Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 119(4): 1685-1702, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38935838

RESUMEN

This review explores the integration of wild grass-derived alleles into modern bread wheat breeding to tackle the challenges of climate change and increasing food demand. With a focus on synthetic hexaploid wheat, this review highlights the potential of genetic variability in wheat wild relatives, particularly Aegilops tauschii, for improving resilience to multifactorial stresses like drought, heat, and salinity. The evolutionary journey of wheat (Triticum spp.) from diploid to hexaploid species is examined, revealing significant genetic contributions from wild grasses. We also emphasize the importance of understanding incomplete lineage sorting in the genomic evolution of wheat. Grasping this information is crucial as it can guide breeders in selecting the appropriate alleles from the gene pool of wild relatives to incorporate into modern wheat varieties. This approach improves the precision of phylogenetic relationships and increases the overall effectiveness of breeding strategies. This review also addresses the challenges in utilizing the wheat wild genetic resources, such as the linkage drag and cross-compatibility issues. Finally, we culminate the review with future perspectives, advocating for a combined approach of high-throughput phenotyping tools and advanced genomic techniques to comprehensively understand the genetic and regulatory architectures of wheat under stress conditions, paving the way for more precise and efficient breeding strategies.


Asunto(s)
Adaptación Fisiológica , Poaceae , Estrés Fisiológico , Triticum , Triticum/genética , Alelos , Poaceae/genética , Calor , Sequías , Humanos , Genoma de Planta , Proteínas de Plantas/genética , Fitomejoramiento
2.
BMC Plant Biol ; 24(1): 571, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886665

RESUMEN

BACKGROUND: Wild emmer wheat is a great candidate to revitalize domesticated wheat genetic diversity. Recent years have seen intensive investigation into the evolution and domestication of wild emmer wheat, including whole-genome DNA and transcriptome sequencing. However, the impact of intraspecific hybridization on the transcriptome of wild emmer wheat has been poorly studied. In this study, we assessed changes in methylation patterns and transcriptomic variations in two accessions of wild emmer wheat collected from two marginal populations, Mt. Hermon and Mt. Amasa, and in their stable F4 hybrid. RESULTS: Methylation-Sensitive Amplified Polymorphism (MSAP) detected significant cytosine demethylation in F4 hybrids vs. parental lines, suggesting potential transcriptome variation. After a detailed analysis, we examined nine RNA-Seq samples, which included three biological replicates from the F4 hybrid and its parental lines. RNA-Seq databases contained approximately 200 million reads, with each library consisting of 15 to 25 million reads. There are a total of 62,490 well-annotated genes in these databases, with 6,602 genes showing differential expression between F4 hybrid and parental lines Mt. Hermon and Mt. Amasa. The differentially expressed genes were classified into four main categories based on their expression patterns. Gene ontology (GO) analysis revealed that differentially expressed genes are associated with DNA/RNA metabolism, photosynthesis, stress response, phosphorylation and developmental processes. CONCLUSION: This study highlights the significant transcriptomic changes resulting from intraspecific hybridization within natural plant populations, which might aid the nascent hybrid in adapting to various environmental conditions.


Asunto(s)
Hibridación Genética , Transcriptoma , Triticum , Triticum/genética , Metilación de ADN , Variación Genética
3.
New Phytol ; 242(5): 2115-2131, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38358006

RESUMEN

Drought is one of the major environmental constraints for wheat production world-wide. As the progenitor and genetic reservoir of common wheat, emmer wheat is considered as an invaluable gene pool for breeding drought-tolerant wheat. Combining GWAS and eGWAS analysis of 107 accessions, we identified 86 QTLs, 105 462 eQTLs as well as 68 eQTL hotspots associating with drought tolerance (DT) in emmer wheat. A complex regulatory network composed of 185 upstream regulator and 2432 downstream drought-responsive candidates was developed, of which TtOTS1 was found to play a negative effect in determining DT through affecting root development. This study sheds light on revealing the genetic basis underlying DT, which will provide the indispensable genes and germplasm resources for elite drought tolerance wheat improvement and breeding.


Asunto(s)
Resistencia a la Sequía , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Triticum , Adaptación Fisiológica/genética , Resistencia a la Sequía/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Polimorfismo de Nucleótido Simple , Triticum/genética , Triticum/fisiología
4.
Theor Appl Genet ; 137(8): 193, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073628

RESUMEN

KEY MESSAGE: A total of 65 SNPs associated with resistance to tan spot and septoria nodorum blotch were identified in a panel of 180 cultivated emmer accessions through association mapping Tan spot and septoria nodorum blotch (SNB) are foliar diseases caused by the respective fungal pathogens Pyrenophora tritici-repentis and Parastagonospora nodorum that affect global wheat production. To find new sources of resistance, we evaluated a panel of 180 cultivated emmer wheat (Triticum turgidum ssp. dicoccum) accessions for reactions to four P. tritici-repentis isolates Pti2, 86-124, 331-9 and DW5, two P. nodorum isolate, Sn4 and Sn2000, and four necrotrophic effectors (NEs) produced by the pathogens. About 8-36% of the accessions exhibited resistance to the four P. tritici-repentis isolates, with five accessions demonstrating resistance to all isolates. For SNB, 64% accessions showed resistance to Sn4, 43% to Sn2000 and 36% to both isolates, with Spain (11% accessions) as the most common origin of resistance. To understand the genetic basis of resistance, association mapping was performed using SNP (single nucleotide polymorphism) markers generated by genotype-by-sequencing and the 9 K SNP Infinium array. A total of 46 SNPs were significantly associated with tan spot and 19 SNPs with SNB resistance or susceptibility. Six trait loci on chromosome arms 1BL, 3BL, 4AL (2), 6BL and 7AL conferred resistance to two or more isolates. Known NE sensitivity genes for disease development were undetected except Snn5 for Sn2000, suggesting novel genetic factors are controlling host-pathogen interaction in cultivated emmer. The emmer accessions with the highest levels of resistance to the six pathogen isolates (e.g., CItr 14133-1, PI 94634-1 and PI 377672) could serve as donors for tan spot and SNB resistance in wheat breeding programs.


Asunto(s)
Ascomicetos , Mapeo Cromosómico , Resistencia a la Enfermedad , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Triticum , Triticum/microbiología , Triticum/genética , Triticum/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Ascomicetos/patogenicidad , Ascomicetos/fisiología , Fenotipo , Genotipo , Sitios de Carácter Cuantitativo , Marcadores Genéticos , Estudios de Asociación Genética
5.
Plant Cell Rep ; 43(11): 254, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373738

RESUMEN

KEY MESSAGE: The genomic organization, phylogenetic relationship, expression patterns, and genetic variations of m6A-related genes were systematically investigated in wild emmer wheat and the function of TdFIP37 regulating salt tolerance was preliminarily determined. m6A modification is one of the most abundant and crucial RNA modifications in eukaryotics, playing the indispensable role in growth and development as well as stress response in plants. However, its significance in wild emmer wheat remains elusive. Here, a genome-wide search of m6A-related genes was conducted in wild emmer wheat to obtain 64 candidates, including 21 writers, 17 erasers, and 26 readers. Phylogenetic and collinearity analysis demonstrated that segmental duplication and polyploidization contributed mainly to the expansion of m6A-related genes in wild emmer. A number of cis-acting elements involving in stress and hormonal regulation were found in the promoter regions of them, such as MBS, LTR, and ABRE. Genetic variation of them was also investigated using resequencing data and obvious genetic bottleneck was occurred on them during wild emmer wheat domestication process. Furthermore, the salt-responsive candidates were investigated through RNA-seq data and qRT-PCR validation using the salt-tolerant and -sensitive genotypes and the co-expression analysis showed that they played the hub role in regulating salt stress response. Finally, the loss-function mutant of Tdfip37 displayed the significantly higher salt-sensitive compared to WT and then RNA-seq analysis demonstrated that FIP37 mediated the MAPK pathway, hormone signal transduction, as well as transcription factor to regulate salt tolerance. This study provided the potential m6A genes for functional analysis, which will contribute to better understand the regulatory roles of m6A modification and also improve the salt tolerance from the perspective of epigenetic approach in emmer wheat and other crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Estrés Salino , Tolerancia a la Sal , Triticum , Triticum/genética , Triticum/fisiología , Estrés Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tolerancia a la Sal/genética , Genoma de Planta/genética , Familia de Multigenes , Genes de Plantas/genética
6.
Plant Dis ; 108(6): 1670-1681, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38173259

RESUMEN

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a serious threat to wheat (Triticum aestivum L.) production. Narrow genetic basis of common wheat boosted the demand for diversified donors against powdery mildew. Aegilops tauschii Coss (2n = 2x = DD) and emmer wheat (2n = 4x = AABB), as the ancestor species of common wheat, are important gene donors for genetic improvement of common wheat. In this study, a total of 71 Ae. tauschii and 161 emmer wheat accessions were first evaluated for their powdery mildew resistance using the Bgt isolate E09. Thirty-three Ae. tauschii (46.5%) and 108 emmer wheat accessions (67.1%) were resistant. Then, all these accessions were tested by the diagnostic markers for 21 known Pm genes. The results showed that Pm2 alleles were detected in all the 71 Ae. tauschii and only Pm4 alleles were detected in 20 of 161 emmer wheat accessions. After haplotype analysis, we identified four Pm4 alleles (Pm4a, Pm4b, Pm4d, and Pm4f) in the emmer wheat accessions and three Pm2 alleles (Pm2d, Pm2e, and Pm2g) in the Ae. tauschii. Further resistance spectrum analysis indicated that these resistance accessions displayed different resistance reactions to different Bgt isolates, implying they may have other Pm genes apart from Pm2 and/or Pm4 alleles. Notably, a new Pm2 allele, Pm2S, was identified in Ae. tauschii, which contained a 64-bp deletion in the first exon and formed a new termination site at the 513th triplet of the shifted reading frame compared with reported Pm2 alleles. The phylogenetic tree of Pm2S showed that the kinship of Pm2S was close to Pm2h. To efficiently and accurately detect Pm2S and distinguish with other Pm2 alleles in Ae. tauschii background, a diagnostic marker, YTU-QS-3, was developed, and its effectiveness was verified. This study provided valuable Pm alleles and enriched the genetic diversity of the powdery mildew resistance in wheat improvement.


Asunto(s)
Aegilops , Ascomicetos , Resistencia a la Enfermedad , Enfermedades de las Plantas , Triticum , Triticum/genética , Triticum/microbiología , Triticum/inmunología , Ascomicetos/fisiología , Ascomicetos/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Aegilops/genética , Aegilops/microbiología , Genes de Plantas/genética , Alelos , Haplotipos
7.
Proc Natl Acad Sci U S A ; 117(11): 5955-5963, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123089

RESUMEN

In plants, the mechanism for ecological sympatric speciation (SS) is little known. Here, after ruling out the possibility of secondary contact, we show that wild emmer wheat, at the microclimatically divergent microsite of "Evolution Canyon" (EC), Mt. Carmel, Israel, underwent triple SS. Initially, it split following a bottleneck of an ancestral population, and further diversified to three isolated populations driven by disruptive ecological selection. Remarkably, two postzygotically isolated populations (SFS1 and SFS2) sympatrically branched within an area less than 30 m at the tropical hot and dry savannoid south-facing slope (SFS). A series of homozygous chromosomal rearrangements in the SFS1 population caused hybrid sterility with the SFS2 population. We demonstrate that these two populations developed divergent adaptive mechanisms against severe abiotic stresses on the tropical SFS. The SFS2 population evolved very early flowering, while the SFS1 population alternatively evolved a direct tolerance to irradiance by improved ROS scavenging activity that potentially accounts for its evolutionary fate with unstable chromosome status. Moreover, a third prezygotically isolated sympatric population adapted on the abutting temperate, humid, cool, and forested north-facing slope (NFS), separated by 250 m from the SFS wild emmer wheat populations. The NFS population evolved multiple resistant loci to fungal diseases, including powdery mildew and stripe rust. Our study illustrates how plants sympatrically adapt and speciate under disruptive ecological selection of abiotic and biotic stresses.


Asunto(s)
Resistencia a la Enfermedad/genética , Simpatría/genética , Triticum/genética , Ascomicetos , Basidiomycota , Cromosomas de las Plantas , Flujo Génico , Genes de Plantas/genética , Homocigoto , Israel , Cariotipificación , Enfermedades de las Plantas/microbiología , Estrés Fisiológico
8.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37762423

RESUMEN

Expansin proteins, a crucial class of intracellular proteins, are known to play a vital role in facilitating processes like cell wall relaxation and cell growth. Recent discoveries have revealed that expansin proteins also have significant functions in plant growth, development, and response to resistance. However, the expansin gene family, particularly in emmer wheat, has not been thoroughly studied, particularly in terms of evolution. In this study, we identified 63 TdEXPs and 49 TtEXPs from the latest genome versions of wild emmer wheat (WEW) and durum wheat (DW), respectively. The physicochemical properties of the encoded expansin proteins exhibited minimal differences, and the gene structures remained relatively conserved. Phylogenetic analysis categorized the proteins into three subfamilies, namely EXPA, EXPB, and EXLA, in addition to the EXLB subfamily. Furthermore, codon preference analysis revealed an increased usage frequency of the nucleotide "T" in expansin proteins throughout the evolution of WEW and DW. Collinearity analysis demonstrated higher orthology between the expansin proteins of WEW and DW, with a Ka/Ks ratio ranging from 0.4173 to 0.9494, indicating purifying selection during the evolution from WEW to DW. Haplotype analysis of the expansin gene family identified five genes in which certain haplotypes gradually became dominant over the course of evolution, enabling adaptation for survival and improvement. Expression pattern analysis indicated tissue-specific expression of expansin genes in emmer wheat, and some of these genes were quantified through qRT-PCR to assess their response to salt stress. These comprehensive findings present the first systematic analysis of the expansin protein gene family during the evolution from WEW to DW, providing a foundation for further understanding the functions and biological roles of expansin protein genes in emmer wheat.


Asunto(s)
Proteínas de Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas
9.
Trop Anim Health Prod ; 55(4): 280, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37516669

RESUMEN

The high nutritional and nutraceutical qualities of emmer wheat make it a valuable cereal grain. The present study was designed to quantify the contribution of emmer wheat inclusion into Japanese quail's rations in terms of their productive responses, alterations in the fatty acid profile of their meat, and changes in the composition of volatile fatty acids in their feces. For this purpose, a total of 160, 1-day-old Japanese quails (Coturnix coturnix japonica) were randomly allotted to four dietary treatments (4 replicates and 10 quails/replicate) with different levels of emmer wheat including 0% (control), 5% (T5), 10% (T10), and 15% (T15). These dietary treatments were administered for a period of 35 days. The results obtained from the study showed that dietary changes led by incorporation of increasing levels of emmer wheat into quail rations had no negative impact on quail's health and production. Moreover, supplemental emmer could promote better feed conversion ratio and higher carcass yield, while it did not affect the relative weights of internal organs including liver, gizzard, and heart. In addition, the incorporation of increasing levels of emmer wheat into quail rations was characterized by a reduction in total saturated and monounsaturated fatty acids, whereas an increase was observed in the levels of total unsaturated and polyunsaturated fatty acids in breast meat. Emmer wheat inclusion also increased the levels of omega-3 and omega-6 fatty acids in breast meat. Regarding volatile fatty acid profile, a lower percentage of propionic acid while a higher percentage of acetic acid were recorded in feces of quails fed emmer wheat-based diets when compared to those fed control diets. Overall, as confirmed by the present findings, the incorporation of emmer wheat into quail diets could be proposed as a valuable strategy for the promotion of animal health and performance. More research is needed to further investigate the promising roles of using emmer wheat in poultry nutrition.


Asunto(s)
Coturnix , Ácidos Grasos , Animales , Dieta/veterinaria , Ácidos Grasos Volátiles , Carne , Triticum
10.
J Exp Bot ; 73(5): 1643-1654, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34791149

RESUMEN

Drought intensity as experienced by plants depends upon soil moisture status and atmospheric variables such as temperature, radiation, and air vapour pressure deficit. Although the role of shoot architecture with these edaphic and atmospheric factors is well characterized, the extent to which shoot and root dynamic interactions as a continuum are controlled by genotypic variation is less well known. Here, we targeted these interactions using a wild emmer wheat introgression line (IL20) with a distinct drought-induced shift in the shoot-to-root ratio and its drought-sensitive recurrent parent Svevo. Using a gravimetric platform, we show that IL20 maintained higher root water influx and gas exchange under drought stress, which supported a greater growth. Interestingly, the advantage of IL20 in root water influx and transpiration was expressed earlier during the daily diurnal cycle under lower vapour pressure deficit and therefore supported higher transpiration efficiency. Application of a structural equation model indicates that under drought, vapour pressure deficit and radiation are antagonistic to transpiration rate, whereas the root water influx operates as a feedback for the higher atmospheric responsiveness of leaves. Collectively, our results suggest that a drought-induced shift in root-to-shoot ratio can improve plant water uptake potential in a short preferable time window during early morning when vapour pressure deficit is low and the light intensity is not a limiting factor for assimilation.


Asunto(s)
Sequías , Triticum , Hojas de la Planta , Raíces de Plantas , Triticum/genética , Presión de Vapor , Agua
11.
Proc Natl Acad Sci U S A ; 116(40): 20002-20008, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527251

RESUMEN

Global warming has been documented to threaten wild plants with strong selection pressures, but how plant populations respond genetically to the threats remains poorly understood. We characterized the genetic responses of 10 wild emmer wheat (Triticum dicoccoides Koern.; WEW) populations in Israel, sampling them in 1980 and again in 2008, through an exome capture analysis. It was found that these WEW populations were under elevated selection, displayed reduced diversity and temporal divergence, and carried increased mutational burdens forward. However, some populations still showed the ability to acquire beneficial alleles via selection or de novo mutation for future adaptation. Grouping populations with mean annual rainfall and temperature revealed significant differences in most of the 14 genetic estimates in either sampling year or over the 28 y. The patterns of genetic response to rainfall and temperature varied and were complex. In general, temperature groups displayed more temporal differences in genetic response than rainfall groups. The highest temperature group had more deleterious single nucleotide polymorphisms (dSNPs), higher nucleotide diversity, fewer selective sweeps, lower differentiation, and lower mutational burden. The least rainfall group had more dSNPs, higher nucleotide diversity, lower differentiation and higher mutational burden. These characterized genetic responses are significant, allowing not only for better understanding of evolutionary changes in the threatened populations, but also for realistic modeling of plant population adaptability and vulnerability to global warming.


Asunto(s)
Biodiversidad , Análisis Mutacional de ADN , Genes de Plantas , Calentamiento Global , Mutación , Triticum/genética , Alelos , Evolución Biológica , Clima , Exoma , Genética de Población , Genómica , Israel , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Temperatura
12.
Breed Sci ; 72(3): 198-212, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36408319

RESUMEN

Seed dormancy, a vital strategy for wild plant species to adapt to an unpredictable environment in their natural habitats, was eliminated from cereals during the domestication process. Intraspikelet differences in grain size and seed dormancy have been observed in wild emmer wheat. To elucidate the genetic variation of these intraspikelet differences and to determine their genetic control, grain weight ratio (first florets/second florets) (GWR), germination rate, and germination index (GI) were analyzed in 67 wild and 82 domesticated emmer wheat accessions, as well as F1 hybrids, F2 populations, and F3-F6 populations derived from reciprocal crosses between wild and domesticated lines. Only the grains on the first florets of two-grained spikelets in wild accessions had varying degrees of dormancy with GI ranging from 0 to 1, which positively correlated with their GWR. This implies that wild emmer populations comprised genotypes with varying degrees of dormancy, including nondormant genotypes. According to segregations observed in F2 populations, the intraspikelet grain weight difference was controlled by two independently inherited loci. Furthermore, low-GWR populations with low or high GI values could be selected in F5 and F6 generations, implying that the major loci associated with dormancy might be independent of intraspikelet grain weight difference.

13.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35270007

RESUMEN

The zinc/iron-regulated transporter-like protein (ZIP) family has a crucial role in Zn homeostasis of plants. Although the ZIP genes have been systematically studied in many plant species, the significance of this family in wild emmer wheat (Triticum turgidum ssp. dicoccoides) is not yet well understood. In this study, a genome-wide investigation of ZIPs genes based on the wild emmer reference genome was conducted, and 33 TdZIP genes were identified. Protein structure analysis revealed that TdZIP proteins had 1 to 13 transmembrane (TM) domains and most of them were predicted to be located on the plasma membrane. These TdZIPs can be classified into three clades in a phylogenetic tree. They were annotated as being involved in inorganic ion transport and metabolism. Cis-acting analysis showed that several elements were involved in hormone, stresses, grain-filling, and plant development. Expression pattern analysis indicated that TdZIP genes were highly expressed in different tissues. TdZIP genes showed different expression patterns in response to Zn deficiency and that 11 genes were significantly induced in either roots or both roots and shoots of Zn-deficient plants. Yeast complementation analysis showed that TdZIP1A-3, TdZIP6B-1, TdZIP6B-2, TdZIP7A-3, and TdZIP7B-2 have the capacity to transport Zn. Overexpression of TdZIP6B-1 in rice showed increased Zn concentration in roots compared with wild-type plants. The expression levels of TdZIP6B-1 in transgenic rice were upregulated in normal Zn concentration compared to that of no Zn. This work provides a comprehensive understanding of the ZIP gene family in wild emmer wheat and paves the way for future functional analysis and genetic improvement of Zn deficiency tolerance in wheat.


Asunto(s)
Proteínas de Plantas , Triticum , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas/metabolismo , Triticum/metabolismo
14.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36232900

RESUMEN

The NAC transcription factor (TF) family is one of the largest TF families in plants, which has been widely reported in rice, maize and common wheat. However, the significance of the NAC TF family in wild emmer wheat (Triticum turgidum ssp. dicoccoides) is not yet well understood. In this study, a genome-wide investigation of NAC genes was conducted in the wild emmer genome and 249 NAC family members (TdNACs) were identified. The results showed that all of these genes contained NAM/NAC-conserved domains and most of them were predicted to be located on the nucleus. Phylogenetic analysis showed that these 249 TdNACs can be classified into seven clades, which are likely to be involved in the regulation of grain protein content, starch synthesis and response to biotic and abiotic stresses. Expression pattern analysis revealed that TdNACs were highly expressed in different wheat tissues such as grain, root, leaves and shoots. We found that TdNAC8470 was phylogenetically close to NAC genes that regulate either grain protein or starch accumulation. Overexpression of TdNAC8470 in rice showed increased grain starch concentration but decreased grain Fe, Zn and Mn contents compared with wild-type plants. Protein interaction analysis indicated that TdNAC8470 might interact with granule-bound starch synthase 1 (TdGBSS1) to regulate grain starch accumulation. Our work provides a comprehensive understanding of the NAC TFs family in wild emmer wheat and establishes the way for future functional analysis and genetic improvement of increasing grain starch content in wheat.


Asunto(s)
Proteínas de Granos , Oryza , Almidón Sintasa , Proteínas de Granos/metabolismo , Oryza/genética , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Almidón Sintasa/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triticum/genética , Triticum/metabolismo
15.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36362444

RESUMEN

Powdery mildew (PM) is an economically important foliar disease of cultivated cereals worldwide. The cultivation of disease-resistant varieties is considered the most efficient, sustainable and economical strategy for disease management. The objectives of the current study were to fine map the chromosomal region harboring the wild emmer PM resistance locus Pm36 and to identify candidate genes by exploiting the improved tetraploid wheat genomic resources. A set of backcross inbred lines (BILs) of durum wheat were genotyped with the SNP 25K chip array and comparison of the PM-resistant and susceptible lines defined a 1.5 cM region (physical interval of 1.08 Mb) harboring Pm36. The genetic map constructed with F2:3 progenies derived by crossing the PM resistant line 5BIL-42 and the durum parent Latino, restricted to 0.3 cM the genetic distance between Pm36 and the SNP marker IWB22904 (physical distance 0.515 Mb). The distribution of the marker interval including Pm36 in a tetraploid wheat collection indicated that the positive allele was largely present in the domesticated and wild emmer Triticum turgidum spp. dicoccum and ssp. dicoccoides. Ten high-confidence protein coding genes were identified in the Pm36 region of the emmer, durum and bread wheat reference genomes, while three added genes showed no homologous in the emmer genome. The tightly linked markers can be used for marker-assisted selection in wheat breeding programs, and as starting point for the Pm36 map-based cloning.


Asunto(s)
Cromosomas de las Plantas , Triticum , Triticum/genética , Cromosomas de las Plantas/genética , Mapeo Cromosómico , Enfermedades de las Plantas/genética , Genes de Plantas , Tetraploidía , Fitomejoramiento , Marcadores Genéticos , Erysiphe , Estudios de Asociación Genética , Resistencia a la Enfermedad/genética
16.
Plant J ; 101(3): 555-572, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31571297

RESUMEN

Dissection of the genetic basis of wheat ionome is crucial for understanding the physiological and biochemical processes underlying mineral accumulation in seeds, as well as for efficient crop breeding. Most of the elements essential for plants are metals stored in seeds as chelate complexes with phytic acid or sulfur-containing compounds. We assume that the involvement of phosphorus and sulfur in metal chelation is the reason for strong phenotypic correlations within ionome. Adjustment of element concentrations for the effect of variation in phosphorus and sulfur seed content resulted in drastic change of phenotypic correlations between the elements. The genetic architecture of wheat grain ionome was characterized by quantitative trait loci (QTL) analysis using a cross between durum and wild emmer wheat. QTL analysis of the adjusted traits and two-trait analysis of the initial traits paired with either P or S considerably improved QTL detection power and accuracy, resulting in the identification of 105 QTLs and 617 QTL effects for 11 elements. Candidate gene search revealed some potential functional associations between QTLs and corresponding genes within their intervals. Thus, we have shown that accounting for variation in P and S is crucial for understanding of the physiological and genetic regulation of mineral composition of wheat grain ionome and can be implemented for other plants.


Asunto(s)
Fósforo/metabolismo , Sitios de Carácter Cuantitativo/genética , Azufre/metabolismo , Triticum/genética , Cruzamiento , Grano Comestible , Fenotipo , Semillas/genética , Semillas/fisiología , Triticum/fisiología
17.
Plant Cell Environ ; 44(6): 1921-1934, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33629405

RESUMEN

Root axial conductance, which describes the ability of water to move through the xylem, contributes to the rate of water uptake from the soil throughout the whole plant lifecycle. Under the rainfed wheat agro-system, grain-filling is typically occurring during declining water availability (i.e., terminal drought). Therefore, preserving soil water moisture during grain filling could serve as a key adaptive trait. We hypothesized that lower wheat root axial conductance can promote higher yields under terminal drought. A segregating population derived from a cross between durum wheat and its direct progenitor wild emmer wheat was used to underpin the genetic basis of seminal root architectural and functional traits. We detected 75 QTL associated with seminal roots morphological, anatomical and physiological traits, with several hotspots harbouring co-localized QTL. We further validated the axial conductance and central metaxylem QTL using wild introgression lines. Field-based characterization of genotypes with contrasting axial conductance suggested the contribution of low axial conductance as a mechanism for water conservation during grain filling and consequent increase in grain size and yield. Our findings underscore the potential of harnessing wild alleles to reshape the wheat root system architecture and associated hydraulic properties for greater adaptability under changing climate.


Asunto(s)
Raíces de Plantas/anatomía & histología , Triticum/anatomía & histología , Triticum/genética , Alelos , Sequías , Fenotipo , Raíces de Plantas/genética , Sitios de Carácter Cuantitativo , Plantones/genética , Plantones/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Xilema/genética
18.
Mol Breed ; 41(4): 29, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37309354

RESUMEN

Heat stress tolerance in plants is a complex trait controlled by multiple genes of minor effect which are influenced by the environment and this makes breeding and selection complicated. Emmer wheat (Triticum dicoccon Schrank) carries valuable diversity that can be used to improve the heat tolerance of modern bread wheat. A diverse set of emmer-based genotypes was developed by crossing emmer wheat with hexaploid wheat. These materials, along with their hexaploid recurrent parents and commercial cultivars, were evaluated at optimum (E1) and heat stressed (E2) sowing times in the field for three consecutive years (2014-2016). The material was genotyped using the Infinium iSelect SNP 90K SNP Assay. The phenotypic data were combined across years within each sowing time and best linear unbiased estimators calculated for each genotype in each environment. These estimates were used for GWAS analysis. Significant phenotypic and genotypic variation was observed for all traits. A total of 125 and 142 marker-trait associations (MTAs) were identified in E1 and E2, respectively. The highest number of MTAs were observed on the A genome (106), followed by the B (105) and D (56) genomes. MTAs with pleiotropic effects within and across the environments were observed. Many of the MTAs found were reported previously for various traits, and a few significant MTAs under heat stress were new and linked to emmer genome. Genomic regions identified on chromosomes 2B and 3A had a significant positive impact on grain yield under stress with a 7% allelic effect. Genomic regions on chromosomes 1A and 4B contributed 11% and 9% of the variation for thousand kernel weight (TKW) under heat stress respectively. Following fine mapping, these regions could be used for marker-assisted selection to improve heat tolerance in wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01222-3.

19.
Proc Natl Acad Sci U S A ; 115(52): 13312-13317, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30530679

RESUMEN

Fifteen full-length wheat grain avenin-like protein coding genes (TaALP) were identified on chromosome arms 7AS, 4AL, and 7DS of bread wheat with each containing five genes. Besides the a- and b-type ALPs, a c type was identified in the current paper. Both a and b types have two subunits, named x and y types. The five genes on each of the three chromosome arms consisted of two x-type genes, two y-type genes, and one c-type gene. The a-type genes were typically of 520 bp in length, whereas the b types were of 850 bp in length, and the c type was of 470 bp in length. The ALP gene transcript levels were significantly up-regulated in Blumeria graminis f. sp. tritici (Bgt)-infected wheat grain caryopsis at early grain filling. Wild emmer wheat [(WEW), Triticum dicoccoides] populations were focused on in our paper to identify allelic variations of ALP genes and to study the influence of natural selection on certain alleles. Consequently, 25 alleles were identified for TdALP-bx-7AS, 13 alleles were identified for TdALP-ax-7AS, 7 alleles were identified for TdALP-ay-7AS, and 4 alleles were identified for TdALP-ax-4AL Correlation studies on TdALP gene diversity and ecological stresses suggested that environmental factors contribute to the ALP polymorphism formation in WEW. Many allelic variants of ALPs in the endosperm of WEW are not present in bread wheat and therefore could be utilized in breeding bread wheat varieties for better quality and elite plant defense characteristics.


Asunto(s)
Prolaminas/genética , Triticum/genética , Alelos , Evolución Biológica , Mapeo Cromosómico , Cromosomas de las Plantas , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas , Variación Genética/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Poaceae/genética , Prolaminas/metabolismo , Selección Genética/genética
20.
Plant Dis ; 105(4): 879-888, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33141640

RESUMEN

Stripe rust is a foliar disease in wheat caused by Puccinia striiformis f. tritici. The best way to protect wheat from this disease is by growing resistant cultivars. Tetraploid wheat can serve as a good source of valuable genetic diversity for various traits. Here, we report the mapping of nine stripe rust resistance quantitative trait loci (QTL) effective against P. striiformis f. tritici in China and Israel. We used recombinant inbred lines (RILs) developed from a cross between the durum wheat cultivar Svevo and Triticum dicoccoides accession Zavitan. By genotyping the RIL population of 137 lines using the wheat 90K single-nucleotide polymorphism array, we mapped an adult-plant resistance locus QYrsv.swust-1BL.1, the most effective QTL, within a 0.75-centimorgan region in T. turgidum subsp. durum 'Svevo' on chromosome arm 1BL, corresponding to the region of 670.7 to 671.5 Mb on the Chinese Spring chromosome arm 1BL. Of the other eight minor-effect stripe rust QTL, seven were from Svevo and mapped on chromosomes 1A, 1B, 2B, 3A, 4A, and 5A, and one was from Zavitan and mapped on chromosome 2A. Several QTL with epistatic effects were identified as well. The markers linked to the resistance QTL can be useful in marker-assisted selection for incorporation of these resistance QTL into both durum and common wheat cultivars.


Asunto(s)
Resistencia a la Enfermedad , Triticum , China , Resistencia a la Enfermedad/genética , Humanos , Israel , Polimorfismo de Nucleótido Simple/genética , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA