Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 29(8): e202203062, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36345945

RESUMEN

The growing applications of therapeutic nucleic acids requires the concomitant development of vectors that are optimized to complex one type of nucleic acid, forming nanoparticles suitable for further trafficking and delivery. While fine-tuning a vector by molecular engineering to obtain a particular nanoscale organization at the nanoparticle level can be a challenging endeavor, we turned the situation around and instead screened the complexation preferences of dynamic constitutional frameworks toward different types of DNAs. Dynamic constitutional frameworks (DCF) are recently-identified vectors by our group that can be prepared in a versatile manner through dynamic covalent chemistry. Herein, we designed and synthesized 40 new DCFs that vary in hydrophilic/hydrophobic balance, number of cationic headgroups. The results of DNA complexation obtained through gel electrophoresis and fluorescent displacement assays reveal binding preferences of different DCFs toward different DNAs. The formation of compact spherical architectures with an optimal diameter of 100-200 nm suggests that condensation into nanoparticles is more effective for longer PEG chains and PEI groups that induce a better binding performance in the presence of DNA targets.


Asunto(s)
ADN , Ácidos Nucleicos , ADN/química , Cationes , Transfección , Vectores Genéticos
2.
Materials (Basel) ; 15(2)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35057201

RESUMEN

Cross linked gold-dynamic constitutional frameworks (DCFs) are functional materials of potential relevance for biosensing applications, given their adaptivity and high responsivity against various external stimuli (such as pH, temperature) or specific interactions with biomolecules (enzymes or DNA) via internal constitutional dynamics. However, characterization and assessment of their dynamic conformational changes in response to external stimuli has never been reported. This study proves the capability of Surface Plasmon Resonance (SPR) assays to analyse the adaptive structural modulation of a functional matrix encompassing 3D gold-dynamic constitutional frameworks (Au-DCFs) when exposed to pH variations, as external stimuli. We analyse Au-DCFs formed from Au nanoparticles, (AuNP) connected through constitutionally dynamic polymers, dynamers, with multiple functionalities. For increased generality of this proof-of-concept assay, Au-DCFs, involving DCFs designed from 1,3,5-benzene-tricarbaldehyde (BTA) connecting centres and polyethylene glycol (PEG) connectors, are covalently attached to standard SPR sensing chips (Au nanolayers, carboxyl terminated or with carboxymethyl dextran, CMD top-layer) and analysed using state-of-the art SPR instrumentation. The SPR effects of the distance from the Au-DCFs matrix to the Au nanolayer of the sensing chip, as well as of Au-DCFs thickness were investigated. This study reveals the SPR response, augmented by the AuNP, to the conformational change, i.e., shrinkage, of the dynamer and AuNP matrix when decreasing the pH, and provides an unexplored insight into the sensing applicability of SPR real-time analysis of adaptive functional materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA