Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Small ; 18(17): e2107983, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35307952

RESUMEN

The high dehydrogenation temperature of aluminum hydride (AlH3 ) has always been an obstacle to its application as a portable hydrogen source. To solve this problem, lithium nitride is introduced into the aluminum hydride system as a catalyst to optimize the dehydrogenation drastically, which reduces the initial dehydrogenation temperature from 140.0 to 66.8 °C, and provides a stable hydrogen capacity of 8.24, 6.18, and 5.75 wt.% at 100, 90, and 80 °C within 120 min by adjusting the mass fraction of lithium nitride. Approximately 8.0 wt.% hydrogen can be released within 15 min at 100 °C for the sample of 10 wt.% doping. Moderate dehydrogenation temperature slows down the inevitable self-dehydrogenation process during the ball-milling process, and the enhanced kinetics at lower temperature shows the possibility of application in the fuel cell.

2.
Small ; 18(43): e2107013, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35253367

RESUMEN

MgH2 is one of the most promising solid hydrogen storage materials due to its high capacity, excellent reversibility, and low cost. However, its operation temperature needs to be greatly reduced to realize its practical applications, especially in the highly desired fuel cell fields. This work synthesizes a 2D nanoflake-shape bimetallic Ti-Nb oxide of TiNb2 O7 , which has high surface area and shows superior catalytic effect for the hydrogen storage of MgH2 . Incorporated with the TiNb2 O7 nanoflakes as low as 3 wt%, MgH2 shows a low onset dehydrogenation temperature of 178 °C, which is lowered by 100 °C compared with the pristine one. A dehydrogenation capacity as high as 7.0 wt% H2 is achieved upon heating to 300 °C. The capacity retention is as high as 96% after 30 cycles. The mechanism of the improved hydrogen storage properties is analyzed by density functional theory (DFT) calculation and the microstructural evolution during dehydrogenation and hydrogenation. This work provides an MgH2 system with high available capacity and low operation temperature by a unique structural design of the catalyst. The high surface area feature of the TiNb2 O7 nanoflakes and the synthesis method hopefully can develop the application of TiNb2 O7 .

3.
Nanotechnology ; 32(28)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33765675

RESUMEN

A novel process has been developed to synthesize MgH2nanoparticles by combining ball milling and thermal hydrogenolysis of di-n-butylmagnesium (C4H9)2Mg, denoted as MgBu2. With the aid of mechanical impact, the hydrogenolysis temperature of MgBu2in heptane and cyclohexane solution was considerably lowered down to 100 °C, and the MgH2nanoparticles with an average particle size ofca.8.9 nm were obtained without scaffolds. The nano-size effect of the MgH2nanoparticles causes a notable decrease in the onset dehydrogenation temperature of 225 °C and enthalpy of 69.78 kJ mol-1 · H2. This thermally-assisted milling and hydrogenolysis process may also be extended for synthesizing other nanomaterials.

4.
Small ; 16(32): e2001963, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32613757

RESUMEN

Poor reversibility and high desorption temperature restricts the practical use of lithium borohydride (LiBH4 ) as an advanced hydrogen store. Herein, a LiBH4 composite confined in unique double-layered carbon nanobowls prepared by a facile melt infiltration process is demonstrated, thanks to powerful capillary effect under 100 bar of H2 pressure. The gradual formation of double-layered carbon nanobowls is witnessed by transmission electron microscopy (TEM) observation. Benefiting from the nanoconfinement effect and catalytic function of carbon, this composite releases hydrogen from 225 °C and peaks at 353 °C, with a hydrogen release amount up to 10.9 wt%. The peak temperature of dehydriding is lowered by 112 °C compared with bulk LiBH4 . More importantly, the composite readily desorbs and absorbs ≈8.5 wt% of H2 at 300 °C and 100 bar H2 , showing a significant reversibility of hydrogen storage. Such a high reversible capacity has not ever been observed under the identical conditions. The usable volumetric energy density reaches as high as 82.4 g L-1 with considerable dehydriding kinetics. The findings provide insights in the design and development of nanosized complex hydrides for on-board applications.

5.
Chemphyschem ; 20(10): 1261-1271, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30737862

RESUMEN

In this article, the capabilities of soft and hard X-ray techniques, including X-ray absorption (XAS), soft X-ray emission spectroscopy (XES), resonant inelastic soft X-ray scattering (RIXS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), and their application to solid-state hydrogen storage materials are presented. These characterization tools are indispensable for interrogating hydrogen storage materials at the relevant length scales of fundamental interest, which range from the micron scale to nanometer dimensions. Since nanostructuring is now well established as an avenue to improve the thermodynamics and kinetics of hydrogen release and uptake, due to properties such as reduced mean free paths of transport and increased surface-to-volume ratio, it becomes of critical importance to explicitly identify structure-property relationships on the nanometer scale. X-ray diffraction and spectroscopy are effective tools for probing size-, shape-, and structure-dependent material properties at the nanoscale. This article also discusses the recent development of in-situ soft X-ray spectroscopy cells, which enable investigation of critical solid/liquid or solid/gas interfaces under more practical conditions. These unique tools are providing a window into the thermodynamics and kinetics of hydrogenation and dehydrogenation reactions and informing a quantitative understanding of the fundamental energetics of hydrogen storage processes at the microscopic level. In particular, in-situ soft X-ray spectroscopies can be utilized to probe the formation of intermediate species, byproducts, as well as the changes in morphology and effect of additives, which all can greatly affect the hydrogen storage capacity, kinetics, thermodynamics, and reversibility. A few examples using soft X-ray spectroscopies to study these materials are discussed to demonstrate how these powerful characterization tools could be helpful to further understand the hydrogen storage systems.

6.
Molecules ; 24(10)2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31096547

RESUMEN

A detailed analysis of the dehydrogenation mechanism of LiBH4/xLiAlH4 (x = 0.5, 1, 2) composites was performed by thermogravimetry (TG), differential scanning calorimetry (DSC), mass spectral analysis (MS), powder X-ray diffraction (XRD) and scanning electronic microscopy (SEM), along with kinetic investigations using a Sievert-type apparatus. The results show that the dehydrogenation pathway of LiBH4/xLiAlH4 had a four-step character. The experimental dehydrogenation amount did not reach the theoretical expectations, because the products such as AlB2 and LiAl formed a passivation layer on the surface of Al and the dehydrogenation reactions associated with Al could not be sufficiently carried out. Kinetic investigations discovered a nonlinear relationship between the activation energy (Ea) of dehydrogenation reactions associated with Al and the ratio x, indicating that the Ea was determined both by the concentration of Al produced by the decomposition of LiAlH4 and the amount of free surface of it. Therefore, the amount of effective contact surface of Al is the rate-determining factor for the overall dehydrogenation of the LiBH4/xLiAlH4 composites.


Asunto(s)
Hidrógeno/química , Análisis Espectral , Rastreo Diferencial de Calorimetría , Cinética , Análisis Espectral/métodos , Termogravimetría , Difracción de Rayos X
7.
Angew Chem Int Ed Engl ; 58(10): 3102-3107, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30474308

RESUMEN

Hydrogen uptake and release in arene-cycloalkane pairs provide an attractive opportunity for on-board and off-board hydrogen storage. However, the efficiency of arene-cycloalkane pairs currently is limited by unfavorable thermodynamics for hydrogen release. It is shown here that the thermodynamics can be optimized by replacement of H in the -OH group of cyclohexanol and phenol with alkali or alkaline earth metals. The enthalpy change upon dehydrogenation decreases substantially, which correlates with the delocalization of the oxygen electron to the benzene ring in phenoxides. Theoretical calculations reveal that replacement of H with a metal leads to a reduction of the HOMO-LUMO energy gap and elongation of the C-H bond in the α site in cyclohexanolate, which indicates that the cyclohexanol is activated upon metal substitution. The experimental results demonstrate that sodium phenoxide-cyclohexanolate, an air- and water-stable pair, can desorb hydrogen at ca. 413 K and 373 K in the solid form and in an aqueous solution, respectively. Hydrogenation, on the other hand, is accomplished at temperatures as low as 303 K.

8.
Molecules ; 23(12)2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487388

RESUMEN

Magnesium hydride (MgH2) has become popular to study in hydrogen storage materials research due to its high theoretical capacity and low cost. However, the high hydrogen desorption temperature and enthalpy as well as the depressed kinetics, have severely blocked its actual utilizations. Hence, our work introduced Ni@C materials with a core-shell structure to synthesize MgH2-x wt.% Ni@C composites for improving the hydrogen desorption characteristics. The influences of the Ni@C addition on the hydrogen desorption performances and micro-structure of MgH2 have been well investigated. The addition of Ni@C can effectively improve the dehydrogenation kinetics. It is interesting found that: i) the hydrogen desorption kinetics of MgH2 were enhanced with the increased Ni@C additive amount; and ii) the dehydrogenation amount decreased with a rather larger Ni@C additive amount. The additive amount of 4 wt.% Ni@C has been chosen in this study for a balance of kinetics and amount. The MgH2-4 wt.% Ni@C composites release 5.9 wt.% of hydrogen in 5 min and 6.6 wt.% of hydrogen in 20 min. It reflects that the enhanced hydrogen desorption is much faster than the pure MgH2 materials (0.3 wt.% hydrogen in 20 min). More significantly, the activation energy (EA) of the MgH2-4 wt.% Ni@C composites is 112 kJ mol-1, implying excellent dehydrogenation kinetics.


Asunto(s)
Hidrógeno/química , Compuestos de Magnesio/química , Modelos Químicos , Nanocompuestos/química , Níquel/química
9.
J Comput Chem ; 37(14): 1259-64, 2016 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-26854644

RESUMEN

A detailed first-principle DFT M06/6-311++G(d.p) study of dehydrogenation mechanism of trimeric cluster of lithium amidoborane is presented. The first step of the reaction is association of two LiNH2 BH3 molecules in the cluster. The dominant feature of the subsequent reaction pathway is activation of H atom of BH3 group by three Li atoms with formation of unique Li3 H moiety. This Li3 H moiety is destroyed prior to dehydrogenation in favor of formation of a triangular Li2 H moiety, which interacts with protic H atom of NH2 group. As a result of this interaction, Li2 H2 moiety is produced. It features N(-) H(+) H(-) group suited near the middle plane between two Li(+) in the transition state that leads to H2 release. The transition states of association and hydrogen release steps are similar in energy. It is concluded that the trimer, (LiNH2 BH3 )3 , is the smallest cluster that captures the essence of the hydrogen release reaction.

10.
Chemistry ; 21(15): 5689-92, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25676615

RESUMEN

A novel wet synthetic method utilizing weakly coordinating anions that yields LiCl-free Zn-based materials for hydrogen storage has recently been reported. Here we show that this method may also be applied for the synthesis of the pure yttrium derivatives, M[Y(BH4)4] (M = K, Rb, Cs). Moreover, it can be extended to the preparation of previously unknown thermodynamically unstable derivatives, Li[Y(BH4)4] and Na[Y(BH4)4]. Importantly, these two H-rich phases cannot be accessed by standard dry (mechanochemical) or solid/gas synthetic methods due to the thermodynamic obstacles. Here we describe their crystal structures and selected important physicochemical properties.

11.
Angew Chem Int Ed Engl ; 53(5): 1338-41, 2014 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-24338951

RESUMEN

The assembly of well-defined large cluster compounds of ionic light metal hydrides is a synthetic challenge and of importance for synthesis, catalysis, and hydrogen storage. The synthesis and characterization of a series of neutral and anionic pyrazolate-stabilized lithium hydride clusters with inorganic cores in the nanometer region is now reported. These complexes were prepared in a bottom-up approach using alkyl lithium and lithium pyrazolate mixtures with silanes in hydrocarbon solutions. Structural characterization using synchrotron radiation revealed isolated cubic clusters that contain up to 37 Li(+) cations and 26 H(-) ions. Substituted pyrazolate ligands were found to occupy all corners and some edges for the anionic positions.

12.
Sci Rep ; 14(1): 18115, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103460

RESUMEN

The mechanism of Y on H/H2 adsorption performance of Mg17Al12 were studied by the density functional theory. We obtained that for the Y-adsorbed systems, Y tended to occupy on the bridge site between adjacent Mg atoms. For the Y-substituted surfaces, Y atoms inclined to replace Mg atoms on the surfaces. We found that hydrogen (H/H2) absorption on the Mg17Al12(110) systems were improved by adding Y, the order of adsorption energy was as follows: clean Mg17Al12(110) > the Y-substituted surfaces > the Y-adsorbed surfaces. In addition, H2 molecules could dissociate on the Y-containing systems without barrier energy. Electronic properties showed that for H2 adsorption, the s states of atomic H mainly hybridized with the d states of Y. The formations of the Y-H bonds and the interactions between Y and H atoms could expound the mechanism for the promoted hydrogenation performance of the Y-containing surfaces.

13.
Adv Sci (Weinh) ; : e2408522, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39303204

RESUMEN

The effective utilization of hydrogen storage materials (HSMs) is hindered by impurity gas poisoning, posing a significant challenge for large-scale applications. This study elucidates the poisoning mechanisms of various impurities gases (CO, CO2, O2, Ar, He, CH4, N2) on ZrCo, Pd, U and LaNi5. Impurities gases are categorized into active and inactive types based on their effecting behaviors and mechanisms on the hydrogenation of HSMs. During the hydrogenation process, active impurities chemically poison the hydrogenation reaction by limiting hydrogen absorption at interface, while inactive impurities physically hinder hydrogenation reaction by impeding hydrogen diffusion in hydrogen-impurity mixed gas. In situ Scanning Tunneling Microscope clarifies these behaviors, and a novel criterion based on hydrogen spontaneous dissociation energy is introduced to explain and predict impurity-substrate interaction characteristics. The novel findings of this work provide a comprehensive framework for designing long-lived HSMs with poisoning resistance, guiding the development of more resilient hydrogen storage systems.

14.
ChemistryOpen ; 13(1): e202300011, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37316892

RESUMEN

The quadrupole coupling constant CQ and the asymmetry parameter η have been determined for two complex aluminium hydrides from 27 Al NMR spectra recorded for stationary samples by using the Solomon echo sequence. The thus obtained data for KAlH4 (CQ =(1.30±0.02) MHz, η=(0.64±0.02)) and NaAlH4 (CQ =(3.11±0.02) MHz, η<0.01) agree very well with data previously determined from MAS NMR spectra. The accuracy with which these parameters can be determined from static spectra turned out to be at least as good as via the MAS approach. The experimentally determined parameters (δiso , CQ and η) are compared with those obtained from DFT-GIPAW (density functional theory - gauge-including projected augmented wave) calculations. Except for the quadrupole coupling constant for KAlH4 , which is overestimated in the GIPAW calculations by about 30 %, the agreement is excellent. Advantages of the application of the Solomon echo sequence for the measurement of less stable materials or for in situ studies are discussed.

15.
Materials (Basel) ; 17(18)2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39336303

RESUMEN

The synergic effects of activated carbon and transition metals on the hydrogenation characteristics of commercial ZK60 magnesium alloy were investigated. Severe plastic deformation was performed using equal-channel angular pressing with an internal die angle of 120° and preheating at 300 °C. The ZK60 alloy samples were processed for 12 passes using route BA. The deformed ZK60 alloy powder was blended with activated carbon and different concentrations of transition metals (Ag, Pd, Co, Ti, V, Ti) using high-energy ball milling for 20 h at a speed of 1725 rpm. The amount of hydrogen absorbed and its kinetics were calculated using Sievert's apparatus at the higher number of cycles at a 300 °C ab/desorption temperature. The microstructure of the powder was analyzed using an X-ray diffractometer and scanning electron microscope. The results indicated that 5 wt% activated carbon presented the maximum hydrogen absorption capacity of 6.2 wt%. The optimal hydrogen absorption capacities were 7.1 wt%, 6.8 wt%, 6.7 wt%, 6.64 wt%, 6.65 wt%, and 7.06 wt% for 0.5 Ag, 0.3 Co, 0.1 Al, 0.5 Pd, 2 Ti, and 0.5 V, respectively. The hydrogen absorption capacities were reduced by 35.21%, 26.47%, 41.79%, 21.68%, 26.31%, and 26.34% after 100 cycles for 5C0.5Ag, 5C0.3Co, 5C0.1Al, 5C0.5Pd, 2Ti, and 5C0.5V, respectively. Hydrogen absorption kinetics were significantly improved so that more than 90% of hydrogen was absorbed within five minutes.

16.
Materials (Basel) ; 17(20)2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39459650

RESUMEN

The amorphous materials of the Ti45Zr38Ni17 composition synthesized by mechanical alloying are widely recognized for their ability to store hydrogen with gravimetric densities above 2 wt.%. It is also known that those alloys can form a quasicrystalline state after thermal treatment and their structural and hydrogen sorption properties can be altered by doping with various elements. Therefore, in this paper, the results of the studies on the Ti45Zr38Ni17 system with yttrium substituted for titanium and zirconium are presented. We demonstrate that these alloys are able to absorb hydrogen with a concentration of up to 2.7 wt.% while retaining their amorphous structure and they transform into the unique glassy-quasicrystal phase upon annealing. Furthermore, we demonstrate that the in-situ hydrogenation of those new materials is an effortless procedure in which the decomposition of the alloy can be avoided. Moreover, we prove that, in that process, hydrogen does not bind to any specific component of the alloy, which would otherwise cause the formation of simple hydrides or nanoclusters.

17.
J Colloid Interface Sci ; 652(Pt A): 979-988, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37639928

RESUMEN

Although MXene catalysts etched from precursor MAX have greatly improved the hydrogen storage performance of magnesium hydride (MgH2), the use of dangerous and polluting etchers (such as hydrofluoric acid) and the direct removal of potentially catalytically active A-layer substances (such as Al) present certain limitations. Here, solid-solution MAX phase TiVAlC catalyst without etching treatment has been directly introduced into MgH2 system to improve the hydrogen storage performance. The optimal MgH2-10 wt% TiVAlC can release about 6.00 wt% hydrogen at 300 °C within 378 s and absorb about 4.82 wt% hydrogen at 175 °C within 900 s. After 50 isothermal hydrogen ab/desorption cycles, the excellent cyclic stability and capacity retention (6.4 wt%, 99.6%) can be found for MgH2-10 wt% TiVAlC. The superb catalytic activity of TiVAlC catalyst can be explained by abundant electron transfer at external interfaces with MgH2/Mg, which can be further enhanced by impurity phase Ti3AlC2 due to strong H affinity brought from abundant electron transfer at internal interfaces (Ti3AlC2/TiVAlC). The influence of impurity phase which is common in MAX phase on the overall activity of catalysts has been firstly studied here, providing a unique method for designing composite catalyst to improve hydrogen storage performance of MgH2.

18.
Chem Asian J ; : e202300593, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37787825

RESUMEN

The rapid advancement of refined nanostructures and nanotechnologies offers significant potential to boost research activities in hydrogen storage. Recent innovations in hydrogen storage have centered on nanostructured materials, highlighting their effectiveness in molecular hydrogen storage, chemical storage, and as nanoconfined hydride supports. Emphasizing the importance of exploring ultra-high-surface-area nanoporous materials and metals, we advocate for their mechanical stability, rigidity, and high hydride loading capacities to enhance hydrogen storage efficiency. Despite the evident benefits of nanostructured materials in hydrogen storage, we also address the existing challenges and future research directions in this domain. Recent progress in creating intricate nanostructures has had a notable positive impact on the field of hydrogen storage, particularly in the realm of storing molecular hydrogen, where these nanostructured materials are primarily utilized.

19.
Adv Mater ; 35(2): e2206946, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36308031

RESUMEN

The lack of safe and efficient hydrogen storage is a major bottleneck for large-scale application of hydrogen energy. Reversible hydrogen storage of light-weight metal hydrides with high theoretical gravimetric and volumetric hydrogen density is one ideal solution but requires extremely high operating temperature with large energy input. Herein, taking MgH2 as an example, a concept is demonstrated to achieve solar-driven reversible hydrogen storage of metal hydrides via coupling the photothermal effect and catalytic role of Cu nanoparticles uniformly distributed on the surface of MXene nanosheets (Cu@MXene). The photothermal effect of Cu@MXene, coupled with the "heat isolator" role of MgH2 indued by its poor thermal conductivity, effectively elevates the temperature of MgH2 upon solar irradiation. The "hydrogen pump" effect of Ti and TiHx species that are in situ formed on the surface of MXene from the reduction of MgH2 , on the other hand, plays a catalytic role in effectively alleviating the kinetic barrier and hence decreasing the operating temperature required for reversible hydrogen adsorption and desorption of MgH2 . Based on the combination of photothermal and catalytic effect of Cu@MXene, a reversible hydrogen storage capacity of 5.9 wt% is achieved for MgH2 after 30 cycles using solar irradiation as the only energy source.

20.
ACS Appl Mater Interfaces ; 15(25): 30372-30382, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37318842

RESUMEN

The practical applications of MgH2 as a high-density hydrogen carrier depend heavily on efficient and low-cost catalysts to accelerate the dehydriding/hydriding reactions at moderate temperatures. In the present work, this issue is addressed by synthesizing Nb-doped TiO2 solid-solution-type catalysts that dramatically improve the hydrogen sorption performances of MgH2. The catalyzed MgH2 can absorb 5 wt % of H2 even at room temperature for 20 s, release 6 wt % of H2 at 225 °C within 12 min, and the complete dehydrogenation can be achieved at 150 °C under a dynamic vacuum atmosphere. Density functional theory calculations reveal that Nb doping introduces Nb 4d orbitals with stronger interaction with H 1s into the density of states of TiO2. This considerably enhances both the adsorption and dissociation ability of the H2 molecule on the catalysts surface and the hydrogen diffusion across the specific Mg/Ti(Nb)O2 interface. The successful implementation of solid solution-type catalysts in MgH2 offers a demonstration and inspiration for the development of high-performance catalysts and solid-state hydrogen storage materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA