Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Small ; 15(1): e1804150, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30609286

RESUMEN

Hybrid organic-inorganic perovskites have shown exceptional semiconducting properties and microstructural versatility for inexpensive, solution-processable photovoltaic and optoelectronic devices. In this work, an all-solution-based technique in ambient environment for highly sensitive and high-speed flexible photodetectors using high crystal quality perovskite nanowires grown on Kapton substrate is presented. At 10 V, the optimized photodetector exhibits a responsivity as high as 0.62 A W-1 , a maximum specific detectivity of 7.3 × 1012 cm Hz1/2 W-1 , and a rise time of 227.2 µs. It also shows remarkable photocurrent stability even beyond 5000 bending cycles. Moreover, a deposition of poly(methyl methacrylate) (PMMA) as a protective layer on the perovskite yields significantly better stability under ambient air operation: the PMMA-protected devices are stable for over 30 days. This work demonstrates a cost-effective fabrication technique for high-performance flexible photodetectors and opens opportunities for research advancements in broadband and large-scale flexible perovskite-based optoelectronic devices.

2.
Small ; 15(36): e1902135, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31322829

RESUMEN

Self-powered photodetectors (PDs) based on inorganic metal halide perovskites are regarded as promising alternatives for the next generation of photodetectors. However, uncontrollable film growth and sluggish charge extraction at interfaces directly limit the sensitivity and response speed of perovskite-based photodetectors. Herein, by assistance of an atomic layer deposition (ALD) technique, CsPbBr3 perovskite thin films with preferred orientation and enlarged grain size are obtained on predeposited interfacial modification layers. Thanks to improved film quality and double side interfacial engineering, the optimized CsPbBr3 (Al2 O3 /CsPbBr3 /TiO2 , ACT) perovskite PDs exhibit outstanding performance with ultralow dark current of 10-11 A, high detectivity of 1.88 × 1013 Jones and broad linear dynamic range (LDR) of 172.7 dB. Significantly, excellent long-term environmental stability (ambient conditions >100 d) and flexibility stability (>3000 cycles) are also achieved. The remarkable performance is credited to the synergistic effects of high carrier conductivity and collection efficiency, which is assisted by ALD modification layers. Finally, the ACT PDs are successfully integrated into a visible light communication system as a light receiver on transmitting texts, showing a bit rate as high as 100 kbps. These results open the window of high performance all-inorganic halide perovskite photodetectors and extends to rational applications for optical communication.

3.
Small ; 14(22): e1704052, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29707890

RESUMEN

Phase-engineered type-II metal-selenide heterostructures are demonstrated by directly selenizing indium-tin oxide to form multimetal selenides in a single step. The utilization of a plasma system to assist the selenization facilitates a low-temperature process, which results in large-area films with high uniformity. Compared to single-metal-selenide-based photodetectors, the multimetal-selenide photodetectors exhibit obviously improved performance, which can be attributed to the Schottky contact at the interface for tuning the carrier transport, as well as the type-II heterostructure that is beneficial for the separation of the electron-hole pairs. The multimetal-selenide photodetectors exhibit a response to light over a broad spectrum from UV to visible light with a high responsivity of 0.8 A W-1 and an on/off current ratio of up to 102 . Interestingly, all-transparent photodetectors are successfully produced in this work. Moreover, the possibility of fabricating devices on flexible substrates is also demonstrated with sustainable performance, high strain tolerance, and high durability during bending tests.

4.
Adv Sci (Weinh) ; 11(32): e2403870, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38899831

RESUMEN

Guided nanowires grown on polymer surfaces facilitate their seamless integration as flexible devices without post-growth processing steps. However, this is challenging due to the inability of polymer films to provide the required lattice-matching effect. In this work, this challenge is addressed by replicating highly aligned nanogrooves from a compact disc (CD) onto a casted flexible polydimethylsiloxane (PDMS) surface. Leveraging the replicated nanogrooves, copper hexadecafluorophthalocyanine (F16CuPc) and various metal phthalocyanines are guided into large-area, self-aligned nanowires. Subsequently, by employing specifically designed shadow masks during electrode deposition, these nanowires are seamlessly integrated as either a monolithic flexible photodetector with a large sensing area or on-chip flexible photodetector arrays. The resulting flexible photodetectors exhibit millisecond and long-term stable response to UV-vis-NIR light. Notably, they demonstrate exceptional bending stability, retaining stable and sensitive photoresponse even at a curvature radius as low as 0.5 cm and after enduring 1000 bending cycles. Furthermore, the photodetector array showcases consistent sensitivity and response speed across the entire array. This work not only proves the viability of guided nanowire growth on flexible polymer surfaces by replicating CD nanogrooves but also underscores the potential for large-scale monolithic integration of guided nanowires as flexible devices.

5.
Adv Sci (Weinh) ; 11(13): e2305551, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38263724

RESUMEN

2D conjugated metal-organic frameworks (c-MOFs) have emerged as promising materials for (opto)electronic applications due to their excellent charge transport properties originating from the unique layered-stacked structures with extended in-plane conjugation. The further advancement of MOF-based (opto)electronics necessitates the development of novel 2D c-MOF thin films with high quality. Cu-HHHATN (HHHATN: hexahydroxyl-hexaazatrinaphthylene) is a recently reported 2D c-MOF featuring high in-plane conjugation, strong interlayer π-π stacking, and multiple coordination sites, while the production of its thin-film form has not yet been reported. Herein, large-area Cu-HHHATN thin films with preferential orientation, high uniformity, and smooth surfaces are realized by using a convenient layer-by-layer growth method. Flexible photodetectors are fabricated, showing broadband photoresponse ranging from UV to short-wave infrared (370 to 1450 nm). The relatively long relaxation time of photocurrent, which arises from the trapping of photocarriers, renders the device's synaptic plasticity similar to that of biological synapses, promising its use in neuromorphic visual systems. This work demonstrates the great potential of Cu-HHHATN thin films in flexible optoelectronic devices for various applications.

6.
Adv Mater ; 35(6): e2207763, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36373546

RESUMEN

Photodetectors (PDs) are the building block of various imaging and sensing applications. However, commercially available PDs based on crystalline inorganic semiconductors cannot meet the requirements of emerging wearable/implantable applications due to their rigidity and fragility, which creates the need for flexible devices. Here, a high-performance flexible PD is presented by gating an organic electrochemical transistor (OECT) with a perovskite solar cell. Due to the ultrahigh transconductance of the OECT, the device demonstrates a high gain of ≈106 , a fast response time of 67 µs and an ultrahigh detectivity of 6.7 × 1017 Jones to light signals under a low working voltage (≤0.6 V). Thanks to the ultrahigh sensitivity and fast response, the device can track photoplethysmogram signals and peripheral oxygen saturation under ambient light and even provide contactless remote sensing, offering a low-power and convenient way for continuous vital signs monitoring. This work offers a novel strategy for realizing high-performance flexible PDs that are promising for low-power, user-friendly and wearable optoelectronics.

7.
Adv Sci (Weinh) ; 10(5): e2205879, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36494090

RESUMEN

Realization of remote wearable health monitoring (RWHM) technology for the flexible photodiodes is highly desirable in remote-sensing healthcare systems used in space stations, oceans, and forecasting warning, which demands high external quantum efficiency (EQE) and detectivity in NIR region. Traditional inorganic photodetectors (PDs) are mechanically rigid and expensive while the widely reported solution-processed mixed tin-lead (MSP) perovskite photodetectors (PPDs) exhibit a trade-off between EQE and detectivity in the NIR region. Herein, a novel functional passivating antioxidant (FPA) strategy has been introduced for the first time to simultaneously improve crystallization, restrain Sn2+ oxidization, and reduce defects in MSP perovskite films by multiple interactions between thiophene-2-carbohydrazide (TAH) molecules and cations/anions in MSP perovskite. The resultant solution-processed rigid mixed Sn-Pb PPD simultaneously achieves high EQE (75.4% at 840 nm), detectivity (1.8 × 1012 Jones at 840 nm), ultrafast response time (trise /tfall = 94 ns/97 ns), and improved stability. This work also highlights the demonstration of the first flexible photodiode using MSP perovskite and FPA strategy with remarkably high EQE (75% at 840 nm), and operational stability. Most importantly, the RWHM is implemented for the first time in the PIN MSP perovskite photodiodes to remotely monitor the heart rate of humans at rest and after-run conditions.

8.
Adv Sci (Weinh) ; 10(22): e2302005, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37246282

RESUMEN

Although perovskite nanocrystals have attracted considerable interests as emerging semiconductors in optoelectronic devices, design and fabrication of a deformable structure with high stability and flexibility while meeting the charge transport requirements remain a huge challenge. Herein, a combined soft-hard strategy is demonstrated to fabricate intrinsically flexible all-inorganic perovskite layers for photodetection via ligand cross-linking. Perfluorodecyltrichlorosilane (FDTS) is employed as the capping ligand and passivating agent bound to the CsPbBr3 surface via Pb-F and Br-F interactions. The SiCl head groups of FDTS are hydrolyzed to produce SiOH groups which subsequently condense to form the SiOSi network. The CsPbBr3 @FDTS nanocrystals (NCs) are monodispersed cubes with an average particle size of 13.03 nm and exhibit excellent optical stability. Furthermore, the residual hydroxyl groups on the surface of the CsPbBr3 @FDTS render the NCs tightly packed and cross-linked to each other to form a dense and elastic CsPbBr3 @FDTS film with soft and hard components. The photodetector based on the flexible CsPbBr3 @FDTS film exhibits outstanding mechanical flexibility and robust stability after 5000 bending cycles.

9.
Artículo en Inglés | MEDLINE | ID: mdl-36896978

RESUMEN

Despite numerous studies on broadband photodetectors, the problematic query that remains unaddressed is the limited photoresponsivity while broadening the spectral regime. Here, for the first time, a rational design of a hybrid 1D CdSe nanobelt/2D PbI2 flake heterojunction device is constructed, which substantially boosts the photocurrent while significantly attenuating the dark current, resulting in improved photodetector figures-of-merit. Thanks to the excellent quality of the nanobelt/flake and built-in electric field at the CdSe/PbI2 interface heterojunction, photogenerated carriers are promptly segregated and more photoexcitons are accumulated by the respective electrodes, enabling a high responsivity of ∼106 A/W, making this one of the highest values among similar reported hybrid heterojunction photodetectors, together with a large linear dynamic range, superior sensitivity, excellent detectivity and external quantum efficiency, an ultrafast response, and a broadband spectral response range. The similar 1D/2D hybrid heterojunction device architecture assembled on the flexible polyimide tape substrate exhibits excellent folding endurance and mechanical, flexural, and long-term environmental stability. The present device architecture and robust operational stability in an ambient environment reveals that the combination of the present 1D/2D hybrid heterojunction has incredible potential for future flexible photoelectronic devices.

10.
ACS Appl Mater Interfaces ; 15(15): 19270-19278, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-36996388

RESUMEN

The detection of ultraviolet (UV) light is vital for various applications, such as chemical-biological analysis, communications, astronomical studies, and also for its adverse effects on human health. Organic UV photodetectors are gaining much attention in this scenario because they possess properties such as high spectral selectivity and mechanical flexibility. However, the achieved performance parameters are much more inferior than the inorganic counterparts because of the lower mobility of charge carriers in organic systems. Here, we report the fabrication of a high-performance visible-blind UV photodetector, using 1D supramolecular nanofibers. The nanofibers are visibly inactive and exhibit highly responsive behavior mainly for UV wavelengths (275-375 nm), the highest response being at ∼275 nm. The fabricated photodetectors demonstrate desired features, such as high responsivity and detectivity, high selectivity, low power consumption, and good mechanical flexibility, because of their unique electro-ionic behavior and 1D structure. The device performance is shown to be improved by several orders through the tweaking of both electronic and ionic conduction pathways while optimizing the electrode material, external humidity, applied voltage bias, and by introducing additional ions. We have achieved optimum responsivity and detectivity values of around 6265 A W-1 and 1.54 × 1014 Jones, respectively, which stand out compared with the previous organic UV photodetector reports. The present nanofiber system has great potential for integration in future generations of electronic gadgets.

11.
ACS Nano ; 15(5): 8386-8396, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33908251

RESUMEN

Interdigitated photodetectors (IPDs) based on the two-dimensional electron gas (2DEG) at the AlGaN/GaN interface have gained prominence as high sensitivity ultraviolet (UV) PDs due to their excellent optoelectronic performance. However, most 2DEG-IPDs have been built on rigid substrates, thus limiting the use of 2DEG-IPDs in flexible and wearable applications. In this paper, we have demonstrated high performance flexible AlGaN/GaN 2DEG-IPDs using AlGaN/GaN 2DEG heterostructure membranes created from 8 in. AlGaN/GaN on insulator (AlGaN/GaNOI) substrates. The interdigitated AlGaN/GaN heterostructure has been engineered to reduce dark current by disconnecting the conductive channel at the heterostructure interface. Photocurrent has been also boosted by the escaped carriers from the 2DEG layer. Therefore, the utilization of a 2DEG layer in transferrable AlGaN/GaN heterostructure membranes offers great promises for high performance flexible 2DEG-IPDs for advanced UV detection systems that are critically important in myriad biomedical and environmental applications.

12.
Adv Mater ; 33(24): e2008171, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33963781

RESUMEN

Single-crystalline silicon (sc-Si) is the dominant semiconductor material for the modern electronics industry. Despite their excellent photoelectric and electronic properties, the rigidity, brittleness, and nontransparency of commonly used silicon wafers limit their application in transparent flexible optoelectronics. In this study, a new type of Si microstructure, named single-crystalline Si frameworks (sc-SiFs), is developed, through a combination of wet-etching and microfabrication technologies. The sc-SiFs are self-supported, flexible, lightweight, tailorable, and highly transparent. They can withstand a small bending radius of less than 0.5 mm and have a transparency of up to 96% in all wavelength ranges, owing to the hollowed-out framework structures. Thus, the sc-SiFs provide a new platform for high-performance transparent flexible optoelectronics. Taking transparent flexible photodetectors (TFPDs) as an example, substrate-free and self-driven TFPDs are achieved based on the sc-SiFs. The devices exhibit superior performance compared to other reported TFPDs and reveal the great potential for integrated optoelectronic applications. The development of sc-SiFs paves the way toward the fabrication of high-performance transparent flexible devices for a host of applications, including e-skins, the Internet of Things, transparent flexible displays, and artificial visual cortexes.

13.
Adv Mater ; 33(32): e2101263, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34176170

RESUMEN

2D hybrid perovskites are very attractive for optoelectronic applications because of their numerous exceptional properties. The emerging 2D perovskite ferroelectrics, in which are the coupling of spontaneous polarization and piezoelectric effects, as well as photoexcitation and semiconductor behaviors, have great appeal in the field of piezo-phototronics that enable to effectively improve the performance of optoelectronic devices via modulating the electro-optical processes. However, current studies on 2D perovskite ferroelectrics focus on bulk ceramics that cannot endure irregular mechanical deformation and limit their application in flexible optoelectronics and piezo-phototronics. Herein, we synthesize ferroelectric EA4 Pb3 Br10 single-crystalline thin-films (SCFs) for integration into flexible photodetectors. The in-plane multiaxial ferroelectricity is evident within the EA4 Pb3 Br10 SCFs through systematic characterizations. Flexible photodetectors based on EA4 Pb3 Br10 SCFs are achieved with an impressive photodetection performance. More importantly, optoelectronic EA4 Pb3 Br10 SCFs incorporated with in-plane ferroelectric polarization and effective piezoelectric coefficient show great promise for the observation of piezo-phototronic effect, which is capable of greatly enhancing the photodetector performance. Under external strains, the responsivity of the flexible photodetectors can be modulated by piezo-phototronic effect with a remarkable enhancement up to 284%. Our findings shed light on the piezo-phototronic devices and offer a promising avenue to broaden functionalities of hybrid perovskite ferroelectrics.

14.
Adv Mater ; 32(28): e2001998, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32500553

RESUMEN

Compared with thin-film morphology, 1D perovskite structures such as micro/nanowires with fewer grain boundaries and lower defect density are very suitable for high-performance photodetectors with higher stability. Although the stability of perovskite microwire-based photodetectors has been substantially enhanced in comparison with that of photodetectors based on thin-film morphology, practical applications require further improvements to the stability before implementation. In this study, a template-assisted method is developed to prepare methylammonium lead bromide (MAPbBr3 ) micro/nanowire structures, which are encapsulated in situ by a protective hydrophobic molecular layer. The combination of the protective layer, high crystalline quality, and highly ordered microstructures significantly improve the stability of the MAPbBr3 single-crystal microwire arrays. Consequently, these MAPbBr3 single-crystal microwire-array-based photodetectors exhibit significant long-term stability, maintaining 96% of the initial photocurrent after 1 year without further encapsulation. The lifetime of such photodetectors is hence approximately four times longer than that of the most stable previously reported perovskite micro/nanowire-based photodetector; this is thought to be the most stable perovskite photodetector reported thus far. Furthermore, this work should contribute further toward the realization of perovskite 1D structures with long-term stability.

15.
Adv Mater ; 32(16): e1906974, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32105367

RESUMEN

Flexible and self-powered perovskite photodetectors have attracted tremendous research interests due to their applications in wearable and portable devices. However, the conventional planar structured photodetectors are always accompanied with limited device performance and undesired mechanical stability. Herein, a nested inverse opal (NIO) structured perovskite photodetector via a facile template-assisted spin-coating method is reported. The coupling effect of enhanced light capture, increased carrier transport, and improved perovskite film quality enables NIO device to exhibit superior photoresponse performance. The NIO photodetector exhibits a high responsivity of 473 mA W-1 and detectivity up to 1.35 × 1013 Jones at 720 nm without external bias. The NIO structure can efficiently release mechanical stress during the bending process and the photocurrent has no degradation even after 500 cycles of bending. Moreover, the unencapsulated NIO device can operate for over 16 d under ambient conditions, presenting a significantly enhanced environmental stability compared to the planar device. This work demonstrates that deliberate structural design is an effective avenue for constructing self-powered, flexible, and stable optoelectronic devices.

16.
ACS Nano ; 14(3): 2777-2787, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-31904225

RESUMEN

Compared with a single nanowire (NW) or NW array, the simpler preparation process of an NW network (NWN) enables it to be fabricated in large-scale, flexible, and wearable applications of photodetectors (PDs). However, the NWN behaves many microinterfaces (MIs) between NWs, seriously limiting the device performance and stability. Here, we demonstrate a welding strategy for an MAPbI3 NWN, which enhances the crystallinity of the NWN and enhances the radial transmission of photogenerated carriers, leading to a better device performance with ultrahigh stability. Our NWN PDs fabricated by using the welding strategy showed ultrahigh performance with an on/off ratio and detectivity of 2.8 × 104 and 4.16 × 1012 Jones, respectively, which are the best performance for reported metal-semiconductor-metal (MSM) perovskite NWN PDs and are comparable to those of single-NW or NW array PDs. More importantly, our unpackaged NWN PDs show ultrahigh storage stability in air with a humidity of 55-65%, and the flexible NWN PDs can enable 250 bending cycles at different bending radii and 1000 bending cycles at fixed bending radii with no performance degradation being observed. These results indicate our welding strategy is very powerful for improving the performance of the NW device with applications in the wearable field.

17.
Adv Mater ; 31(32): e1807658, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31222823

RESUMEN

MXenes have recently shown impressive optical and plasmonic properties associated with their ultrathin-atomic-layer structure. However, their potential use in photonic and plasmonic devices has been only marginally explored. Photodetectors made of five different MXenes are fabricated, among which molybdenum carbide MXene (Mo2 CTx ) exhibits the best performance. Mo2 CTx MXene thin films deposited on paper substrates exhibit broad photoresponse in the range of 400-800 nm with high responsivity (up to 9 A W-1 ), detectivity (≈5 × 1011 Jones), and reliable photoswitching characteristics at a wavelength of 660 nm. Spatially resolved electron energy-loss spectroscopy and ultrafast femtosecond transient absorption spectroscopy of the MXene nanosheets reveal that the photoresponse of Mo2 CTx is strongly dependent on its surface plasmon-assisted hot carriers. Additionally, Mo2 CTx thin-film devices are shown to be relatively stable under ambient conditions, continuous illumination and mechanical stresses, illustrating their durable photodetection operation in the visible spectral range. Micro-Raman spectroscopy conducted on bare Mo2 CTx film and on gold electrodes allowing for surface-enhanced Raman scattering demonstrates surface chemistry and a specific low-frequency band that is related to the vibrational modes of the single nanosheets. The specific ability to detect and excite individual surface plasmon modes provides a viable platform for various MXene-based optoelectronic applications.

18.
Adv Sci (Weinh) ; 5(8): 1800496, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30128258

RESUMEN

The increasing demand for wearable optoelectronics in biomedicine, prosthetics, and soft robotics calls for innovative and transformative technologies that permit facile fabrication of compact and flexible photodetectors with high performance. Herein, by developing a single-step selective laser writing strategy that can finely tailor material properties through incident photon density control and lead to the formation of hierarchical hybrid nanocomposites, e.g., reduced graphene oxide (rGO)-zinc oxide (ZnO), a highly flexible and all rGO-ZnO hybrid-based photodetector is successfully constructed. The device features 3D ultraporous hybrid films with high photoresponsivity as the active detection layer, and hybrid nanoflakes with superior electrical conductivity as interdigitated electrodes. Benefitting from enhanced photocarrier generation because of the ultraporous film morphology, efficient separation of electron-hole pairs at rGO-ZnO heterojunctions, and fast electron transport by highly conductive rGO nanosheets, the photodetector exhibits high, linear, and reproducible responsivities to a wide range of ultraviolet (UV) intensities. Furthermore, the excellent mechanical flexibility and robustness enable the photodetector to be conformally attached to skin, thus intimately monitoring the exposure dosage of human body to UV light for skin disease prevention. This study advances the fabrication of flexible optoelectronic devices with reduced complexity, facilitating the integration of wearable optoelectronics and epidermal systems.

19.
Adv Mater ; : e1802359, 2018 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-29984437

RESUMEN

Flexible organic optoelectronic devices simultaneously targeting mechanical conformability and fast responsivity in the near-infrared (IR) region are a prerequisite to expand the capabilities of practical optical science and engineering for on-skin optoelectronic applications. Here, an ultraflexible near-IR responsive skin-conformal photoplethysmogram sensor based on a bulk heterojunction photovoltaic active layer containing regioregular polyindacenodithiophene-pyridyl[2,1,3]thiadiazole-cyclopentadithiophene (PIPCP) is reported. The ultrathin (3 µm thick) photodetector exhibits unprecedented operational stability under severe mechanical deformation at a bending radius of less than 3 µm, even after more than 103 bending cycles. Deliberate optimization of the physical dimensions of the active layer used in the device enables precise on/off switching and high device yield simultaneously. The response frequency over 1 kHz under mechanically deformed conditions facilitates conformal electronic sensors at the machine/human interface. Finally, a mechanically stretchable, flexible, and skin-conformal photoplethysmogram (PPG) device with higher sensitivity than those of rigid devices is demonstrated, through conformal adherence to the flexuous surface of a fingerprint.

20.
Adv Mater ; 28(11): 2201-8, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26780594

RESUMEN

A simple, low-cost blade-coating method is developed for the large-area fabrication of single-crystalline aligned CH3NH3PbI3 microwire (MW) arrays. The solution-coating method is applicable to flexible substrates, enabling the fabrication of MW-array-based photodetectors with excellent long-term stability, flexibility, and bending durability. Integrated devices from such photodetectors demonstrate high performance for high-resolution, flexible image sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA