and selected websites including the National Institutes of Health and the World Health Organization. Daidzein has a wide range of pharmacodynamic properties in the treatment of cancer, neurodegenerative disorders, cardiac disorders, diabetes and its complication, osteoporosis, and skin disorders. The pharmacokinetic, pharmacodynamics, and drug development aspects of daidzein will help researchers to design further research work on daidzein in the future.


Asunto(s)
Isoflavonas , Isoflavonas/farmacología , Isoflavonas/metabolismo , Glycine max/química , Fitoestrógenos , Disponibilidad Biológica
9.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446033

RESUMEN

The impact and safety of phytoestrogens, plant-derived isoflavones with estrogenic activity predominantly present in soy, on female reproductive health and IVF outcomes continues to be hotly debated. In this prospective cohort study, 60 women attending IVI-RMA New Jersey undergoing IVF with single frozen embryo transfer (SET/FET) of good-quality euploid blastocyst after PGT-A analysis were recruited. Concentrations of two phytoestrogens (daidzein and genistein) in follicular fluid (FF) and urine (U) were measured by UPLC-MSMS, both collected on vaginal oocyte retrieval day. These measurements correlated with IVF clinical outcomes. In models adjusted for age, BMI, race/ethnicity, and smoking status, higher FF phytoestrogen concentrations were significantly associated with higher serum estradiol, enhanced probability of implantation, clinical pregnancy, and live birth. Moreover, higher urine phytoestrogen concentrations were significantly associated with improved oocyte maturation and fertilization potential and increased probability of clinical pregnancy and live birth. Finally, higher FF and urine phytoestrogen concentrations were associated with a higher probability of live birth from a given IVF cycle. Our results suggest that dietary phytoestrogens improved reproductive outcomes of women undergoing IVF treatment. However, additional prospective studies are needed to optimize the use of phytoestrogens to further enhance reproductive outcomes and/or protect against reproductive insults.


Asunto(s)
Fertilización In Vitro , Fitoestrógenos , Embarazo , Femenino , Humanos , Fertilización In Vitro/métodos , Líquido Folicular , Estudios Prospectivos , Transferencia de Embrión/métodos , Índice de Embarazo , Estudios Retrospectivos
10.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569361

RESUMEN

Platelets play crucial roles in cardiovascular diseases (CVDs) by regulating hemostasis and blood coagulation at sites of blood vessel damage. Accumulating evidence indicates daidzein inhibits platelet activation, but the mechanism involved has not been elucidated. Thus, in this study, we investigated the mechanism responsible for the inhibition of collagen-induced platelet aggregation by daidzein. We found that in collagen-induced platelets, daidzein suppressed the production of thromboxane A2 (TXA2), a molecule involved in platelet activation and aggregation, by inhibiting the cytosolic phospholipase A2 (cPLA2) signaling pathway. However, daidzein did not affect cyclooxygenase-1 (COX-1). Furthermore, daidzein attenuated the PI3K/PDK1/Akt/GSK3αß and MAPK (p38, ERK) signaling pathways, increased the phosphorylation of inositol trisphosphate receptor1 (IP3R1) and vasodilator-stimulated phosphoprotein (VASP), and increased the level of cyclic adenosine monophosphate (cAMP). These results suggest that daidzein inhibits granule release (ATP, serotonin, P-selectin), integrin αIIbß3 activation, and clot retraction. Taken together, our study demonstrates that daidzein inhibits collagen-induced platelet aggregation and suggests that daidzein has therapeutic potential for the treatment of platelet aggregation-related diseases such as atherosclerosis and thrombosis.


Asunto(s)
Activación Plaquetaria , Inhibidores de Agregación Plaquetaria , Humanos , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria , Plaquetas/metabolismo , Fosforilación , Tromboxanos/metabolismo , Colágeno/metabolismo
11.
Int J Mol Sci ; 24(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37240356

RESUMEN

The nuclear estrogen receptor (ER) and G-protein-coupled ER (GPER1) play a crucial role during brain development and are involved in dendrite and spine growth as well as synapse formation. Soybean isoflavones, such as genistein, daidzein, and S-equol, a daidzein metabolite, exert their action through ER and GPER1. However, the mechanisms of action of isoflavones on brain development, particularly during dendritogenesis and neuritogenesis, have not yet been extensively studied. We evaluated the effects of isoflavones using mouse primary cerebellar culture, astrocyte-enriched culture, Neuro-2A clonal cells, and co-culture with neurons and astrocytes. Soybean isoflavone-augmented estradiol mediated dendrite arborization in Purkinje cells. Such augmentation was suppressed by co-exposure with ICI 182,780, an antagonist for ERs, or G15, a selective GPER1 antagonist. The knockdown of nuclear ERs or GPER1 also significantly reduced the arborization of dendrites. Particularly, the knockdown of ERα showed the greatest effect. To further examine the specific molecular mechanism, we used Neuro-2A clonal cells. Isoflavones also induced neurite outgrowth of Neuro-2A cells. The knockdown of ERα most strongly reduced isoflavone-induced neurite outgrowth compared with ERß or GPER1 knockdown. The knockdown of ERα also reduced the mRNA levels of ER-responsive genes (i.e., Bdnf, Camk2b, Rbfox3, Tubb3, Syn1, Dlg4, and Syp). Furthermore, isoflavones increased ERα levels, but not ERß or GPER1 levels, in Neuro-2A cells. The co-culture study of Neuro-2A cells and astrocytes also showed an increase in isoflavone-induced neurite growth, and co-exposure with ICI 182,780 or G15 significantly reduced the effects. In addition, isoflavones increased astrocyte proliferation via ER and GPER1. These results indicate that ERα plays an essential role in isoflavone-induced neuritogenesis. However, GPER1 signaling is also necessary for astrocyte proliferation and astrocyte-neuron communication, which may lead to isoflavone-induced neuritogenesis.


Asunto(s)
Receptor alfa de Estrógeno , Isoflavonas , Animales , Ratones , Receptor alfa de Estrógeno/genética , Fulvestrant , Isoflavonas/farmacología , Genisteína/farmacología , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptor beta de Estrógeno/metabolismo , Estradiol/farmacología , Estrógenos
12.
Inflammopharmacology ; 31(4): 1977-1992, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37145202

RESUMEN

Paclitaxel (PTX) is an anti-microtubule agent, used for the treatment of various types of cancers; however, it produces painful neuropathy which limits its use. Many neuroprotective agents have been introduced to mitigate PTX-induced neuropathic pain (PINP), but they pose many adverse effects. The purpose of this study was to evaluate the pharmacological characteristics of soy isoflavone, and daidzein (DZ) in attenuating PINP. At the beginning of the investigation, the effect of DZ was confirmed through behavioral analysis, as it reduced pain hypersensitivity. Moreover, changes in the histological parameters were reversed by DZ administration along with vascular permeability. PTX administration upregulated transient receptor potential vanilloid 1 (TRPV1) channels and purinergic receptors (P2Y), contributing to hyperalgesia; but administration of DZ downregulated the TRPV1 and P2Y, thus reducing hyperalgesia. DZ increased nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), playing a pivotal role in the activation of the antioxidant pathway. DZ also decreased neuronal apoptosis by decreasing caspase-3 and Bcl2-associated X-protein (Bax), while simultaneously, increasing Bcl-2. PTX administration produced severe DNA damage, which was mitigated by DZ. Similarly, DZ administration resulted in inhibition of neuroinflammation by increasing antioxidant enzymes and reducing oxidative stress markers. PTX caused increased in production of pro-inflammatory mediators such as the cytokines production, while DZ inhibited the pro-inflammatory mediators. Additionally, in silico pharmacokinetic and toxicodynamic study of DZ was also conducted. In summary, DZ demonstrated significant neuroprotective activity against PTX induced neuropathic pain.


Asunto(s)
Antineoplásicos , Isoflavonas , Neuralgia , Humanos , Paclitaxel/efectos adversos , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Hemo-Oxigenasa 1/metabolismo , Regulación hacia Arriba , Regulación hacia Abajo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/patología , Antineoplásicos/uso terapéutico , Isoflavonas/farmacología , Mediadores de Inflamación/metabolismo , Estrés Oxidativo , Canales Catiónicos TRPV/metabolismo
13.
Molecules ; 28(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37446739

RESUMEN

In this work, a novel bio-based high-performance bisbenzoxazine resin was synthesized from daidzein, 2-thiophenemethylamine and paraformaldehyde. The chemical structure was confirmed using nuclear magnetic resonance spectroscopy (NMR) and Fourier-transform infrared spectroscopy (FT-IR). The polymerization process was systematically studied using differential scanning calorimetry (DSC) and in situ FT-IR spectra. It can be polymerized through multiple polymerization behaviors under the synergistic reaction of thiophene rings with benzopyrone rather than a single polymerization mechanism of traditional benzoxazines, as reported. In addition, thermogravimetric analysis (TGA) and a microscale combustion calorimeter (MCC) were used to study the thermal stability and flame retardancy of the resulting polybenzoxazine. The thermosetting material showed a high carbon residue rate of 62.8% and a low heat release capacity (HRC) value of 33 J/gK without adding any flame retardants. Based on its outstanding capability of carbon formation, this newly obtained benzoxazine resin was carbonized and activated to obtain a porous carbon material doped with both sulfur and nitrogen. The CO2 absorption of the carbon material at 0 °C and 25 °C at 1 bar was 3.64 mmol/g and 3.26 mmol/g, respectively. The above excellent comprehensive properties prove its potential applications in many advanced fields.


Asunto(s)
Benzoxazinas , Carbono , Benzoxazinas/química , Espectroscopía Infrarroja por Transformada de Fourier , Polimerizacion
14.
Molecules ; 28(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37049690

RESUMEN

Cancer incidence varies around the globe, implying a relationship between food and cancer risk. Plant polyphenols are a class of secondary metabolites that have recently attracted attention as possible anticancer agents. The subclass of polyphenols, known as isoflavones, includes genistein and daidzein, which are present in soybeans and are regarded as potent chemopreventive agents. According to epidemiological studies, those who eat soy have a lower risk of developing certain cancers. Several mechanisms for the anticancer effects of isoflavones have been proposed, but none are conclusive. We show that isoflavones suppress prostate cancer cell growth by mobilizing endogenous copper. The copper-specific chelator neocuproine decreases the apoptotic potential of isoflavones, whereas the iron and zinc chelators desferroxamine mesylate and histidine do not, confirming the role of copper. Reactive oxygen species (ROS) scavengers reduce isoflavone-induced apoptosis in these cells, implying that ROS are cell death effectors. Our research also clearly shows that isoflavones interfere with the expression of the two copper transporter genes, CTR1 and ATP7A, in cancerous cells. Copper levels are widely known to be significantly raised in all malignancies, and we confirm that isoflavones can target endogenous copper, causing prooxidant signaling and, eventually, cell death. These results highlight the importance of copper dynamics within cancer cells and provide new insight into the potential of isoflavones as cancer-fighting nutraceuticals.


Asunto(s)
Cobre , Isoflavonas , Cobre/farmacología , Cobre/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Isoflavonas/farmacología , Genisteína/farmacología , Muerte Celular , Glycine max/metabolismo , Polifenoles
15.
Molecules ; 28(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36838751

RESUMEN

Herbal drugs have been attracting much scientific interest in the last few decades and nowadays, phytoconstituents-based research is in progress to disclose their unidentified medicinal potential. Daidzein (DAI) is the natural phytoestrogen isoflavone derived primarily from leguminous plants, such as the soybean and mung bean, and its IUPAC name is 4',7-dihydroxyisoflavone. This compound has received great attention as a fascinating pharmacophore with remarkable potential for the therapeutic management of several diseases. Certain pharmacokinetic properties of DAI such as less aqueous solubility, low permeability, and poor bioavailability are major obstacles restricting the therapeutic applications. In this review, distinctive physicochemical characteristics and pharmacokinetics of DAI has been elucidated. The pharmacological applications in treatment of several disorders like oxidative stress, cancer, obesity, cardiovascular, neuroprotective, diabetes, ovariectomy, anxiety, and inflammation with their mechanism of action are explained. Furthermore, this review article comprehensively focuses to provide up-to-date information about nanotechnology-based formulations which have been investigated for DAI in preceding years which includes polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carrier, polymer-lipid nanoparticles, nanocomplexes, polymeric micelles, nanoemulsion, nanosuspension, liposomes, and self-microemulsifying drug delivery systems.


Asunto(s)
Isoflavonas , Nanopartículas , Sistemas de Liberación de Medicamentos , Nanotecnología , Nanopartículas/química , Micelas , Polímeros/química
16.
Zhongguo Zhong Yao Za Zhi ; 48(11): 2949-2957, 2023 Jun.
Artículo en Zh | MEDLINE | ID: mdl-37381955

RESUMEN

This study aims to improve the solubility and bioavailability of daidzein by preparing the ß-cyclodextrin-daidzein/PEG_(20000)/Carbomer_(940) nanocrystals. Specifically, the nanocrystals were prepared with daidzein as a model drug, PEG_(20000), Carbomer_(940), and NaOH as a plasticizer, a gelling agent, and a crosslinking agent, respectively. A two-step method was employed to prepare the ß-cyclodextrin-daidzein/PEG_(20000)/Carbomer_(940) nanocystals. First, the insoluble drug daidzein was embedded in ß-cyclodextrin to form inclusion complexes, which were then encapsulated in the PEG_(20000)/Carbomer_(940) nanocrystals. The optimal mass fraction of NaOH was determined as 0.8% by the drug release rate, redispersability, SEM morphology, encapsulation rate, and drug loading. The inclusion status of daidzein nanocrystals was determined by Fourier transform infrared spectroscopy(FTIR), thermogravimetric analysis(TGA), and X-ray diffraction(XRD) analysis to verify the feasibility of the preparation. The prepared nanocrystals showed the average Zeta potential of(-30.77±0.15)mV and(-37.47±0.64)mV and the particle sizes of(333.60±3.81)nm and(544.60±7.66)nm before and after daidzein loading, respectively. The irregular distribution of nanocrystals before and after daidzein loading was observed under SEM. The redispersability experiment showed high dispersion efficiency of the nanocrystals. The in vitro dissolution rate of nanocrystals in intestinal fluid was significantly faster than that of daidzein, and followed the first-order drug release kinetic model. XRD, FTIR, and TGA were employed to determine the polycrystalline properties, drug loading, and thermal stability of the nanocrystals before and after drug loading. The nanocrystals loaded with daidzein demonstrated obvious antibacterial effect. The nanocrystals had more significant inhibitory effects on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa than daidzein because of the improved solubility of daidzein. The prepared nanocrystals can significantly increase the dissolution rate and oral bioavailability of the insoluble drug daidzein.


Asunto(s)
Resinas Acrílicas , Nanopartículas , Hidróxido de Sodio , Escherichia coli
17.
Zhongguo Zhong Yao Za Zhi ; 48(18): 5068-5077, 2023 Sep.
Artículo en Zh | MEDLINE | ID: mdl-37802849

RESUMEN

This study investigated the drug delivery performance of oral co-loaded puerarin(PUE) and daidzein(DAZ) mixed micelles(PUE/DAZ-FS/PMMs) from the perspectives of pharmacokinetics, pharmacodynamics, and tissue distribution. The changes in PUE plasma concentration in rats were evaluated based on PUE suspension, single drug-loaded micelles(PUE-FS/PMMs), and co-loaded micelles(PUE/DAZ-FS/PMMs). Spontaneously hypertensive rats(SHR) were used to monitor systolic blood pressure, diastolic blood pressure, and mean arterial pressure for 10 weeks after administration by tail volume manometry. The content of PUE in the heart, liver, spleen, lung, kidney, brain, and testes was determined using LC-MS/MS. The results showed that compared with PUE suspension and PUE-FS/PMMs, PUE/DAZ-FS/PMMs significantly increased C_(max) in rats(P<0.01) and had a relative bioavailability of 122%. The C_(max), AUC_(0-t), AUC_(0-∞), t_(1/2), and MRT of PUE/DAZ-FS/PMMs were 1.77, 1.22, 1.22, 1.17, and 1.13 times higher than those of PUE suspension, and 1.76, 1.16, 1.08, 0.84, and 0.78 times higher than those of PUE-FS/PMMs, respectively. Compared with the model control group, PUE/DAZ-FS/PMMs significantly reduced systolic blood pressure, diastolic blood pressure, and mean arterial pressure in SHR rats(P<0.05). The antihypertensive effect of PUE/DAZ-FS/PMMs was greater than that of PUE suspension, and even greater than that of PUE-FS/PMMs at high doses. Additionally, the distribution of PMMs in various tissues showed dose dependency. The distribution of PMMs in the kidney and liver, which are metabolically related tissues, was lower than that in the suspension group, while the distribution in the brain was higher than that in the conventional dose group. In conclusion, PUE/DAZ-FS/PMMs not only improved the bioavailability of PUE and synergistically enhanced its therapeutic effect but also prolonged the elimination of the drug to some extent. Furthermore, the micelles facilitated drug penetration through the blood-brain barrier. This study provides a foundation for the development of co-loaded mixed micelles containing homologous components.


Asunto(s)
Isoflavonas , Micelas , Ratas , Animales , Distribución Tisular , Cromatografía Liquida , Espectrometría de Masas en Tándem , Ratas Endogámicas SHR , Isoflavonas/farmacología
18.
Pharmacol Res ; 180: 106246, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35562014

RESUMEN

Uncontrolled inflammation and failure to resolve the inflammatory response are crucial factors involved in the progress of inflammatory diseases. Current therapeutic strategies aimed at controlling excessive inflammation are effective in some cases, though they may be accompanied by severe side effects, such as immunosuppression. Phytochemicals as a therapeutic alternative can have a fundamental impact on the different stages of inflammation and its resolution. Biochanin A (BCA) is an isoflavone known for its wide range of pharmacological properties, especially its marked anti-inflammatory effects. Recent studies have provided evidence of BCA's abilities to activate events essential for resolving inflammation. In this review, we summarize the most recent findings from pre-clinical studies of the pharmacological effects of BCA on the complex signaling network associated with the onset and resolution of inflammation and BCA's potential protective functionality in several models of inflammatory diseases, such as arthritis, pulmonary disease, neuroinflammation, and metabolic disease.


Asunto(s)
Genisteína , Isoflavonas , Genisteína/farmacología , Genisteína/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Fitoquímicos/farmacología , Fitoterapia
19.
Mol Biol Rep ; 49(11): 10399-10407, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36098884

RESUMEN

BACKGROUND: Polyphenols, including flavonoids, have been the focus of numerous studies that have revealed diverse health benefits. MicroRNAs (miRNAs) constitute a class of small non-coding RNAs that function as posttranscriptional regulators of gene expression. miRNAs can be detected in the blood and these so-called circulating miRNAs are potential biomarkers of various diseases. This study aimed to explore circulating miRNAs in plasma as a means to predict the biological effects of functional food ingredients. METHODS AND RESULTS: We used miRNA microarray analysis to compare plasma miRNA levels in mice orally administered three flavonoids (daidzein, quercetin, and delphinidin). Several miRNAs were differentially expressed in plasma from mice in each treatment group compared with the vehicle-treated group. The plasma levels of miR-25-5p, miR-146b-5p, and miR-501-3p were increased in the flavonoid-treated and the plasma levels of miR-148b-3p, miR-669e-5p, and miR-3962 were decreased. CONCLUSIONS: Our findings suggested that flavonoids alter miRNA expression in plasma and identified promising plasma miRNAs for assessing the functionality of flavonoids.


Asunto(s)
MicroARN Circulante , MicroARNs , Ratones , Animales , Flavonoides/farmacología , MicroARNs/metabolismo , Biomarcadores , Análisis por Micromatrices , Perfilación de la Expresión Génica
20.
J Biochem Mol Toxicol ; 36(2): e22949, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34850494

RESUMEN

Parkinson's disease (PD) ranks as the second most neurodegenerative disease characterized by loss of neurons, bradykinesia, anosmia, sleep disorder, and motor deficiency with increased global prevalence. Here, we have analyzed daidzein's neuroprotective functions in in vitro and in vivo models of PD. BV2 microglial cells induced with lipopolysaccharide (LPS) and C57BL6 mice induced with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) were used in this study to investigate neuroprotective functions of daidzein. BV2 cells induced with LPS do not exert and significant (p < 0.05) reduction in cell viability up to concentration range (5-100 µM/ml). Furthermore, LPS exposed BV2 microglia exhibited significantly (p < 0.05) increased NO production, pro-inflammatory mediators PGE2, interleukin-6 (IL6), and interleukin-1ß (IL-1ß) levels. Treatment with daidzein (10, 25, and 50 µM/ml) to LPS-induced BV2 microglia exhibited significantly (p < 0.05) decreased NO, pro-inflammatory mediators PGE2, IL6, and IlL-1ß. Similar to the in vitro results, C57BL6 mice induced with MPTP showed defects in motor functions as observed from altered forelimb and hindlimb footprint analyses, grip strength, and perturbed motor coordination observed via rotarod tests. Additionally, levels of dopamine were significantly reduced, and pro-inflammatory mediators tumor necrosis factor alpha (TNF-α), IL-1ß, IL6 were found to be increased in MPTP-induced C57BL6 PD mice. Administering daidzein significantly restored the functional levels of dopamine and pro-inflammatory mediators TNF-α, IL-1ß, IL6 to near normal physiology as seen in healthy C57BL6 mice controls. Similarly, daidzein treatment to PD mice also restored the histological architecture to near normal levels as in control mice. Together, our results collectively endorse the neuroprotective functions of daidzein as observed from our initial studies, and further studies aimed at investigating daidzein's ability in regulating the catecholamine synthesis pathway to protect substantia nigra pars compacta (SNpc) neurons are in focus.


Asunto(s)
Isoflavonas/farmacología , Lipopolisacáridos/toxicidad , Microglía/metabolismo , Fármacos Neuroprotectores/farmacología , Trastornos Parkinsonianos , Animales , Masculino , Ratones , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA