Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(14): 4224-4232, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557115

RESUMEN

In this study, we identify the local structures of ex-solved nanoparticles using machine-learned potentials (MLPs). We develop a method for training machine-learned potentials by sampling local structures of heterointerface configurations as a training set with its efficacy tested on the Ni/MgO system, illustrating that the error in interface energy is only 0.004 eV/Å2. Using the developed scheme, we train an MLP for the Ni/La0.5Ca0.5TiO3 ex-solution system and identify the local structures for both exo- and endo-type particles. The established model aligns well with the experimental observations, accurately predicting a nucleation size of 0.45 nm. Lastly, the density functional theory calculations on the established atomistic model verify that the kinetic barrier for the dry reforming of methane are substantially reduced by 0.49 eV on the ex-solved catalysts compared to that on the impregnated catalysts. Our findings offer insights into the local structures, growth mechanisms, and underlying origin of the catalytic properties of ex-solved nanoparticles.

2.
Small ; : e2406108, 2024 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-39397254

RESUMEN

Dry reforming of methane (DRM), a pivotal process for converting greenhouse gases into syngas is demanding rationally designed catalysts with high stability and ideal catalytic performance for industrial applications due to its stability of reactant molecules and characteristic of carbon deposition. However, the mechanistic understanding of how the coordination environment of the metal in a single-atom catalytic system may influence the catalytic performance remains limited. In this work, high- and low-coordinating Ru-based (RuHC and RuLC) catalysts with distinct Ru-O coordination numbers are prepared using one-pot and two-step methods. The difference in the stability (12.3% and negligible deactivation during 20 h test for RuLC and RuHC catalysts respectively) and selectivity (0.57 and 0.37 of H2/CO ratio) brought by the coordination environment signified the structure-function relationship of single-atom catalysts in DRM. The impact of the structure on the properties is systematically investigated by thorough structural and operando characterization as well as density functional theory (DFT) calculation. The findings contribute to the optimal design of single-atom catalysts for DRM, offering a theoretical basis for industrial catalyst development and the potential to improve the process's environmental impact.

3.
Small ; 20(36): e2401156, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38686695

RESUMEN

In this work, a new type of multifunctional materials (MFMs) called self-regenerative Ni-doped CaTiO3/CaO is introduced for the integrated CO2 capture and dry reforming of methane (ICCDRM). These materials consist of a catalytically active Ni-doped CaTiO3 and a CO2 sorbent, CaO. The article proposes a concept where the Ni catalyst can be regenerated in situ, which is crucial for ICCDRM. Exsolved Ni nanoparticles are evenly distributed on the surface of CaTiO3 under H2 or CH4, and are re-dispersed back into the CaTiO3 lattice under CO2. The Ni-doped CaTiO3/CaO MFMs show stable CO2 capture capacity and syngas productivity for 30 cycles of ICCDRM. The presence of CaTiO3 between CaO grains prevents CaO/CaCO3 thermal sintering during carbonation and decarbonation. Moreover, the strong interaction of CaTiO3 with exsolved Ni mitigates severe accumulation of coke deposition. This concept can be useful for developing MFMs with improved properties that can advance integrated carbon capture and conversion.

4.
J Environ Sci (China) ; 140: 12-23, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38331494

RESUMEN

The increasing anthropogenic emissions of greenhouse gases (GHG) is encouraging extensive research in CO2 utilisation. Dry reforming of methane (DRM) depicts a viable strategy to convert both CO2 and CH4 into syngas, a worthwhile chemical intermediate. Among the different active phases for DRM, the use of nickel as catalyst is economically favourable, but typically deactivates due to sintering and carbon deposition. The stabilisation of Ni at different loadings in cerium zirconate inorganic complex structures is investigated in this work as strategy to develop robust Ni-based DRM catalysts. XRD and TPR-H2 analyses confirmed the existence of different phases according to the Ni loading in these materials. Besides, superficial Ni is observed as well as the existence of a CeNiO3 perovskite structure. The catalytic activity was tested, proving that 10 wt.% Ni loading is the optimum which maximises conversion. This catalyst was also tested in long-term stability experiments at 600 and 800°C in order to study the potential deactivation issues at two different temperatures. At 600°C, carbon formation is the main cause of catalytic deactivation, whereas a robust stability is shown at 800°C, observing no sintering of the active phase evidencing the success of this strategy rendering a new family of economically appealing CO2 and biogas mixtures upgrading catalysts.


Asunto(s)
Cerio , Níquel , Níquel/química , Dióxido de Carbono/química , Metano/química , Cerio/química , Carbono
5.
Angew Chem Int Ed Engl ; 63(28): e202404398, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38698730

RESUMEN

Catalyst deactivation by sintering and coking is a long-standing issue in metal-catalyzed harsh high-temperature hydrocarbon reactions. Ultrathin oxide coatings of metal nanocatalysts have recently appeared attractive to address this issue, while the porosity of the overlayer is difficult to control to preserve the accessibility of embedded metal nanoparticles, thus often leading to a large decrease in activity. Here, we report that a nanometer-thick alumina coating of MgAl2O4-supported metal catalysts followed by high-temperature reduction can transform a nonporous amorphous alumina overlayer into a porous Mg1-xAl2Oy crystalline spinel structure with a pore size of 2-3 nm and weakened acidity. The high porosity stems from the restrained Mg migration from the MgAl2O4 support to the alumina overlayer through solid-state reactions at high temperatures. The resulting Ni/MgAl2O4 and Pt/MgAl2O4 catalysts with a porous crystalline Mg1-xAl2Oy overlayer achieved remarkably high stability while preserving much higher activity than the corresponding alumina-coated Ni and Pt catalysts on MgO and Al2O3 supports in the reactions of dry reforming of methane and propane dehydrogenation, respectively.

6.
Molecules ; 28(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37375133

RESUMEN

Conventional hydrogen production, as an alternative energy resource, has relied on fossil fuels to produce hydrogen, releasing CO2 into the atmosphere. Hydrogen production via the dry forming of methane (DRM) process is a lucrative solution to utilize greenhouse gases, such as carbon dioxide and methane, by using them as raw materials in the DRM process. However, there are a few DRM processing issues, with one being the need to operate at a high temperature to gain high conversion of hydrogen, which is energy intensive. In this study, bagasse ash, which contains a high percentage of silicon dioxide, was designed and modified for catalytic support. Modification of silicon dioxide from bagasse ash was utilized as a waste material, and the performance of bagasse ash-derived catalysts interacting with light irradiation and reducing the amount of energy used in the DRM process was explored. The results showed that the performance of 3%Ni/SiO2 bagasse ash WI was higher than that of 3%Ni/SiO2 commercial SiO2 in terms of the hydrogen product yield, with hydrogen generation initiated in the reaction at 300 °C. Using the same synthesis method, the current results suggested that bagasse ash-derived catalysts had better performance than commercial SiO2-derived catalysts when exposed to an Hg-Xe lamp. This indicated that silicon dioxide from bagasse ash as a catalyst support could help improve the hydrogen yield while lowering the temperature in the DRM reaction, resulting in less energy consumption in hydrogen production.

7.
Angew Chem Int Ed Engl ; 61(21): e202200567, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35277912

RESUMEN

Dry reforming of methane (DRM) has provided an effective avenue to convert two greenhouse gases, CH4 and CO2 , into syngas. Here, we design a DRM photocatalyst Rh/Cex WO3 that invokes both photothermal and photoelectric processes, which overcomes the thermodynamic limitation of DRM under conventional conditions. In contrast to plasmonic or UV-response photocatalysts, our photocatalyst produces a superior light-to-chemical energy efficiency (LTCEE) of 4.65 % with a moderate light intensity. We propose that a light-induced metal-to-metal charge transfer plays a crucial role in the DRM reaction, which induces a redox looping between Ce to W species to lower the activation energy. Quantum mechanical studies reveal that a high oxygen mobility of Cex WO3 , accompanied with the formation of oxo-bridge species, results in a substantial elimination of deposited C species during the reaction. Our catalyst design strategy could offer a promising energy-efficient industrial process for DRM.

8.
Angew Chem Int Ed Engl ; 61(33): e202204990, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35638132

RESUMEN

Dry reforming of methane (DRM) has been emerging as a viable solution to achieving carbon neutrality enhanced by the Paris Agreement as it converts the greenhouse gases of CO2 and CH4 into industrially useful syngas. However, there have been limited studies on the DRM catalyst under mild operating conditions with a high dilution gas ratio due to their deactivation from carbon coking and metal sintering. Herein, we apply the triple-phase boundary (TPB) concept to DRM catalyst via exsolution phenomenon that can secure elongated TPB by controlling the Fe-doping ratio in perovskite oxide. Remarkably, the exsolved catalyst with prolongated TPB shows exceptional CO2 and CH4 conversion rates of 95.9 % and 91.6 %, respectively, stable for 1000 hours under a dilution-free system. DFT calculations confirm that the Lewis acid of support and Lewis base of metal at the TPB promote the adsorption of reactants, resulting in lowering the overall CO2 dissociation and CH4 dehydrogenation energy.

9.
Small ; 17(34): e2102851, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34263553

RESUMEN

Here, lamellar confinement strategy is introduced for "sheet-to-nanocrystals (NCs)" conversion within a 2D-SiO2 envelope, which constructs a catalytic nanocartridge holding a platoon of isolated and in-plane-aligned ultrasmall Ni-NCs, performing as a robust and coking-resistant catalytic system for dry reforming of methane. Overcoming the problem of unavoidable bulk crystal growth from multiple sheets-stack or sheet-on-open-support, silica bilayer-encasing tightly clamps the atomic-thin Ni(OH)2 -nanosheet during thermal conversion and further hinders the migratory fusion of the resultant Ni-NCs. Upon heating-cooling cycle, the flapping silica envelope clutches the Ni-NCs like "eggs in a carton," subsequently, ensuring their thermal stability. Owing to the unique 2D-enveloped rigid architecture, Ni-NCs can circumvent sintering and coke deposition while tolerating the high temperatures (>700 °C) for long operation (>100 h), affording high conversions to syngas.


Asunto(s)
Metano , Nanopartículas , Catálisis , Níquel , Dióxido de Silicio
10.
Angew Chem Int Ed Engl ; 60(29): 15912-15919, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-33961725

RESUMEN

Dry reforming of methane (DRM) is a feasible solution to address the reduction of greenhouse gases stipulated by the Paris Climate Agreement, given that it adds value by converting trivial gases, CO2 and CH4 , simultaneously into useful syngas. However, the conventional Ni catalyst undergoes deactivation due to carbon coking and particle agglomeration. Here we demonstrate a highly efficient and durable DRM catalyst: exsolved Co-Ni-Fe ternary alloy nanoparticles on the layered perovskite PrBaMn1.7 Co0.1 Ni0.2 O5+δ produced by topotactic exsolution. This method readily allows the generation of a larger number of exsolved nanoparticles with enhanced catalytic activity above that of Ni monometallic and Co-Ni bimetallic particles. The enhancement is achieved by the upshift of the d-band center of Co-Ni-Fe relative to those of Co-Ni and Ni, meaning easier charge donation to the adsorbate. Furthermore, the exsolved catalyst shows exceptional stability, with continuous DRM operation for about 350 hours.

11.
Angew Chem Int Ed Engl ; 59(47): 21216-21223, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-32767516

RESUMEN

Photoassisted steam reforming and dry (CO2 ) reforming of methane (SRM and DRM) at room temperature with high syngas selectivity have been achieved in the gas-phase catalysis for the first time. The catalysts used are bimetallic rhodium-vanadium oxide cluster anions of Rh2 VO1-3 - . Both the oxidation of methane and reduction of H2 O/CO2 can take place efficiently in the dark while the pivotal step to govern syngas selectivity is photo-excitation of the reaction intermediates Rh2 VO2,3 CH2 - to specific electronically excited states that can selectively produce CO and H2 . Electronic excitation over Rh2 VO2,3 CH2 - to control the syngas selectivity is further confirmed from the comparison with the thermal excitation of Rh2 VO2,3 CH2 - , which leads to diversity of products. The atomic-level mechanism obtained from the well-controlled cluster reactions provides insight into the process of selective syngas production from the photocatalytic SRM and DRM reactions over supported metal oxide catalysts.

12.
Molecules ; 24(22)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739418

RESUMEN

Two routes of preparation of mesoporous Ni-alumina materials favoring the intermediate formation of nanostructured nickel-aluminate are presented. The first one involves an aluminum containing MOF precursor used as sacrificial template to deposit nickel while the second is based on a one-pot synthesis combined to an EISA method. As shown by a set of complementary techniques, the nickel-aluminate nanospecies formed after calcination are homogeneously distributed within the developed mesoporous alumina matrices whose porous characteristics vary depending on the preparation method. A special attention is paid to electron-microscopy observations using especially STEM imaging with high chemical sensitivity and EDS elemental mapping modes that help visualizing the extremely high nickel dispersion and highlight the strong metal anchoring to the support that persists after reduction. This leads to active nickel nanoparticles particularly stable in the reaction of dry reforming of methane.


Asunto(s)
Óxido de Aluminio/química , Dióxido de Carbono/química , Nanopartículas del Metal/química , Metano/química , Catálisis , Nanoestructuras/química , Porosidad , Propiedades de Superficie
13.
J Colloid Interface Sci ; 676: 1001-1010, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39068832

RESUMEN

Methane dry reforming (DRM) can consume greenhouse gases (CH4 and CO2) to produce valuable Fischer-Tropsch syngas (CO and H2). However, conventional thermally driven DRM consume large amounts of energy and face problems such as catalyst sintering and carbon deposition leading to insufficient catalytic activity. In this study, a photothermal synergistic TiO2/CeO2/Ru catalyst with high efficiency was designed. Under the light condition, the yields of H2 and CO reached 496.3 mmol g-1 h-1 and 522.4 mmol g-1 h-1, respectively. In addition, the catalyst demonstrated excellent stability after 100 h cyclic stability test. In-situ X-ray photoelectron spectroscopy (IS-XPS) and density functional theory (DFT) calculations revealed that the heterojunction interface formed by TiO2/CeO2/Ru is favourable for capturing photogenerated electrons and suppressing the recombination rate of photons and holes, thus improving the photocatalytic performance. Furthermore, light-induced metal-to-metal charge transfer (MMCT) accelerated oxygen migration, which not only improved the catalytic activity, but also suppressed the formation of carbon deposits on the catalyst surface, thereby enhancing the cycling stability. This study explores the mechanism of photothermally synergistic DRM, which provides a new pathway for the efficient use of solar energy.

14.
Fundam Res ; 4(1): 131-139, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38933849

RESUMEN

Solar-driven CO2-to-fuel conversion assisted by another major greenhouse gas CH4 is promising to concurrently tackle energy shortage and global warming problems. However, current techniques still suffer from drawbacks of low efficiency, poor stability, and low selectivity. Here, a novel nanocomposite composed of interconnected Ni/MgAlO x nanoflakes grown on SiO2 particles with excellent spatial confinement of active sites is proposed for direct solar-driven CO2-to-fuel conversion. An ultrahigh light-to-fuel efficiency up to 35.7%, high production rates of H2 (136.6 mmol min-1g- 1) and CO (148.2 mmol min-1g-1), excellent selectivity (H2/CO ratio of 0.92), and good stability are reported simultaneously. These outstanding performances are attributed to strong metal-support interactions, improved CO2 absorption and activation, and decreased apparent activation energy under direct light illumination. MgAlO x @SiO2 support helps to lower the activation energy of CH* oxidation to CHO* and improve the dissociation of CH4 to CH3* as confirmed by DFT calculations. Moreover, the lattice oxygen of MgAlO x participates in the reaction and contributes to the removal of carbon deposition. This work provides promising routes for the conversion of greenhouse gasses into industrially valuable syngas with high efficiency, high selectivity, and benign sustainability.

15.
ACS Nano ; 18(2): 1449-1463, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38175529

RESUMEN

The discovery of high-entropy oxides (HEOs) in 2015 has provided a family of potential solid catalysts, due to their tunable components, abundant defects or lattice distorts, excellent thermal stability (ΔG↓ = ΔH - TΔS↑), and so on. When facing the heterogeneous catalysis by HEOs, the micrometer bulky morphology and low surface areas (e.g., <10 m2 g-1) by traditional synthesis methods obstructed their way. In this work, an electrospinning method to fabricate HEO nanofibers with diameters of 50-100 nm was demonstrated. The key point lay in the formation of one-dimensional filamentous precursors, during which the uniform dispersion of five metal species with disordered configuration would help to crystallize into single-phase HEOs at lower temperatures: inverse spinel (Cr0.2Mn0.2Co0.2Ni0.2Fe0.2)3O4 (400 °C), perovskite La(Mn0.2Cu0.2Co0.2Ni0.2Fe0.2)O3 (500 °C), spinel Ni0.2Mg0.2Cu0.2Mn0.2Co0.2)Al2O4 (550 °C), and cubic Ni0.2Mg0.2Cu0.2Zn0.2Co0.2O (750 °C). As a proof-of-concept, (Ni3MoCoZn)Al12O24 nanofiber exhibited good activity (CH4 Conv. > 96%, CO2 Conv. > 99%, H2/CO ≈ 0.98), long-time stability (>100 h) for the dry reforming of methane (DRM) at 700 °C without coke deposition, better than control samples (Ni3MoCoZn)Al12O24-Coprecipitation-700 (CH4 Conv. < 3%, CO2 Conv. < 7%). The reaction mechanism of DRM was studied by in situ infrared spectroscopy, CO2-TPD, and CO2/CH4-TPSR. This electrospinning method provides a synthetic route for HEO nanofibers for target applications.

16.
ACS Appl Mater Interfaces ; 16(14): 17483-17492, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38556943

RESUMEN

Interfacial metal-support interaction (MSI) significantly affects the dispersion of active metals on the surface of the catalyst support and impacts catalyst performance. Understanding MSI is crucial for developing highly active and stable catalysts with a low metal loading, particularly for noble metal catalysts. In this work, we synthesized LaRuxCr1-xO3 catalysts with low Ru loading (x = 0.005, 0.01, and 0.02) using the sol-gel self-combustion method. We found that all of the Ru atoms immediately above or below the metal-support interface are closely bonded to the perovskite LaCrO3 surface lattice through Ru-O bonds, enhancing the MSI via interfacial reaction and charge transfer mechanisms. We identified a variety of Ru species, including small 3D Ru nanoparticles, 2D dispersed Ru surface atoms, and even 0D Ru single atoms. These highly dispersed Ru species exhibit high activity and stability under dry reforming of methane (DRM) conditions. The LaRu0.01Cr0.99O3 catalyst with very low Ru loading (0.42 wt %) was stable over a 50 h DRM test and the carbon deposition was negligible. The CH4 and CO2 conversions at 750 °C reached 83 and 86%, respectively, approaching the theoretical thermodynamic equilibrium values.

17.
Chem Asian J ; : e202400700, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39073286

RESUMEN

Two-component catalysts have garnered significant attention in the field of catalysis due to their ability to inhibit Ni sintering. In the present work, honeycomb-structuralstructured Al2O3-supported Ni and B were prepared to enhance coke tolerance during dry reforming of methane (DRM). Transmission electron microscopy (TEM) results revealed that the average particle sizes on Ni/Al2O3 and Ni-0.16B/Al2O3 were 7.6 nm and 4.2 nm, respectively, indicating that B can effectively inhibit Ni sintering. After a 100-hour reaction, the conversion of CH4 and CO2 on Ni/Al2O3 decreased by approximately 5 %, whereas on Ni-0.16B/Al2O3, there was no significant decrease in CH4 and CO2 conversion, with values of approximately 81.6 % and 87.2 %, respectively. In situ DRIFT spectra demonstrated that Ni-0.16B/Al2O3 enhanced the activation of CO2, thus improving the catalyst's stability. A Langmuir-Hinshelwood-Hougen-Watson (LHHW) model was developed for intrinsic kinetics, and the resulting kinetic expressions were well-fitted fit to the experimental data, with R2 values exceeding 0.9. ActivationThe activation energies were also calculated. The outstanding stability of Ni-0.16B/Al2O3 can be attributed to its stable honeycomb structure and B's ability to significantly inhibit Ni sintering, reduce catalyst particle size, and enhance coke tolerance.

18.
Materials (Basel) ; 17(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39124473

RESUMEN

Dry reforming of methane (DRM) is considered one of the most promising technologies for efficient greenhouse gas management thanks to the fact that through this reaction, it is possible to reduce CO2 and CH4 to obtain syngas, a mixture of H2 and CO, with a suitable ratio for the Fischer-Tropsch production of long-chain hydrocarbons. Two other main processes can yield H2 from CH4, i.e., Steam Reforming of Methane (SRM) and Partial Oxidation of Methane (POM), even though, not having CO2 as a reagent, they are considered less green. Recently, scientists' challenge is to overcome the many drawbacks of DRM reactions, i.e., the use of precious metal-based catalysts, the high temperatures of the process, metal particle sintering and carbon deposition on the catalysts' surfaces. To overcome these issues, one proposed solution is to implement photo-thermal dry reforming of methane in which irradiation with light is used in combination with heating to improve the efficiency of the process. In this paper, we review the work of several groups aiming to investigate the pivotal promoting role of light radiation in DRM. Focus is also placed on the catalysts' design and the progress needed for bringing DRM to an industrial scale.

19.
ACS Appl Mater Interfaces ; 16(27): 35166-35178, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38924504

RESUMEN

Dry reforming of methane (DRM) reaction has great potential in reducing the greenhouse effect and solving energy problems. Herein, the DRM reaction mechanism and activity on Ni16/LaZrO2 catalyst under electric fields were comprehensively investigated by combining density functional theory calculations with microkinetic modeling. The results showed that La doping increases the interaction between Ni and ZrO2 by Ni cluster transfer of more electrons. The adsorption strength of species followed the order Ni16/ZrO2 > Ni16/LaZrO2, which is consistent with the results for the d-band center but opposite to the metal-support interaction. The best DRM reaction path on Ni16/LaZrO2 was the CH2-O pathway, which is different from the CH-O pathway on Ni(111) and Ni16/ZrO2. Both positive and negative electric fields of strong and weak metal-support interactions reduced the energy barrier of DRM reaction. Importantly, our results showed that the more dispersed and smaller Ni12/LaZrO2 model by considering the dispersing effect induced by La doping, which displayed very different results from that of Ni16/LaZrO2: reduced the energy barrier for methane decomposition, thereby promoting DRM reaction activity. Microkinetic results showed that the carbon deposition behavior of DRM becomes weaker on Ni16/LaZrO2 due to the suppression of methane decomposition in the presence of La doping compared to Ni16/ZrO2, but the opposite result is obtained on Ni12/LaZrO2. The order of DRM reactivity was Ni16/LaZrO2 < Ni16/ZrO2 < Ni12/LaZrO2, which is consistent with the experiment observations. The conversion of methane and CO2 was higher in positive electric fields than in negative electric fields at low temperatures, but the results were opposite at high temperature. Negative electric fields can improve the carbon deposition resistance of Ni-based catalysts compared to positive electric fields. The degree of rate control analysis showed that CHx* oxidation also plays an important role in the DRM reaction. We envision that this study could provide a deeper understanding for guiding the widespread application of electric field catalysis.

20.
Adv Mater ; 36(16): e2311628, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38181452

RESUMEN

The catalytic conversion of greenhouse gases CH4 and CO2 constitutes an effective approach for alleviating the greenhouse effect and generating valuable chemical products. However, the intricate molecular characteristics characterized by high symmetry and bond energies, coupled with the complexity of associated reactions, pose challenges for conventional catalysts to attain high activity, product selectivity, and enduring stability. Single-atom alloys (SAAs) materials, distinguished by their tunable composition and unique electronic structures, confer versatile physicochemical properties and modulable functionalities. In recent years, SAAs materials demonstrate pronounced advantages and expansive prospects in catalytic conversion of CH4 and CO2. This review begins by introducing the challenges entailed in catalytic conversion of CH4 and CO2 and the advantages offered by SAAs. Subsequently, the intricacies of synthesis strategies employed for SAAs are presented and characterization techniques and methodologies are introduced. The subsequent section furnishes a meticulous and inclusive overview of research endeavors concerning SAAs in CO2 catalytic conversion, CH4 conversion, and synergy CH4 and CO2 conversion. The particular emphasis is directed toward scrutinizing the intricate mechanisms underlying the influence of SAAs on reaction activity and product selectivity. Finally, insights are presented on the development and future challenges of SAAs in CH4 and CO2 conversion reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA