Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(17): 5197-5205, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634879

RESUMEN

Highly active nonprecious-metal single-atom catalysts (SACs) toward catalytic transfer hydrogenation (CTH) of α,ß-unsaturated aldehydes are of great significance but still are deficient. Herein, we report that Zn-N-C SACs containing Zn-N3 moieties can catalyze the conversion of cinnamaldehyde to cinnamyl alcohol with a conversion of 95.5% and selectivity of 95.4% under a mild temperature and atmospheric pressure, which is the first case of Zn-species-based heterogeneous catalysts for the CTH reaction. Isotopic labeling, in situ FT-IR spectroscopy, and DFT calculations indicate that reactants, coabsorbed at the Zn sites, proceed CTH via a "Meerwein-Ponndorf-Verley" mechanism. DFT calculations also reveal that the high activity over Zn-N3 moieties stems from the suitable adsorption energy and favorable reaction energy of the rate-determining step at the Zn active sites. Our findings demonstrate that Zn-N-C SACs hold extraordinary activity toward CTH reactions and thus provide a promising approach to explore the advanced SACs for high-value-added chemicals.

2.
Small ; : e2405098, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39165070

RESUMEN

A building block containing eight zincs and eight iodo groups (8 Zn) is obtained by the Zn complexation of a salen ligand bearing two additional hydroxy groups. Through the Sonogashira-Hagihara coupling of 8 Zn with 1,3,5,7-tetra(4-ethynylphenyl) adamantane, microporous organic polymers bearing octanuclear zinc clusters (MOP-8 Zn) are prepared, exhibiting a high surface area of 562 m2 g-1, microporosity, and a particulate morphology with an average diameter of 249 nm. The MOP-8 Zn exhibits significantly enhanced catalytic performance, compared to molecular counterparts, in the reductive carbon dioxide fixation to formamides, possibly due to the cooperative adsorption and confinement effect of networks on substrates.

3.
Small ; 20(25): e2309281, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38191986

RESUMEN

Metal-organic frameworks (MOFs) have attracted immense attention as efficient heterogeneous catalysts over other solid catalysts, however, their chemical environment instability often limits their catalytic potential. Herein, utilizing a flexible unexplored tetra-acid ligand and employing the mixed ligand approach, a 3D interpenetrated robust framework is strategically developed, IITKGP-51 (IITKGP stands for Indian Institute of Technology Kharagpur), which retained its crystallinity over a wide range of pH solution (4-12). Having ample open metal sites (OMSs), IITKGP-51 is explored as a heterogeneous catalyst in one-pot Hantzsch condensation reaction, with low catalyst loading for a broad range of substrates. The synthesis of drug molecules remains one of the most significant and emergent areas of organic and medicinal chemistry. Considering such practical utility, biologically important Nemadipine B and Nifedipine drug molecules (calcium channel protein inhibitor) are synthesized for the first time by using this catalyst and fully characterized via SC-XRD and other spectroscopic methods. This report inaugurates the usage of a MOF material as a catalyst for the synthesis of drug molecules.


Asunto(s)
Dihidropiridinas , Estructuras Metalorgánicas , Catálisis , Dihidropiridinas/química , Estructuras Metalorgánicas/química , Preparaciones Farmacéuticas/química
4.
Chemistry ; : e202402128, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39285830

RESUMEN

An atom-economical sequential-flow synthesis of donepezil, a widely prescribed drug for Alzheimer's disease, was accomplished using inexpensive, commercially available precursors. This achievement was made possible by reconfiguring the synthetic route to include only heterogeneous catalytic addition and condensation reactions, with a particular emphasis on skeletal transformation and bond formation through hydrogenation processes. Notably, water was the sole byproduct in this synthesis. A crucial aspect of this work was the development of appropriate continuous-flow processes to achieve a one-flow synthesis. This was accomplished by implementing in-line treatments of the main reaction stream to eliminate inhibitory factors that could affect catalyst performance in the hydrogenation steps.

5.
Chemistry ; 30(13): e202303573, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38179895

RESUMEN

Despite its unique physicochemical properties, the catalytic application of nickel carbide (Ni3 C) in organic synthesis is rare. In this study, we report well-defined nanocrystalline Ni3 C (nano-Ni3 C) as a highly active catalyst for the selective hydrogenation of nitriles to primary amines. The activity of the aluminum-oxide-supported nano-Ni3 C (nano-Ni3 C/Al2 O3 ) catalyst surpasses that of Ni nanoparticles. Various aromatic and aliphatic nitriles and dinitriles were successfully converted to the corresponding primary amines under mild conditions (1 bar H2 pressure). Furthermore, the nano-Ni3 C/Al2 O3 catalyst was reusable and applicable to gram-scale experiments. Density functional theory calculations suggest the formation of polar hydrogen species on the nano-Ni3 C surface, which were attributed to the high activity of nano-Ni3 C towards nitrile hydrogenation. This study demonstrates the utility of metal carbides as a new class of catalysts for liquid-phase organic reactions.

6.
Molecules ; 29(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38930818

RESUMEN

This study prepared sulfonated Camellia oleifera shell biochar using Camellia oleifera shell agricultural waste as a carbon source, and evaluated its performance as a catalyst for preparing biodiesel. The biochar obtained from carbonizing Camellia oleifera shells at 500 °C for 2 h serves as the carbon skeleton, and then the biochar is sulfonated with chlorosulfonic acid. The sulfonic acid groups are mainly grafted onto the surface of Camellia oleifera shell biochar through covalent bonding to obtain sulfonic acid type biochar catalysts. The catalysts were characterized by Scanning Electron Microscope (SEM), X-ray diffraction (XRD), Nitrogen adsorption-desorption Brunel-Emmett-Taylor Theory (BET), and Fourier-transform infrared spectroscopy (FT-IR). The acid density of the sulfonated Camellia oleifera fruit shell biochar catalyst is 2.86 mmol/g, and the specific surface area is 2.67 m2/g, indicating high catalytic activity. The optimal reaction conditions are 4 wt% catalyst with a 6:1 alcohol to oil ratio. After esterification at 70 °C for 2 h, the yield of biodiesel was 91.4%. Under the optimal reaction conditions, after four repeated uses of the catalyst, the yield of biodiesel still reached 90%. Therefore, sulfonated Camellia oleifera shell biochar is a low-cost, green, non-homogeneous catalyst with great potential for biodiesel production by esterification reaction in future development.


Asunto(s)
Biocombustibles , Camellia , Carbón Orgánico , Camellia/química , Carbón Orgánico/química , Catálisis , Ácidos Sulfónicos/química , Espectroscopía Infrarroja por Transformada de Fourier , Esterificación , Difracción de Rayos X
7.
Molecules ; 29(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38675704

RESUMEN

Although Hantzsch synthesis has been an established multicomponent reaction method for more than a decade, its derivative, whereby an aniline replaces ammonium acetate as the nitrogen source, has not been explored at great length. Recent studies have shown that the products of such a reaction, N-aryl-4-aryldihydropyridines (DHPs), have significant anticancer activity. In this study, we successfully managed to synthesize a wide range of DHPs (18 examples, 8 of which were novel) using a metal-free, mild, inexpensive, recoverable, and biopolymer-based heterogeneous catalyst, known as piperazine, which was supported in agar-agar gel. In addition, 8 further examples (3 novel) of such dihydropyridines were synthesized using isatin instead of aldehyde as a reactant, producing spiro-linked structures. Lastly, this catalyst managed to afford an unprecedented product that was derived using an innovative technique-a combination of multicomponent reactions. Essentially, the product of our previously reported aza-Friedel-Crafts multicomponent reaction could itself be used as a reactant instead of aniline in the synthesis of more complex dihydropyridines.

8.
Chimia (Aarau) ; 78(4): 226-230, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38676614

RESUMEN

From energy-related transformations to organic syntheses, single-atom heterogeneous catalysts (SACs) are offering new prospects to tackle sustainability challenges. However, scarce design guidelines and poor mechanistic understanding due to a lack of discovery and operando characterization tools impede theirbroader development. This perspective offers a glimpse into how droplet-based microfluidic technologies mayhelp solve both of these issues, and provides technical considerations for platform design to systematically fabricate SACs and study them under operational conditions during liquid-phase organic syntheses.

9.
Angew Chem Int Ed Engl ; 63(28): e202403093, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38679566

RESUMEN

The synthesis of covalent organic frameworks (COFs) at bulk scale require robust, straightforward, and cost-effective techniques. However, the traditional solvothermal synthetic methods of COFs suffer low scalability as well as requirement of sensitive reaction environment and multiday reaction time (2-10 days) which greatly restricts their practical application. Here, we report microwave assisted rapid and optimized synthesis of a donor-acceptor (D-A) based highly crystalline COF, TzPm-COF in second (10 sec) to minute (10 min) time scale. With increasing the reaction time from seconds to minutes crystallinity, porosity and morphological changes are observed for TzPm-COF. Owing to visible range light absorption, suitable band alignment, and low exciton binding energy (Eb=64.6 meV), TzPm-COF can efficaciously produce superoxide radical anion (O2 .-) after activating molecular oxygen (O2) which eventually drives aerobic photooxidative amidation reaction with high recyclability. This photocatalytic approach works well with a variety of substituted aromatic aldehydes having electron-withdrawing or donating groups and cyclic, acyclic, primary or secondary amines with moderate to high yield. Furthermore, catalytic mechanism was established by monitoring the real-time reaction progress through in situ diffuse reflectance infrared Fourier transform spectroscopic (DRIFTS) study.

10.
Angew Chem Int Ed Engl ; 63(20): e202401056, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38472115

RESUMEN

Single-atom heterogeneous catalysts (SACs) hold promise as sustainable alternatives to metal complexes in organic transformations. However, their working structure and dynamics remain poorly understood, hindering advances in their design. Exploiting the unique features of droplet-based microfluidics, we present the first in-situ assessment of a palladium SAC based on exfoliated carbon nitride in Suzuki-Miyaura cross-coupling using X-ray absorption spectroscopy. Our results confirm a surface-catalyzed mechanism, revealing the distinct electronic structure of active Pd centers compared to homogeneous systems, and providing insights into the stabilizing role of ligands and bases. This study establishes a valuable framework for advancing mechanistic understanding of organic syntheses catalyzed by SACs.

11.
Small ; : e2306794, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072816

RESUMEN

Incorporating metal clusters into the confined cavities of metal-organic frameworks (MOFs) to form MOF-supported catalysts has attracted considerable research interest with regard to carbonylation reactions. Herein, a self-templating method is used to prepare the zinc oxide (ZnO)-supported core-shell catalyst ZnO@Pd/ZIF-8. This facile strategy controls the growth of metal sources on the ZIF-8 shell layer and avoids the metal diffusion or aggregation problems of the conventional synthesis method. The characteristics of the catalysts show that the palladium (Pd) clusters are highly dispersed with an average particle size of ≈1.2 nm, making them excellent candidates as a catalyst for carbonylation under mild conditions. The optimal catalyst (1.25-ZnO@Pd/ZIF-8) exhibits excellent activity in synthesizing α, ß-alkynyl ketones under 1 atm of carbon monooxide (CO), and the conversion rate of 1, 3-diphenylprop-2-yn-1-one is 3.09 and 3.87 times more than those of Pd/ZIF-8 and Pd2+ , respectively, for the first 2 h. Moreover, the 1.25-ZnO@Pd/ZIF-8 is recyclable, showing negligible metal leaching, and, under the conditions used in this investigation, can be reused at least five times without considerable loss in its catalytic efficiency. This protocol can also be applied with other nucleophile reagents to synthesize esters, amides, and acid products.

12.
Chemistry ; 29(13): e202203097, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36453090

RESUMEN

The yolk-shell Co3 O4 @Fe3 O4 /C nanocomposites with Co3 O4 as the core, Fe3 O4 /C as the shell, and a cavity structure were synthesized by the hard template method. The physical and chemical properties of the composites were characterized by SEM, TEM, XRD, TGA, XPS, BET, and VSM. The specific surface area of yolk-shell Co3 O4 @Fe3 O4 /C nanocomposites is 175.9 m2  g-1 , showing superparamagnetic properties. The yolk-shell Co3 O4 @Fe3 O4 /C nanocomposites were used as heterogeneous Fenton catalysts to activate peroxymonosulfate (PMS) to degrade MB, which showed high catalytic degradation performance. The degradation rate of MB reached 100 % within 30 min under the circumstances of the yolk-shell Co3 O4 @Fe3 O4 /C nanocomposites dosage of 0.1 g L-1 , the PMS dosage of 1.0 g L-1 , the initial MB concentration of 100 mg L-1 , an initial pH of 5.5, and a temperature of 30±2 °C. The enhanced catalytic performance of the yolk-shell Co3 O4 @Fe3 O4 /C nanocomposites can be attributed to the synergistic effect of the two catalytically active materials and the middle cavity. The effects of different operating parameters and co-existing anion species on MB degradation were also investigated. Electron paramagnetic resonance (EPR) analysis and quenching experiments confirmed that the formation of SO4 ⋅- in the yolk-shell Co3 O4 @Fe3 O4 /C/PMS system contributes to MB degradation. In addition, yolk-shell Co3 O4 @Fe3 O4 /C nanocomposites can be easily separated from the pollutant solution under the action of an external magnetic field, and the degradation rate of MB can still reach 98 % after five cycles, indicating that it has good stability and reusability and has broad application prospects in the field of water purification.

13.
Chemphyschem ; 24(12): e202200910, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36967230

RESUMEN

The objective of the tandem hydroformylation-hydrogenation of alkenes to corresponding alcohols was to design an efficient and stable heterogeneous catalyst. To this end, a series of novel heterogeneous graphitic carbon nitride (g-CN) supported bimetallic Rh-Co nanoparticle catalysts (Rh-Co/g-CN) were prepared and subsequently studied for this one-pot two-step reaction. The lamellar structure makes Rh and Co nanoparticles with diameters of <1 nm and 20 nm, respectively, homogeneously deposited on the surface of g-CN layers, exhibit remarkable conversion of styrene (99.9 %) and chemoselectivity for alcohol (87.8 %). More importantly, Co nanoparticles are found to play an important role in the improvement of the chemoselectivity for alcohol due to the formation of catalytic active species [HCo(CO)y ]. Besides the detailed investigation of the catalytic properties of Rh-Co/g-CN under different reaction conditions, the reuse of Rh-Co/g-CN was conducted for five times and no evident decrease in the activity and chemoselectivity was observed. Therefore, we expect that this work could offer an initial insight into g-CN-based heterogeneous catalyst on the tandem hydroformylation-hydrogenation reaction.


Asunto(s)
Alquenos , Nanopartículas , Hidrogenación , Etanol
14.
Molecules ; 28(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38005360

RESUMEN

Montmorillonite clay was modified by pillaring with AlMn oxides in different Al/Mn ratios and intercalation of two kinds of N-containing polymers (i.e., chitosan (CS) and polyvinyl pyrrolidinone (PVP)) chains. The modified pillared montmorillonite clay (PM) showed a rich two-dimensional layered porous structure with tunable parameters, such as large interlayer spacing, high specific area, and large porous volume. They were then used as supports for Pd nanoparticles. As applied in coupling reactions of aryl halides with terminal alkynes, Pd@CS/AlMn-PM showed better comprehensive catalytic performance than Pd@PVP/AlMn-PM. This was mainly attributed to its higher specific area, stronger chelation to Pd species, and better solvent resistance.

15.
Molecules ; 28(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38138472

RESUMEN

This study presents the synthesis of a basic heterogeneous catalyst based on sodium functionalized biochar. The murici biochar (BCAM) support used in the process was obtained through the pyrolysis of the murici seed (Byrsonimia crassifolia), followed by impregnation of the active phase in amounts that made it possible to obtain concentrations of 6, 9, 12, 15 and 18% of sodium in the final composition of the catalyst. The best-performing 15Na/BCAM catalyst was characterized by Elemental Composition (CHNS), Thermogravimetric Analysis (TG/DTG), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), and Energy Dispersion X-ray Spectroscopy (EDS). The catalyst 15Na/BCAM was applied under optimal reaction conditions: temperature of 75 °C, reaction time of 1.5 h, catalyst concentration of 5% (w/w) and MeOH:oil molar ratio of 20:1, resulting in a biodiesel with ester content of 97.20% ± 0.31 in the first reaction cycle, and maintenance of catalytic activity for five reaction cycles with ester content above 65%. Furthermore, the study demonstrated an effective catalyst regeneration process, with the synthesized biodiesels maintaining ester content above 75% for another five reaction cycles. Thus, the data indicate a promising alternative to low-cost residual raw materials for the synthesis of basic heterogeneous catalysts.


Asunto(s)
Biocombustibles , Aceites de Plantas , Aceites de Plantas/química , Biocombustibles/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Biomasa , Esterificación , Catálisis , Ésteres , Sodio
16.
Molecules ; 28(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37513482

RESUMEN

A chitosan/poly(vinyl alcohol)-stabilized copper nanoparticle (CP@Cu NPs) was used as a heterogeneous catalyst for the borylation of α, ß-unsaturated ketones, MBH alcohols, and MBH esters in mild conditions. This catalyst not only demonstrated remarkable efficiency in synthesizing organoboron compounds but also still maintained excellent reactivity and stability even after seven recycled uses of the catalyst. This methodology provides a gentle and efficient approach to synthesize the organoboron compounds by efficiently constructing carbon-boron bonds.

17.
Angew Chem Int Ed Engl ; 62(23): e202302297, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36914595

RESUMEN

Microplatform with timed automata has been leveraged for guiding the preparation of molecules, whereas the requirement of handling expertise and sophisticated instrument is inevitable in combination with heterogeneous catalysis. Here we report a microfluidic-based autolab with open structures, called Put & Play Automated Microplatform (PPAM). It shows the efficient hydrogenation performance of palladium nanoparticles on the triphenylene-based covalent organic frameworks (Pd/TP-COFs) in which the π-π interactions of TP rings in the vicinity of Pd is optimized by easy change-over of catalyst and simple tuning of reactor geometries in PPAM. Using experiment/simulation of the Pd/TP-COFs coating (PCC) and mixing (PCM) across PPAM with different channel sizes, the turnover frequencies are 60 times the commonly used batch reactor, and aniline productivity of 8.8 g h-1 is achieved in 0.09 cm3 . This work will raise awareness about the benefits of the catalyst-loaded microplatform in future materials performance campaigns.

18.
Angew Chem Int Ed Engl ; 62(50): e202314451, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37874893

RESUMEN

In recent times, heterogenization of homogeneous molecular catalysts onto various porous solid support structures has attracted significant research focus as a method for combining the advantages of both homogeneous as well as heterogeneous catalysis. The design of highly efficient, structurally robust and reusable heterogenized single-site catalysts for the CO2 hydrogenation reaction is a critical challenge that needs to be accomplished to implement a sustainable and practical CO2 -looped renewable energy cycle. This study demonstrated a heterogenized catalyst [Ir-HCP-(B/TPM)] containing a molecular Ir-abnormal N-heterocyclic carbene (Ir-aNHC) catalyst self-supported by hierarchical porous hyper-crosslinked polymer (HCP), in catalytic hydrogenation of CO2 to inorganic formate (HCO2 - ) salt that is a prospective candidate for direct formate fuel cells (DFFC). By employing this unique and first approach of utilizing a directly knitted HCP-based organometallic single-site catalyst for CO2 -to-HCO2 - in aqueous medium, extremely high activity with a single-run turnover number (TON) up to 50816 was achieved which is the highest so far considering all the heterogeneous catalysts for this reaction in water. Additionally, the catalyst featured excellent reusability furnishing a cumulative TON of 285400 in 10 cycles with just 1.6 % loss in activity per cycle. Overall, the new catalyst displayed attributes that are important for developing tangible catalysts for practical applications.

19.
Angew Chem Int Ed Engl ; 62(24): e202300960, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-36869007

RESUMEN

Zeolitic imidazolate framework (ZIF-8) nanocrystals were uniformly grown on the surface of cellulose nanocrystals (CNCs) to give a hybrid material, ZIF@CNCs. By varying the stoichiometry of the components, it was possible to control the size of the ZIF-8 crystals grown on the CNC surface. Optimized ZIF@CNC (ZIF@CNC-2) was used as a template to synthesize a microporous organic polymer (MOP), ZIF@MOP@CNC. After etching the ZIF-8 with 6 M HCl solution, a MOP material with encapsulated CNCs (MOP@CNC) was formed. Zinc coordination into the porphyrin unit of the MOP yielded the ship-in-a-bottle structure, Zn MOP@CNC, comprised of CNCs encapsulated within the Zn-MOP. In comparison to ZIF@CNC-2, Zn MOP@CNC showed better catalytic activity and chemical stability for CO2 fixation, converting epichlorohydrin to chloroethylene carbonate. This work demonstrates a novel approach to create porous materials through CNC templating.

20.
Chemphyschem ; 23(22): e202200123, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-35864069

RESUMEN

Acetic acid (CH3 COOH) formation from methane (CH4 ) and carbon dioxide (CO2 ) is an ideal reaction for chemical production, whereas this reaction possesses a severe thermodynamic limitation. To address this issue, it has been reported that periodic operation allowing a non-equilibrium condition can overcome the thermodynamic limitation. However, although an intrinsic issue of uphill reactions in non-equilibrium conditions generally is occurrence of unfavorable downhill reactions, this issue has seldom been discussed for the CH3 COOH formation under periodic operation. Herein, excess CO2 reductions were found to be the unfavorable downhill reactions possibly occurring in the reaction aiming at CH3 COOH formation under periodically operated CH4 and CO2 feeds. The reaction using an isotopic reactant (i. e., 13 CH4 ) unveiled that excess CO2 reductions to CO and even to CH3 moiety could occur, indicating importance of catalyst development. Furthermore, it was proposed that H2 O vapor introduction into the CO2 feed, which increased the CH3 COOH product, most likely facilitated the reverse reaction of the excess CO2 reductions and thereby is effective to hamper the unfavorable side reaction.


Asunto(s)
Dióxido de Carbono , Metano , Gases , Termodinámica , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA