Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(15): e202400938, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329239

RESUMEN

Selective functionalization of allenic C(sp2)-H is an ideal approach to upgrading simple allenes to synthetically useful allenes, albeit suffering from challenges associated with inert reactivity and inferior selectivity. Inspired by energy chemistry, a catalytic hydrogen evolution reaction (HER) strategy was leveraged to selectively activate weakly acidic allene C(sp2)-H bonds in a reductive mode. An array of [Co2O2] metallacycle complexes were readily devised starting from amino acids, and they were demonstrated as robust HER catalysts, which would selectively break allenic C(sp2)-H bonds to release hydrogen. With the newly developed HER catalyst, regioselective electrochemical functionalization of allenic C(sp2)-H with alcoholic α C(sp3)-H was unprecedentedly achieved. This strategy features excellent regioselectivity, unconventional chemoselectivity, good functional-group tolerance (62 examples), and mild conditions. Mechanism experiments revealed a reactive hydroxy-coordinated cobalt(II) species in the reaction. Density functional theory (DFT) calculations were also conducted to rationalize the regioselectivity observed in the reaction.

2.
Nano Lett ; 21(2): 1150-1155, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33448861

RESUMEN

We report a facile approach to directly chlorinate graphene from an aqueous sodium chloride solution under ambient conditions. By applying a moderate anodic voltage to substrate-supported monolayer graphene, the resultant chlorine radicals generated at the graphene surface enable efficient chlorination: X-ray photoelectron spectrum confirms the formation of C-Cl bonds, and reaction voltage-tunable Cl:C atomic ratios of up to 17% are achieved. In comparison, we find the corresponding electrochemical graphene bromination and iodination reactions much less viable. Electrical and Raman characterizations show substantial p-doping for the chlorinated graphene, yet good basal-plane integrity and electrical properties are maintained. Interference reflection microscopy and pH-dependent experiments next help elucidate the competition between the radical-mediated electrochemical chlorination and oxidation in the process, and rationalize acidic conditions for optimal chlorination. Reaction in a mixed NaCl-NaN3 solution shows the electrochemical chlorination to be fully suppressed by azidation, yet a sequential, two-step chlorination-azidation approach permits facile bifunctionalization.

3.
ACS Nano ; 17(19): 18914-18923, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37781814

RESUMEN

We present an electrochemical method to functionalize single-crystal graphene grown on copper foils with a (111) surface orientation by chemical vapor deposition (CVD). Graphene on Cu(111) is functionalized with 4-iodoaniline by applying a constant negative potential, and the degree of functionalization depends on the applied potential and reaction time. Our approach stands out from previous methods due to its transfer-free method, which enables more precise and efficient functionalization of single-crystal graphene. We report the suggested effects of the Cu substrate facet by comparing the reactivity of graphene on Cu(111) and Cu(115). The electrochemical reaction rate changes dramatically at the potential threshold for each facet. Kelvin probe force microscopy was used to measure the work function, and the difference in onset potentials of the electrochemical reaction on these two different facets are explained in terms of the difference in work function values. Density functional theory and Monte Carlo calculations were used to calculate the work function of graphene and the thermodynamic stability of the aniline functionalized graphene on these two facets. This study provides a deeper understanding of the electrochemical behavior of graphene (including single-crystal graphene) on Cu(111) and Cu(115). It also serves as a basis for further study of a broad range of reagents and thus functional groups and of the role of metal substrate beneath graphene.

4.
J Colloid Interface Sci ; 623: 915-926, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35636299

RESUMEN

Covalent functionalization of multi-walled carbon nanotubes (MWCNTs) and oxidized MWCNTs (o-MWCNTs) with chlorodiphenylphosphine (Ph2PCl) has been studied by cyclic voltammetry in organic medium. Depending the upper potential limit used in the electrochemical functionalization, different amount of phosphorus incorporation n is obtained, as result of the formation of radical species during the electrochemical oxidation of the Ph2PCl. The electrochemical oxidation of Ph2PCl promotes the covalent attachment of diphenylphosphine-like structure on the carbon nanotube surface. At the same time, the incorporation of Cl on the carbon nanotubes is observed during the functionalization. Furthermore, the presence of oxygen surface groups on the MWCNTs provides a favorable attachment of the Ph2P∙+ species, which has promoted preferentially the formation of CP bonds, whereas the amount of Cl is reduced.

5.
Materials (Basel) ; 15(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35161018

RESUMEN

Graphene oxide (GO) was deposited on a cotton fabric and then thermally reduced to reduced graphene oxide (rGO) with the assistance of L-ascorbic acid. The GO reduction imparted electrical conductivity to the fabric and allowed for electrochemical deposition of Ag° particles using cyclic voltammetry. Only the Ag°/rGO composite coating imparted antibacterial properties to the fabric against Escherichia coli and Staphylococcus aureus. Ag°/rGO-modified fibers were free of bacterial film, and bacterial growth inhibition zones around the material specimens were found. Moreover, Ag°/rGO-modified fabric became superhydrophobic with WCA of 161°.

6.
ACS Appl Mater Interfaces ; 10(1): 676-686, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29243906

RESUMEN

Polyaniline (PANI) as a pseudocapacitive material has very high theoretical capacitance of 2000 F g-1. However, its practical capacitance has been limited by low electrochemical surface area (ESA) and unfavorable wettability toward aqueous electrolytes. This work deals with a strategy wherein the high ESA of PANI has been achieved by the induction of superhydrophilicity together with the alignment of PANI exclusively on the surface of carbon fibers as a thin layer to form a hybrid assembly. Superhydrophilicity is induced by electrochemical functionalization of the Toray carbon paper, which further induces superhydrophilicity to the electrodeposited PANI layer on the paper, thereby ensuring a high electrode-electrolyte interface. The Toray paper is electrochemically functionalized by the anodization method, which generates a highly active electrochemical surface as well as greater wettability (superhydrophilic) of the carbon fibers. Because of the strong interaction of anilinium chloride with the hydrophilic carbon surface, PANI is polymerized exclusively over the surface of the fibers without any appreciable aggregation or agglomeration of the polymer. The PANI-Toray paper assembly in the solid-state prototype supercapacitor can provide a high gravimetric capacitance of 1335 F g-1 as well as a high areal capacitance of 1.3 F cm-2 at a current density of 10 A g-1. The device also exhibits high rate capability, delivering 1217 F g-1 at a current density of 50 A g-1 and a high energy density of 30 W h kg-1 at a power density of 2 kW kg-1.

7.
Methods Enzymol ; 609: 143-170, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30244788

RESUMEN

In this chapter, we describe the tethering of horseradish peroxidase (HRP) to reduced graphene oxide (RGO) for sensing H2O2 in serum. To accomplish this, RGO was synthesized through a green route by reducing graphene oxide (GO) prepared by Hummers method with carrot extract. The RGO was then covalently functionalized by electrochemical amination using fourth generation, amine-terminated PAMAM dendrimers. Subsequently, HRP was postfunctionalized through glutaraldehyde linkage. The synthesized RGO and the functionalization steps were well characterized by spectroscopic, microscopic, and electrochemical techniques. The application of HRP tethered RGO was demonstrated for H2O2 sensing in blood serum. This work provides scope for extending this functionalization strategy for other carbonaceous materials as well.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Grafito/química , Peróxido de Hidrógeno/aislamiento & purificación , Dendrímeros/química , Enzimas Inmovilizadas/química , Peroxidasa de Rábano Silvestre/química , Peróxido de Hidrógeno/química , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA