Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(26): e2407062121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38900794

RESUMEN

Particular frost patterns on natural leaves had prompted Yao et al. [Y. Yao et al., Proc. Natl. Acad. Sci. U.S.A. 117, 6323-6329 (2020)] to investigate the underlying physics. Their work revealed why on corrugated surfaces ice forms on crests and dries out adjacent grooves. In the absence of frost, in contrast, grooves tend to constitute niches on a leaf where microorganisms are less limited by moisture than in other locations. Here, we show that microorganisms able to nucleate ice before it forms on crests can modify the frosting pattern to their advantage. This ability might drive in cold arid environments the association between certain microorganisms and plants.


Asunto(s)
Congelación , Hojas de la Planta , Hielo
2.
Environ Res ; 242: 117754, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38016497

RESUMEN

Submerged macrophytes play important roles in nutrient cycling and are widely used in ecological restoration to alleviate eutrophication and improve water quality in lakes. Epiphytic microbial communities on leaves of submerged macrophytes might promote nitrogen cycling, but the mechanisms and quantification of their contributions remain unclear. Here, four types of field zones with different nutrient levels and submerged macrophytes, eutrophic + Vallisneria natans (EV), eutrophic + V. natans + Hydrilla verticillata, mesotrophic + V. natans + H. verticillata, and eutrophic without macrophytes were selected to investigate the microbial communities that involved in nitrification and denitrification. The alpha diversity of bacterial community was higher in the phyllosphere than in the water, and that of H. verticillata was higher compared to V. natans. Bacterial community structures differed significantly between the four zones. The highest relative abundance of dominant bacterioplankton genera involved in nitrification and denitrification was observed in the EV zone. Similarly, the alpha diversity of the epiphytic ammonia-oxidizing archaea and nosZI-type denitrifiers were highest in the EV zone. Consist with the diversity patterns, the potential denitrification rates were higher in the phyllosphere than those in the water. Higher potential denitrification rates in the phyllosphere were also found in H. verticillata than those in V. natans. Anammox was not detected in all samples. Nutrient loads, especially nitrogen concentrations were important factors influencing potential nitrification, denitrification rates, and bacterial communities, especially for the epiphytic nosZI-type taxa. Overall, we observed that the phyllosphere harbors more microbes and promotes higher denitrification rates compared to water, and epiphytic bacterial communities are shaped by nitrogen nutrients and macrophyte species, indicating that epiphytic microorganisms of submerged macrophytes can effectively contribute to the N removal in shallow lakes.


Asunto(s)
Desnitrificación , Hydrocharitaceae , Nitrógeno , Nitrificación , Bacterias/genética , Organismos Acuáticos , Lagos/microbiología
3.
J Nanobiotechnology ; 22(1): 389, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956645

RESUMEN

BACKGROUND: Nanotechnology holds revolutionary potential in the field of agriculture, with zinc oxide nanoparticles (ZnO NPs) demonstrating advantages in promoting crop growth. Enhanced photosynthetic efficiency is closely linked to improved vigor and superior quality in tea plants, complemented by the beneficial role of phyllosphere microorganisms in maintaining plant health. However, the effects of ZnO NPs on the photosynthesis of tea plants, the sprouting of new shoots, and the community of phyllosphere microorganisms have not been fully investigated. RESULTS: This study investigated the photosynthetic physiological parameters of tea plants under the influence of ZnO NPs, the content of key photosynthetic enzymes such as RubisCO, chlorophyll content, chlorophyll fluorescence parameters, transcriptomic and extensive targeted metabolomic profiles of leaves and new shoots, mineral element composition in these tissues, and the epiphytic and endophytic microbial communities within the phyllosphere. The results indicated that ZnO NPs could enhance the photosynthesis of tea plants, upregulate the expression of some genes related to photosynthesis, increase the accumulation of photosynthetic products, promote the development of new shoots, and alter the content of various mineral elements in the leaves and new shoots of tea plants. Furthermore, the application of ZnO NPs was observed to favorably influence the microbial community structure within the phyllosphere of tea plants. This shift in microbial community dynamics suggests a potential for ZnO NPs to contribute to plant health and productivity by modulating the phyllosphere microbiome. CONCLUSION: This study demonstrates that ZnO NPs have a positive impact on the photosynthesis of tea plants, the sprouting of new shoots, and the community of phyllosphere microorganisms, which can improve the growth condition of tea plants. These findings provide new scientific evidence for the application of ZnO NPs in sustainable agricultural development and contribute to advancing research in nanobiotechnology aimed at enhancing crop yield and quality.


Asunto(s)
Camellia sinensis , Nanopartículas del Metal , Microbiota , Fotosíntesis , Hojas de la Planta , Brotes de la Planta , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Fotosíntesis/efectos de los fármacos , Camellia sinensis/microbiología , Brotes de la Planta/crecimiento & desarrollo , Microbiota/efectos de los fármacos , Hojas de la Planta/microbiología , Nanopartículas del Metal/química , Clorofila/metabolismo , Nanopartículas/química
4.
Bull Environ Contam Toxicol ; 98(6): 770-775, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28361461

RESUMEN

Bisphenol A (BPA), a typical endocrine disruptor, has been found in global aquatic environments, causing great concern. The capabilities of five common submerged macrophytes to remove BPA from water and the contributions of epiphytic microorganisms were investigated. Macrophytes removed 62%-100% of total BPA (5 mg/L) over 12 days; much higher rates than that observed in the control (2%, F = 261.511, p = 0.000). Ceratophyllum demersum was the most efficient species. C. demersum samples from lakes with different water qualities showed no significant differences in BPA removal rates. Moreover, removal, inhibition or re-colonization of epiphytic microorganisms did not significantly change the BPA removal rates of C. demersum. Therefore, the contributions of epiphytic microorganisms to the BPA removal process were negligible. The rate of BPA accumulation in C. demersum was 0.1%, indicating that BPA was mainly biodegraded by the macrophyte. Hence, submerged macrophytes, rather than epiphytic microorganisms, substantially contribute to the biodegradation of BPA in water.


Asunto(s)
Compuestos de Bencidrilo/metabolismo , Disruptores Endocrinos/metabolismo , Magnoliopsida/metabolismo , Fenoles/metabolismo , Contaminantes Químicos del Agua/metabolismo , Compuestos de Bencidrilo/análisis , Biodegradación Ambiental , Disruptores Endocrinos/análisis , Lagos/química , Fenoles/análisis , Contaminantes Químicos del Agua/análisis
5.
Front Plant Sci ; 14: 1328586, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239215

RESUMEN

Introduction: The phyllosphere of plants is inhabited by various microorganisms, which play a crucial role in plant physiological metabolism. Currently, there is limited research on the dynamic effects of species and seasons on plant phyllosphere microbial community diversity and microbial interactions. Methods: In this study, high-throughput sequencing technology was used to sequence the leaf surface parasitic microorganisms of five medicinal plants (Bupleurum chinense, Atractylodes lancea, Salvia miltiorrhiza, Astragalus membranaceus, and Lonicera japonica). Results: The results showed that bacteria and fungi clustered into 3,898 and 1,572 operational taxonomic units (OTUs), respectively. Compared to host species, seasons had a more significant impact on the a diversity of bacteria and fungi. The heterogeneity of phyllosphere microbial communities was greater in winter compared to summer. Key species analysis at the OTU level and Spearman correlation analysis demonstrated significant preferences in microbial interactions under plant and seasonal backgrounds. The network connections between bacterial and fungal communities significantly increased during seasonal transitions compared to connections with plants. Discussion: This study enhances our understanding of the composition and ecological roles of plant-associated microbial communities in small-scale agricultural environments. Additionally, it provides valuable insights for assessing the biodiversity of medicinal plants.

6.
New Phytol ; 140(2): 271-282, 1998 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33862844

RESUMEN

Wetting of the upper leaf surface of Juglans regia L. and of model surfaces colonized by epiphytic micro-organisms was investigated by measuring contact angles of aqueous solutions buffered at different pH values. During June to October 1995, contact angles of aqueous solutions on the leaf surface of J. regia decreased by angles ranging from 12° (low pH values) to 25° at high pH values. At the end of this vegetation period, wetting was strongly dependent on pH showing significantly lower contact angles with alkaline solutions (pH 9·0) than with acidic solutions (pH 3·0). Contact angle titration measured angles on the leaf surface as a function of the pH of buffered aqueous solutions, covering a pH range from 3·0 to 11·0. Titration curves revealed inflection points around 7·5, indicating the existence of ionizable carboxylic groups at the interface of the phylloplane. Altered leaf-surface wetting properties observed on the intact leaf surface could be simulated in model experiments by measuring contact angles on artificial surfaces colonized by Pseudomonas fluorescens and by epiphytic micro-organisms isolated from the phylloplane of J. regia. Strong evidence is provided that interfacial carboxylic groups derive from epiphytic micro-organisms present on the phylloplane. Results suggest that the age-dependent increase in, and pH dependence of, wetting as leaves mature are related to the presence of epiphytic micro-organisms on the phylloplane. Ecological consequences of increased leaf-surface wetting, concerning the structure of the leaf surface as a microhabitat for epiphytic micro-organisms, are discussed.

7.
Oecologia ; 108(4): 771-776, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28307813

RESUMEN

Aphids of the genus Cinara, feeding on Norway spruce, excrete copious amounts of honeydew, a carbon-rich waste product, which accumulates locally on needles and twigs. We investigated the role of honeydew as a potential source of energy which might promote the growth of micro-organisms in the phyllosphere of conifer trees. To approach this question, we followed the population dynamics of Cinara spp. in a natural forest stand over two seasons. We also studied the amounts of honeydew produced by individual aphids and identified potential parameters which might influence honeydew production. Finally, we determined the growth of micro-organisms on infested and uninfested needles of Norway spruce during the growing season. Confined to Picea abies, the investigated Cinara species only became abundant in midsummer, when needles and shoots were expanding. The populations showed only a single peak in abundance, the timing and magnitude of which may vary from year to year due to weather conditions, changes in plant quality in a yearly cycle or the impact of natural enemies. The amount of honeydew produced by individual aphids was dependent on the developmental stage of the aphid, the nutritional supply of its host plant and on the developmental state of the Norway spruce (e.g. bud burst, end of shoot extension). The presence of honeydew significantly increased the growth of bacteria, yeast and filamentous fungi on the surface of needles and there was a pronounced seasonal trend, with the highest abundance in midsummer correlating with the period of peak aphid abundance. Taken together, these findings indicate that aphids have an influence on microbial ecology in the phyllosphere of trees. The implication of our study, from interactions at the population level to effects and potential consequences for C and N fluxes at the level of forest ecosystems, is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA