Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Annu Rev Microbiol ; 73: 225-246, 2019 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-31136265

RESUMEN

Bacteria move by a variety of mechanisms, but the best understood types of motility are powered by flagella (72). Flagella are complex machines embedded in the cell envelope that rotate a long extracellular helical filament like a propeller to push cells through the environment. The flagellum is one of relatively few biological machines that experience continuous 360° rotation, and it is driven by one of the most powerful motors, relative to its size, on earth. The rotational force (torque) generated at the base of the flagellum is essential for motility, niche colonization, and pathogenesis. This review describes regulatory proteins that control motility at the level of torque generation.


Asunto(s)
Bacterias/metabolismo , Flagelos/metabolismo , Regulación Bacteriana de la Expresión Génica , Locomoción , Mapas de Interacción de Proteínas , Bacterias/genética
2.
Microb Pathog ; 160: 105198, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34537273

RESUMEN

Avian pathogenic Escherichia coli (APEC), a type of extraintestinal pathogenic E. coli, causes avian colibacillosis, a disease of significant economic importance to poultry producers worldwide, which is characterized by systemic infection. However, the pathogenesis of avian pathogenic E. coli strains is not well defined. Here, the role of a flagellar rotor protein encoded by the fliG gene of avian pathogenic E. coli strain AE17 was investigated. To study the role of FliG in the pathogenicity of APEC, fliG mutant and complemented strains were constructed and characterized. The inactivation of fliG had no effect on APEC growth, but significantly reduced bacterial motility. Compared with the wild type, the fliG mutant was highly attenuated in a chick infection model and showed severe defects in its adherence to and invasion of chicken embryo fibroblast DF-1 cells. The fliG mutant also showed reduced resistance to serum in chicks. The expression of the inflammatory cytokines interleukin 1ß (IL1ß), IL6, and IL8 was reduced in HD-11 macrophages infected with the fliG mutant strain compared with their expression in the wild-type strain. These results demonstrate that the FliG contributes to the virulence of APEC.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Enfermedades de las Aves de Corral , Animales , Embrión de Pollo , Pollos , Escherichia coli/genética , Infecciones por Escherichia coli/veterinaria , Proteínas de Escherichia coli/genética , Virulencia , Factores de Virulencia/genética
3.
Fish Shellfish Immunol ; 119: 238-248, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34634455

RESUMEN

Pseudomonas plecoglossicida is a Gram-negative aerobic rod-shaped bacterium with polar flagella. It is the causative agent of visceral white spot disease in cultured fish, resulting in serious economic losses. In our previous study, RNA sequencing showed that the expression of the fliG gene in P. plecoglossicida is significantly up-regulated during infection of orange-spotted grouper (Epinephelus coioides). In this study, four P. plecoglossicida RNA interference (RNAi) mutants were successfully constructed by linking four short hairpin RNAs (shRNAs), which target different sites of the fliG gene, to pCM130/tac, respectively. The mRNA expression levels of the fliG gene in P. plecoglossicida were significantly decreased in four mutants. The shRNA-335 mutant (fliG-RNAi strain) showed the best silencing efficiency (88.2%) and was thus chosen for further analysis. Electron microscopy indicated that the flagella of the fliG-RNAi strain of P. plecoglossicida were shorter and finer than those of the wild type strain. The fliG-RNAi strain also showed significantly decreased mobility, chemotaxis, adhesion, and biofilm formation. Furthermore, compared with wild type strain infection, E. coioides infected with the fliG-RNAi strain exhibited a 0.5-d delay in the time of first death and 55% reduction in accumulated mortality, as well as milder splenic symptoms. RNAi of the fliG gene significantly affected the transcriptomes of both pathogen and host in the infected spleens of E. coioides. KEGG analysis revealed that the flagellar assembly pathway, bacterial chemotaxis pathway, and starch and sucrose metabolism pathway were significantly enriched in the pathogen at 3 days post infection (dpi). In contrast, the complement and coagulation cascade pathway and antigen processing and presentation pathway were significantly enriched in the host at 3 dpi. More immune-related pathways were enriched at 5 dpi and more differentially expressed genes were found in the complement and coagulation cascade and antigen processing and presentation pathways. Cytokine-cytokine receptor interaction, hematopoietic cell lineage, and IgA-producing intestinal immune network pathways were significantly enriched in the host at 5 dpi. These results indicate that fliG is an important virulence gene of P. plecoglossicida and contributes to the pathogenicity of P. plecoglossicida as well as pathogen-host interactions with E. coioides.


Asunto(s)
Lubina , Enfermedades de los Peces , Infecciones por Pseudomonas , Animales , Proteínas Bacterianas , Lubina/genética , Interacciones Huésped-Patógeno , Pseudomonas , Infecciones por Pseudomonas/veterinaria , Virulencia
4.
Genes Cells ; 23(3): 241-247, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29405551

RESUMEN

FliG is a rotor protein of the bacterial flagellar motor. FliG consists of FliGN , FliGM and FliGC domains. Intermolecular FliGM -FliGC interactions promote FliG ring formation on the cytoplasmic face of the MS ring. A conformational change in HelixMC connecting FliGM and FliGC is responsible for the switching between the counterclockwise (CCW) and clockwise (CW) rotational states of the FliG ring. However, it remains unknown how it occurs. Here, we carried out in vivo disulfide cross-linking experiments to see the effect of a CW-locked deletion (∆PAA) in FliG on the FliG ring structure in Salmonella enterica. Higher-order oligomers were observed in the membrane fraction of the fliG(∆PAA + G166C/G194C) strain upon oxidation with iodine in a way similar to FliG(G166C/G194C), indicating that the PAA deletion does not inhibit domain-swap polymerization of FliG. FliG(∆PAA + E174C) formed a cross-linked homodimer whereas FliG(E174C) did not, indicating that Glu174 in HelixMC of one FliG protomer is located much closer to that of its neighboring subunit in the CW motor than in the CCW motor. We will discuss possible helical rearrangements of HelixMC that induce a structural remodeling of the FliG ring upon flagellar motor switching.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Actividad Motora , Salmonella/metabolismo , Eliminación de Secuencia , Proteínas Bacterianas/genética , Reactivos de Enlaces Cruzados/química , Modelos Moleculares , Conformación Proteica , Salmonella/crecimiento & desarrollo , Relación Estructura-Actividad
5.
Biochem Biophys Res Commun ; 496(1): 12-17, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29294326

RESUMEN

The bacterial flagellar motor rotates in both counterclockwise (CCW) and clockwise (CW) directions. FliG, FliM and FliN form the C ring on the cytoplasmic face of the MS ring made of a transmembrane protein, FliF. The C ring acts not only as a rotor but also as a switch of the direction of motor rotation. FliG consists of three domains: FliGN, FliGM and FliGC. FliGN directly binds to FliF. Intermolecular interactions between FliGM and FliGC drive FliG ring formation. FliGM is responsible for the interaction with FliM. FliGC is involved in the interaction with the stator protein MotA. Adaptive remodeling of the C ring occurs when the motor switches between the CCW and CW states. However, it remained unknown how. Here, we report the effects of a CW-locked deletion mutation (ΔPEV) in FliG of Thermotaoga maritia (Tm-FliG) on FliG-FliG and FliG-FliM interactions. The PEV deletion stabilized the intramolecular interaction between FliGM and FliGC, thereby suppressing the oligomerization of Tm-FliGMC in solution. This deletion also induced a conformational change of HelixMC connecting FliGM and FliGC to reduce the binding affinity of Tm-FliGMC for FliM. We will discuss adaptive remodeling of the C ring responsible for flagellar motor switching.


Asunto(s)
Proteínas Bacterianas/química , Flagelos/química , Proteínas Motoras Moleculares/química , Movimiento (Física) , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Proteínas Motoras Moleculares/ultraestructura , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
6.
Methods Mol Biol ; 2646: 71-82, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36842107

RESUMEN

The bacterial flagellum employs a rotary motor embedded on the cell surface. The motor consists of the stator and rotor elements and is driven by ion influx (typically H+ or Na+) through an ion channel of the stator. Ion influx induces conformational changes in the stator, followed by changes in the interactions between the stator and rotor. The driving force to rotate the flagellum is thought to be generated by changing the stator-rotor interactions. In this chapter, we describe two methods for investigating the interactions between the stator and rotor: site-directed in vivo photo-crosslinking and site-directed in vivo cysteine disulfide crosslinking.


Asunto(s)
Proteínas Bacterianas , Flagelos , Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Iones/metabolismo , Proteínas Motoras Moleculares/metabolismo
7.
J Mol Biol ; 431(19): 3662-3676, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31412261

RESUMEN

Fumarate, an electron acceptor in anaerobic respiration of Escherichia coli, has an additional function of assisting the flagellar motor to shift from counterclockwise to clockwise rotation, with a consequent modulation of the bacterial swimming behavior. Fumarate transmits its effect to the motor via the fumarate reductase complex (FrdABCD), shown to bind to FliG-one of the motor's switch proteins. How binding of the FrdABCD respiratory enzyme to FliG enhances clockwise rotation and how fumarate is involved in this activity have remained puzzling. Here we show that the FrdA subunit in the presence of fumarate is sufficient for binding to FliG and for clockwise enhancement. We further demonstrate by in vitro binding assays and super-resolution microscopy in vivo that the mechanism by which fumarate-occupied FrdA enhances clockwise rotation involves its preferential binding to the clockwise state of FliG (FliGcw). Continuum electrostatics combined with docking analysis and conformational sampling endorsed the experimental conclusions and suggested that the FrdA-FliGcw interaction is driven by the positive electrostatic potential generated by FrdA and the negatively charged areas of FliG. They further demonstrated that fumarate changes FrdA's conformation to one that can bind to FliGcw. These findings also show that the reason for the failure of the succinate dehydrogenase flavoprotein SdhA (an almost-identical analog of FrdA shown to bind to FliG equally well) to enhance clockwise rotation is that it has no binding preference for FliGcw. We suggest that this mechanism is physiologically important as it can modulate the magnitude of ΔG0 between the clockwise and counterclockwise states of the motor to tune the motor to the growth conditions of the bacteria.


Asunto(s)
Bacterias/metabolismo , Flagelos/metabolismo , Fumaratos/metabolismo , Rotación , Succinato Deshidrogenasa/metabolismo , Anaerobiosis , Animales , Proteínas Bacterianas/química , Bovinos , Colorantes Fluorescentes/metabolismo , Simulación de Dinámica Molecular , Unión Proteica
8.
Front Microbiol ; 9: 2197, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30279682

RESUMEN

Escherichia coli swarm on semi-solid surfaces with the aid of flagella. It has been hypothesized that swarmer cells overcome the increased viscous drag near surfaces by developing higher flagellar thrust and by promoting surface wetness with the aid of a flagellar switch. The switch enables reversals between clockwise (CW) and counterclockwise (CCW) directions of rotation of the flagellar motor. Here, we measured the behavior of flagellar motors in swarmer cells. Results indicated that although the torque was similar to that in planktonic cells, the tendency to rotate CCW was higher in swarmer cells. This suggested that swarmers likely have a smaller pool of phosphorylated CheY. Results further indicated that the upregulation of the flagellin gene was not critical for flagellar thrust or swarming. Consistent with earlier reports, moisture added to the swarm surface restored swarming in a CCW-only mutant, but not in a FliG mutant that rotated motors CW-only (FliGCW). Fluorescence assays revealed that FliGCW cells grown on agar surfaces carried fewer flagella than planktonic FliGCW cells. The surface-dependent reduction in flagella correlated with a reduction in the number of putative flagellar preassemblies. These results hint toward a possibility that the conformational dynamics of switch proteins play a role in the proper assembly of flagellar complexes and flagellar export, thereby aiding bacterial swarming.

9.
Structure ; 25(10): 1540-1548.e3, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28919442

RESUMEN

The flagellar motor protein complex consists of rotor and stator proteins. Their interaction generates torque of flagellum, which rotates bidirectionally, clockwise (CW) and counterclockwise. FliG, one of the rotor proteins, consists of three domains: N-terminal (FliGN), middle (FliGM), and C-terminal (FliGC). We have identified point mutations in FliGC from Vibrio alginolyticus, which affect the flagellar motility. To understand the molecular mechanisms, we explored the structural and dynamic properties of FliGC from both wild-type and motility-defective mutants. From nuclear magnetic resonance analysis, changes in signal intensities and chemical shifts between wild-type and the CW-biased mutant FliGC are observed in the Cα1-6 domain. Molecular dynamics simulations indicated the conformational dynamics of FliGC at sub-microsecond timescale, but not in the CW-biased mutant. Accordingly, we infer that the dynamic properties of atomic interactions around helix α1 in the Cα1-6 domain of FliGC contribute to ensure the precise regulation of the motor switching.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sodio/metabolismo , Vibrio alginolyticus/metabolismo , Proteínas Bacterianas/genética , Flagelos/fisiología , Modelos Moleculares , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Mutación Puntual , Dominios Proteicos , Estructura Secundaria de Proteína , Vibrio alginolyticus/química , Vibrio alginolyticus/genética
10.
Biophys Physicobiol ; 13: 227-233, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27924278

RESUMEN

Many bacteria move using their flagellar motor, which generates torque through the interaction between the stator and rotor. The most important component of the rotor for torque generation is FliG. FliG consists of three domains: FliGN, FliGM, and FliGC. FliGC contains a site(s) that interacts with the stator. In this study, we examined the physical properties of three FliG constructs, FliGFull, FliGMC, and FliGC, derived from sodium-driven polar flagella of marine Vibrio. Size exclusion chromatography revealed that FliG changes conformational states under two different pH conditions. Circular dichroism spectroscopy also revealed that the contents of α-helices in FliG slightly changed under these pH conditions. Furthermore, we examined the thermal stability of the FliG constructs using differential scanning calorimetry. Based on the results, we speculate that each domain of FliG denatures independently. This study provides basic information on the biophysical characteristics of FliG, a component of the flagellar motor.

11.
J Biochem ; 155(2): 83-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24174548

RESUMEN

The bacterial flagellar motor generates a rotational force by the flow of ions through the membrane. The rotational force is generated by the interaction between the cytoplasmic regions of the rotor and the stator. FliG is directly involved in the torque generation of the rotor protein by its interaction. FliG is composed of three domains: the N-terminal, Middle and C-terminal domains, based on its structure. The C-terminal domain of FliG is assumed to be important for the interaction with the stator that generates torque. In this study, using CD spectra, gel filtration chromatography and DSC (differential scanning calorimetry), we characterized the physical properties of the C-terminal domain (G214-Stop) of wild-type (WT) FliG and its non-motile phenotype mutant derivatives (L259Q, L270R and L271P), which were derived from the sodium-driven motor of Vibrio. The CD spectra and gel filtration chromatography revealed a slight difference between the WT and the mutant FliG proteins, but the DSC results suggested a large difference in their stabilities. That structural difference was confirmed by differences in protease sensitivity. Based on these results, we conclude that mutations which confer the non-motile phenotype destabilize the C-terminal domain of FliG.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Flagelos , Modelos Moleculares , Vibrio , Secuencia de Aminoácidos , Western Blotting , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Flagelos/química , Flagelos/metabolismo , Vibrio/química , Vibrio/metabolismo
12.
Biophysics (Nagoya-shi) ; 7: 59-67, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-27857593

RESUMEN

The polar flagellum of Vibrio alginolyticus is driven by sodium ion flux via a stator complex, composed of PomA and PomB, across the cell membrane. The interaction between PomA and the rotor component FliG is believed to generate torque required for flagellar rotation. Previous research reported that a GFP-fused FliG retained function in the Vibrio flagellar motor. In this study, we found that N-terminal or C-terminal fusion of GFP has different effects on both torque generation and the switching frequency of the direction of flagellar motor rotation. We could detect the GFP-fused FliG in the basal-body (rotor) fraction although its association with the basal body was less stable than that of intact FliG. Furthermore, the fusion of GFP to the C-terminus of FliG, which is believed to be directly involved in torque generation, resulted in very slow motility and prohibited the directional change of motor rotation. On the other hand, the fusion of GFP to the N-terminus of FliG conferred almost the same swimming speed as intact FliG. These results are consistent with the premise that the C-terminal domain of FliG is directly involved in torque generation and the GFP fusions are useful to analyze the functions of various domains of FliG.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA