Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.583
Filtrar
Más filtros

Colección CLAP
Intervalo de año de publicación
1.
Cell ; 186(16): 3386-3399.e15, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541196

RESUMEN

The gastrointestinal tract is in a state of constant motion. These movements are tightly regulated by the presence of food and help digestion by mechanically breaking down and propelling gut content. Mechanical sensing in the gut is thought to be essential for regulating motility; however, the identity of the neuronal populations, the molecules involved, and the functional consequences of this sensation are unknown. Here, we show that humans lacking PIEZO2 exhibit impaired bowel sensation and motility. Piezo2 in mouse dorsal root, but not nodose ganglia is required to sense gut content, and this activity slows down food transit rates in the stomach, small intestine, and colon. Indeed, Piezo2 is directly required to detect colon distension in vivo. Our study unveils the mechanosensory mechanisms that regulate the transit of luminal contents throughout the gut, which is a critical process to ensure proper digestion, nutrient absorption, and waste removal.


Asunto(s)
Tránsito Gastrointestinal , Canales Iónicos , Mecanotransducción Celular , Animales , Humanos , Ratones , Digestión , Canales Iónicos/metabolismo , Neuronas/metabolismo
2.
Cell ; 175(5): 1198-1212.e12, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30293866

RESUMEN

Although chronic gastrointestinal dysmotility syndromes are a common worldwide health problem, underlying causes for these disorders are poorly understood. We show that flavivirus infection of enteric neurons leads to acute neuronal injury and cell death, inflammation, bowel dilation, and slowing of intestinal transit in mice. Flavivirus-primed CD8+ T cells promote these phenotypes, as their absence diminished enteric neuron injury and intestinal transit delays, and their adoptive transfer reestablished dysmotility after flavivirus infection. Remarkably, mice surviving acute flavivirus infection developed chronic gastrointestinal dysmotility that was exacerbated by immunization with an unrelated alphavirus vaccine or exposure to a non-infectious inflammatory stimulus. This model of chronic post-infectious gastrointestinal dysmotility in mice suggests that viral infections with tropism for enteric neurons and the ensuing immune response might contribute to the development of bowel motility disorders in humans. These results suggest an opportunity for unique approaches to diagnosis and therapy of gastrointestinal dysmotility syndromes.


Asunto(s)
Infecciones por Flavivirus/patología , Flavivirus/patogenicidad , Motilidad Gastrointestinal , Intestinos/patología , Animales , Linfocitos T CD8-positivos/inmunología , Flavivirus/genética , Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/virología , Intestinos/virología , Leucocitos/citología , Leucocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/patología , Neuronas/ultraestructura , ARN Viral/aislamiento & purificación , ARN Viral/metabolismo , Síndrome
3.
Immunity ; 56(2): 353-368.e6, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36736321

RESUMEN

The severity of T cell-mediated gastrointestinal (GI) diseases such as graft-versus-host disease (GVHD) and inflammatory bowel diseases correlates with a decrease in the diversity of the host gut microbiome composition characterized by loss of obligate anaerobic commensals. The mechanisms underpinning these changes in the microbial structure remain unknown. Here, we show in multiple specific pathogen-free (SPF), gnotobiotic, and germ-free murine models of GI GVHD that the initiation of the intestinal damage by the pathogenic T cells altered ambient oxygen levels in the GI tract and caused dysbiosis. The change in oxygen levels contributed to the severity of intestinal pathology in a host intestinal HIF-1α- and a microbiome-dependent manner. Regulation of intestinal ambient oxygen levels with oral iron chelation mitigated dysbiosis and reduced the severity of the GI GVHD. Thus, targeting ambient intestinal oxygen levels may represent a novel, non-immunosuppressive strategy to mitigate T cell-driven intestinal diseases.


Asunto(s)
Enfermedades Gastrointestinales , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Animales , Ratones , Disbiosis , Intestinos/patología , Enfermedad Injerto contra Huésped/patología
4.
Immunity ; 56(9): 2070-2085.e11, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37557168

RESUMEN

Lymph nodes (LNs) are critical sites for shaping tissue-specific adaptive immunity. However, the impact of LN sharing between multiple organs on such tailoring is less understood. Here, we describe the drainage hierarchy of the pancreas, liver, and the upper small intestine (duodenum) into three murine LNs. Migratory dendritic cells (migDCs), key in instructing adaptive immune outcome, exhibited stronger pro-inflammatory signatures when originating from the pancreas or liver than from the duodenum. Qualitatively different migDC mixing in each shared LN influenced pancreatic ß-cell-reactive T cells to acquire gut-homing and tolerogenic phenotypes proportional to duodenal co-drainage. However, duodenal viral infections rendered non-intestinal migDCs and ß-cell-reactive T cells more pro-inflammatory in all shared LNs, resulting in elevated pancreatic islet lymphocyte infiltration. Our study uncovers immune crosstalk through LN co-drainage as a powerful force regulating pancreatic autoimmunity.


Asunto(s)
Autoinmunidad , Páncreas , Ratones , Animales , Páncreas/patología , Hígado , Linfocitos T , Ganglios Linfáticos
5.
Cell ; 170(1): 185-198.e16, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28648659

RESUMEN

Dietary, microbial, and inflammatory factors modulate the gut-brain axis and influence physiological processes ranging from metabolism to cognition. The gut epithelium is a principal site for detecting such agents, but precisely how it communicates with neural elements is poorly understood. Serotonergic enterochromaffin (EC) cells are proposed to fulfill this role by acting as chemosensors, but understanding how these rare and unique cell types transduce chemosensory information to the nervous system has been hampered by their paucity and inaccessibility to single-cell measurements. Here, we circumvent this limitation by exploiting cultured intestinal organoids together with single-cell measurements to elucidate intrinsic biophysical, pharmacological, and genetic properties of EC cells. We show that EC cells express specific chemosensory receptors, are electrically excitable, and modulate serotonin-sensitive primary afferent nerve fibers via synaptic connections, enabling them to detect and transduce environmental, metabolic, and homeostatic information from the gut directly to the nervous system.


Asunto(s)
Células Quimiorreceptoras/metabolismo , Células Enterocromafines/metabolismo , Tracto Gastrointestinal/citología , Vías Nerviosas , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Canales de Calcio/metabolismo , Catecolaminas/metabolismo , Perfilación de la Expresión Génica , Humanos , Síndrome del Colon Irritable/patología , Ratones , Fibras Nerviosas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Odorantes/metabolismo , Receptores de Serotonina 5-HT3/metabolismo , Serotonina/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/metabolismo
6.
Mol Cell ; 84(7): 1365-1376.e7, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38452764

RESUMEN

Enhancer-gene communication is dependent on topologically associating domains (TADs) and boundaries enforced by the CCCTC-binding factor (CTCF) insulator, but the underlying structures and mechanisms remain controversial. Here, we investigate a boundary that typically insulates fibroblast growth factor (FGF) oncogenes but is disrupted by DNA hypermethylation in gastrointestinal stromal tumors (GISTs). The boundary contains an array of CTCF sites that enforce adjacent TADs, one containing FGF genes and the other containing ANO1 and its putative enhancers, which are specifically active in GIST and its likely cell of origin. We show that coordinate disruption of four CTCF motifs in the boundary fuses the adjacent TADs, allows the ANO1 enhancer to contact FGF3, and causes its robust induction. High-resolution micro-C maps reveal specific contact between transcription initiation sites in the ANO1 enhancer and FGF3 promoter that quantitatively scales with FGF3 induction such that modest changes in contact frequency result in strong changes in expression, consistent with a causal relationship.


Asunto(s)
Cromatina , Elementos de Facilitación Genéticos , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina/genética , Oncogenes , ADN/química
7.
CA Cancer J Clin ; 74(4): 359-367, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38685134

RESUMEN

The American Joint Committee on Cancer (AJCC) staging system for all cancer sites, including gastroenteropancreatic neuroendocrine tumors (GEP-NETs), is meant to be dynamic, requiring periodic updates to optimize AJCC staging definitions. This entails the collaboration of experts charged with evaluating new evidence that supports changes to each staging system. GEP-NETs are the second most prevalent neoplasm of gastrointestinal origin after colorectal cancer. Since publication of the AJCC eighth edition, the World Health Organization has updated the classification and separates grade 3 GEP-NETs from poorly differentiated neuroendocrine carcinoma. In addition, because of major advancements in diagnostic and therapeutic technologies for GEP-NETs, AJCC version 9 advocates against the use of serum chromogranin A for the diagnosis and monitoring of GEP-NETs. Furthermore, AJCC version 9 recognizes the increasing role of endoscopy and endoscopic resection in the diagnosis and management of NETs, particularly in the stomach, duodenum, and colorectum. Finally, T1NXM0 has been added to stage I in these disease sites as well as in the appendix.


Asunto(s)
Neoplasias Intestinales , Estadificación de Neoplasias , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/diagnóstico , Tumores Neuroendocrinos/terapia , Estadificación de Neoplasias/métodos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/diagnóstico , Neoplasias Gástricas/patología , Neoplasias Gástricas/diagnóstico , Neoplasias Intestinales/patología , Neoplasias Intestinales/diagnóstico , Neoplasias Intestinales/terapia , Estados Unidos
8.
Physiol Rev ; 102(2): 689-813, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34486393

RESUMEN

During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.


Asunto(s)
Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Hipotálamo/fisiología , Neuronas/fisiología , Animales , Homeostasis/fisiología , Humanos , Transducción de Señal/fisiología
9.
Mol Cell ; 81(23): 4924-4941.e10, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34739872

RESUMEN

Deconvolution of regulatory mechanisms that drive transcriptional programs in cancer cells is key to understanding tumor biology. Herein, we present matched transcriptome (scRNA-seq) and chromatin accessibility (scATAC-seq) profiles at single-cell resolution from human ovarian and endometrial tumors processed immediately following surgical resection. This dataset reveals the complex cellular heterogeneity of these tumors and enabled us to quantitatively link variation in chromatin accessibility to gene expression. We show that malignant cells acquire previously unannotated regulatory elements to drive hallmark cancer pathways. Moreover, malignant cells from within the same patients show substantial variation in chromatin accessibility linked to transcriptional output, highlighting the importance of intratumoral heterogeneity. Finally, we infer the malignant cell type-specific activity of transcription factors. By defining the regulatory logic of cancer cells, this work reveals an important reliance on oncogenic regulatory elements and highlights the ability of matched scRNA-seq/scATAC-seq to uncover clinically relevant mechanisms of tumorigenesis in gynecologic cancers.


Asunto(s)
Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , ARN Citoplasmático Pequeño/genética , Anciano , Carcinogénesis , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Transición Epitelial-Mesenquimal , Femenino , Tumores del Estroma Gastrointestinal/genética , Biblioteca de Genes , Técnicas Genéticas , Genómica , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad , Oncogenes , Ovario/metabolismo , Proteómica , RNA-Seq , Elementos Reguladores de la Transcripción , Factores de Transcripción/metabolismo , Transcriptoma
10.
Immunity ; 49(1): 107-119.e4, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29958798

RESUMEN

Intestinal macrophages are critical for gastrointestinal (GI) homeostasis, but our understanding of their role in regulating intestinal motility is incomplete. Here, we report that CX3C chemokine receptor 1-expressing muscularis macrophages (MMs) were required to maintain normal GI motility. MMs expressed the transient receptor potential vanilloid 4 (TRPV4) channel, which senses thermal, mechanical, and chemical cues. Selective pharmacologic inhibition of TRPV4 or conditional deletion of TRPV4 from macrophages decreased intestinal motility and was sufficient to reverse the GI hypermotility that is associated with chemotherapy treatment. Mechanistically, stimulation of MMs via TRPV4 promoted the release of prostaglandin E2 and elicited colon contraction in a paracrine manner via prostaglandin E receptor signaling in intestinal smooth muscle cells without input from the enteric nervous system. Collectively, our data identify TRPV4-expressing MMs as an essential component required for maintaining normal GI motility and provide potential drug targets for GI motility disorders.


Asunto(s)
Colon/fisiología , Motilidad Gastrointestinal , Macrófagos/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal , Canales Catiónicos TRPV/metabolismo , Animales , Receptor 1 de Quimiocinas CX3C/metabolismo , Colon/fisiopatología , Ciclooxigenasa 1/deficiencia , Ciclooxigenasa 1/metabolismo , Dinoprostona/análisis , Dinoprostona/metabolismo , Femenino , Mucosa Gástrica/citología , Expresión Génica , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Contracción Muscular , Receptores de Prostaglandina E/antagonistas & inhibidores , Receptores de Prostaglandina E/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética
11.
Immunol Rev ; 314(1): 125-141, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36404627

RESUMEN

Mucosal tissues are constantly exposed to the outside environment. They receive signals from the commensal microbiome and tissue-specific triggers including alimentary and airborne elements and are tasked to maintain balance in the absence of inflammation and infection. Here, we present neutrophils as sentinel cells in mucosal immunity. We discuss the roles of neutrophils in mucosal homeostasis and overview clinical susceptibilities in patients with neutrophil defects. Finally, we present concepts related to specification of neutrophil responses within specific mucosal tissue microenvironments.


Asunto(s)
Microbiota , Neutrófilos , Humanos , Inmunidad Mucosa , Membrana Mucosa , Inflamación
12.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38343325

RESUMEN

Neoantigens are derived from somatic mutations in the tumors but are absent in normal tissues. Emerging evidence suggests that neoantigens can stimulate tumor-specific T-cell-mediated antitumor immune responses, and therefore are potential immunotherapeutic targets. We developed ImmuneMirror as a stand-alone open-source pipeline and a web server incorporating a balanced random forest model for neoantigen prediction and prioritization. The prediction model was trained and tested using known immunogenic neopeptides collected from 19 published studies. The area under the curve of our trained model was 0.87 based on the testing data. We applied ImmuneMirror to the whole-exome sequencing and RNA sequencing data obtained from gastrointestinal tract cancers including 805 tumors from colorectal cancer (CRC), esophageal squamous cell carcinoma (ESCC) and hepatocellular carcinoma patients. We discovered a subgroup of microsatellite instability-high (MSI-H) CRC patients with a low neoantigen load but a high tumor mutation burden (> 10 mutations per Mbp). Although the efficacy of PD-1 blockade has been demonstrated in advanced MSI-H patients, almost half of such patients do not respond well. Our study identified a subset of MSI-H patients who may not benefit from this treatment with lower neoantigen load for major histocompatibility complex I (P < 0.0001) and II (P = 0.0008) molecules, respectively. Additionally, the neopeptide YMCNSSCMGV-TP53G245V, derived from a hotspot mutation restricted by HLA-A02, was identified as a potential actionable target in ESCC. This is so far the largest study to comprehensively evaluate neoantigen prediction models using experimentally validated neopeptides. Our results demonstrate the reliability and effectiveness of ImmuneMirror for neoantigen prediction.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Reproducibilidad de los Resultados , Antígenos de Neoplasias/genética , Mutación , Inestabilidad de Microsatélites , Aprendizaje Automático
13.
Trends Immunol ; 44(1): 1-3, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36503685

RESUMEN

Pain is a hallmark symptom associated with intestinal inflammation. Two related articles published in Cell by Zhang et al. and by Yang et al. now report how sensory neurons in the gut, the most heavily innervated organ in the human body, flag bacterial pathogens to shape the composition of the gut microbiome and to trigger immunoregulatory mechanisms.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Intestinales , Humanos , Sensación
14.
Immunity ; 46(6): 910-926, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28636959

RESUMEN

Interactions between the nervous and immune systems enable the gut to respond to the variety of dietary products that it absorbs, the broad spectrum of pathogens that it encounters, and the diverse microbiome that it harbors. The enteric nervous system (ENS) senses and reacts to the dynamic ecosystem of the gastrointestinal (GI) tract by translating chemical cues from the environment into neuronal impulses that propagate throughout the gut and into other organs in the body, including the central nervous system (CNS). This review will describe the current understanding of the anatomy and physiology of the GI tract by focusing on the ENS and the mucosal immune system. We highlight emerging literature that the ENS is essential for important aspects of microbe-induced immune responses in the gut. Although most basic and applied research in neuroscience has focused on the brain, the proximity of the ENS to the immune system and its interface with the external environment suggest that novel paradigms for nervous system function await discovery.


Asunto(s)
Sistema Nervioso Central/inmunología , Sistema Nervioso Entérico , Microbioma Gastrointestinal , Tracto Gastrointestinal/fisiología , Sistema Inmunológico/inmunología , Inmunidad Mucosa , Intestinos/inmunología , Animales , Exposición a Riesgos Ambientales , Tracto Gastrointestinal/anatomía & histología , Interacciones Huésped-Patógeno , Humanos , Neuroinmunomodulación
15.
Immunity ; 47(4): 710-722.e6, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29045902

RESUMEN

Gastro-intestinal helminth infections trigger the release of interleukin-33 (IL-33), which induces type-2 helper T cells (Th2 cells) at the site of infection to produce IL-13, thereby contributing to host resistance in a T cell receptor (TCR)-independent manner. Here, we show that, as a prerequisite for IL-33-induced IL-13 secretion, Th2 cells required the expression of the epidermal growth factor receptor (EGFR) and of its ligand, amphiregulin, for the formation of a signaling complex between T1/ST2 (the IL-33R) and EGFR. This shared signaling complex allowed IL-33 to induce the EGFR-mediated activation of the MAP-kinase signaling pathway and consequently the expression of IL-13. Lack of EGFR expression on T cells abrogated IL-13 expression in infected tissues and impaired host resistance. EGFR expression on Th2 cells was TCR-signaling dependent, and therefore, our data reveal a mechanism by which antigen presentation controls the innate effector function of Th2 cells at the site of inflammation.


Asunto(s)
Receptores ErbB/inmunología , Interleucina-13/inmunología , Interleucina-33/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Células Th2/inmunología , Anfirregulina/inmunología , Anfirregulina/metabolismo , Animales , Línea Celular , Células Cultivadas , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expresión Génica/genética , Expresión Génica/inmunología , Perfilación de la Expresión Génica/métodos , Células HEK293 , Humanos , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Sistema de Señalización de MAP Quinasas/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Nematospiroides dubius/inmunología , Nematospiroides dubius/fisiología , Nocardia/inmunología , Nocardia/fisiología , Nocardiosis/inmunología , Nocardiosis/metabolismo , Nocardiosis/microbiología , Receptores de Antígenos de Linfocitos T/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Infecciones por Strongylida/inmunología , Infecciones por Strongylida/metabolismo , Infecciones por Strongylida/parasitología , Células Th2/metabolismo
16.
Circ Res ; 134(7): 842-854, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38547246

RESUMEN

BACKGROUND: Consistent evidence suggests diabetes-protective effects of dietary fiber intake. However, the underlying mechanisms, particularly the role of gut microbiota and host circulating metabolites, are not fully understood. We aimed to investigate gut microbiota and circulating metabolites associated with dietary fiber intake and their relationships with type 2 diabetes (T2D). METHODS: This study included up to 11 394 participants from the HCHS/SOL (Hispanic Community Health Study/Study of Latinos). Diet was assessed with two 24-hour dietary recalls at baseline. We examined associations of dietary fiber intake with gut microbiome measured by shotgun metagenomics (350 species/85 genera and 1958 enzymes; n=2992 at visit 2), serum metabolome measured by untargeted metabolomics (624 metabolites; n=6198 at baseline), and associations between fiber-related gut bacteria and metabolites (n=804 at visit 2). We examined prospective associations of serum microbial-associated metabolites (n=3579 at baseline) with incident T2D over 6 years. RESULTS: We identified multiple bacterial genera, species, and related enzymes associated with fiber intake. Several bacteria (eg, Butyrivibrio, Faecalibacterium) and enzymes involved in fiber degradation (eg, xylanase EC3.2.1.156) were positively associated with fiber intake, inversely associated with prevalent T2D, and favorably associated with T2D-related metabolic traits. We identified 159 metabolites associated with fiber intake, 47 of which were associated with incident T2D. We identified 18 of these 47 metabolites associated with the identified fiber-related bacteria, including several microbial metabolites (eg, indolepropionate and 3-phenylpropionate) inversely associated with the risk of T2D. Both Butyrivibrio and Faecalibacterium were associated with these favorable metabolites. The associations of fiber-related bacteria, especially Faecalibacterium and Butyrivibrio, with T2D were attenuated after further adjustment for these microbial metabolites. CONCLUSIONS: Among United States Hispanics/Latinos, dietary fiber intake was associated with favorable profiles of gut microbiota and circulating metabolites for T2D. These findings advance our understanding of the role of gut microbiota and microbial metabolites in the relationship between diet and T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/microbiología , Dieta , Bacterias , Fibras de la Dieta
17.
Clin Microbiol Rev ; : e0013323, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995034

RESUMEN

SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.

18.
Semin Cancer Biol ; 99: 5-23, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38341121

RESUMEN

Gastrointestinal (GI) cancers, including colorectal, gastric, esophageal, pancreatic, and liver, are associated with high mortality and morbidity rates worldwide. One of the underlying reasons for the poor survival outcomes in patients with these malignancies is late disease detection, typically when the tumor has already advanced and potentially spread to distant organs. Increasing evidence indicates that earlier detection of these cancers is associated with improved survival outcomes and, in some cases, allows curative treatments. Consequently, there is a growing interest in the development of molecular biomarkers that offer promise for screening, diagnosis, treatment selection, response assessment, and predicting the prognosis of these cancers. Extracellular vesicles (EVs) are membranous vesicles released from cells containing a repertoire of biological molecules, including nucleic acids, proteins, lipids, and carbohydrates. MicroRNAs (miRNAs) are the most extensively studied non-coding RNAs, and the deregulation of miRNA levels is a feature of cancer cells. EVs miRNAs can serve as messengers for facilitating interactions between tumor cells and the cellular milieu, including immune cells, endothelial cells, and other tumor cells. Furthermore, recent years have witnessed considerable technological advances that have permitted in-depth sequence profiling of these small non-coding RNAs within EVs for their development as promising cancer biomarkers -particularly non-invasive, liquid biopsy markers in various cancers, including GI cancers. Herein, we summarize and discuss the roles of EV-associated miRNAs as they play a seminal role in GI cancer progression, as well as their promising translational and clinical potential as cancer biomarkers as we usher into the area of precision oncology.


Asunto(s)
Vesículas Extracelulares , Neoplasias Gastrointestinales , MicroARNs , Humanos , MicroARNs/genética , Relevancia Clínica , Células Endoteliales/metabolismo , Medicina de Precisión , Neoplasias Gastrointestinales/diagnóstico , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biología , Biomarcadores/metabolismo
19.
Circulation ; 149(11): 860-884, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38152989

RESUMEN

BACKGROUND: SGLT2 (sodium-glucose cotransporter 2) inhibitors (SGLT2i) can protect the kidneys and heart, but the underlying mechanism remains poorly understood. METHODS: To gain insights on primary effects of SGLT2i that are not confounded by pathophysiologic processes or are secondary to improvement by SGLT2i, we performed an in-depth proteomics, phosphoproteomics, and metabolomics analysis by integrating signatures from multiple metabolic organs and body fluids after 1 week of SGLT2i treatment of nondiabetic as well as diabetic mice with early and uncomplicated hyperglycemia. RESULTS: Kidneys of nondiabetic mice reacted most strongly to SGLT2i in terms of proteomic reconfiguration, including evidence for less early proximal tubule glucotoxicity and a broad downregulation of the apical uptake transport machinery (including sodium, glucose, urate, purine bases, and amino acids), supported by mouse and human SGLT2 interactome studies. SGLT2i affected heart and liver signaling, but more reactive organs included the white adipose tissue, showing more lipolysis, and, particularly, the gut microbiome, with a lower relative abundance of bacteria taxa capable of fermenting phenylalanine and tryptophan to cardiovascular uremic toxins, resulting in lower plasma levels of these compounds (including p-cresol sulfate). SGLT2i was detectable in murine stool samples and its addition to human stool microbiota fermentation recapitulated some murine microbiome findings, suggesting direct inhibition of fermentation of aromatic amino acids and tryptophan. In mice lacking SGLT2 and in patients with decompensated heart failure or diabetes, the SGLT2i likewise reduced circulating p-cresol sulfate, and p-cresol impaired contractility and rhythm in human induced pluripotent stem cell-derived engineered heart tissue. CONCLUSIONS: SGLT2i reduced microbiome formation of uremic toxins such as p-cresol sulfate and thereby their body exposure and need for renal detoxification, which, combined with direct kidney effects of SGLT2i, including less proximal tubule glucotoxicity and a broad downregulation of apical transporters (including sodium, amino acid, and urate uptake), provides a metabolic foundation for kidney and cardiovascular protection.


Asunto(s)
Cresoles , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Madre Pluripotentes Inducidas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Ésteres del Ácido Sulfúrico , Humanos , Ratones , Animales , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Transportador 2 de Sodio-Glucosa/metabolismo , Ácido Úrico , Triptófano , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Proteómica , Tóxinas Urémicas , Células Madre Pluripotentes Inducidas/metabolismo , Glucosa , Sodio/metabolismo , Diabetes Mellitus Tipo 2/complicaciones
20.
Am J Hum Genet ; 109(4): 601-617, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35395208

RESUMEN

Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Trastornos del Neurodesarrollo , Ubiquitinación , Proteína 7 que Contiene Repeticiones F-Box-WD/química , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Células Germinativas , Mutación de Línea Germinal , Humanos , Trastornos del Neurodesarrollo/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA