Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(21): e2319652121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739805

RESUMEN

The last glacial period was punctuated by cold intervals in the North Atlantic region that culminated in extensive iceberg discharge events. These cold intervals, known as Heinrich Stadials, are associated with abrupt climate shifts worldwide. Here, we present CO2 measurements from the West Antarctic Ice Sheet Divide ice core across Heinrich Stadials 2 to 5 at decadal-scale resolution. Our results reveal multi-decadal-scale jumps in atmospheric CO2 concentrations within each Heinrich Stadial. The largest magnitude of change (14.0 ± 0.8 ppm within 55 ± 10 y) occurred during Heinrich Stadial 4. Abrupt rises in atmospheric CO2 are concurrent with jumps in atmospheric CH4 and abrupt changes in the water isotopologs in multiple Antarctic ice cores, the latter of which suggest rapid warming of both Antarctica and Southern Ocean vapor source regions. The synchroneity of these rapid shifts points to wind-driven upwelling of relatively warm, carbon-rich waters in the Southern Ocean, likely linked to a poleward intensification of the Southern Hemisphere westerly winds. Using an isotope-enabled atmospheric circulation model, we show that observed changes in Antarctic water isotopologs can be explained by abrupt and widespread Southern Ocean warming. Our work presents evidence for a multi-decadal- to century-scale response of the Southern Ocean to changes in atmospheric circulation, demonstrating the potential for dynamic changes in Southern Ocean biogeochemistry and circulation on human timescales. Furthermore, it suggests that anthropogenic CO2 uptake in the Southern Ocean may weaken with poleward strengthening westerlies today and into the future.

2.
Proc Natl Acad Sci U S A ; 120(47): e2307587120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37976260

RESUMEN

Marine phytoplankton are primary producers in ocean ecosystems and emit dimethyl sulfide (DMS) into the atmosphere. DMS emissions are the largest biological source of atmospheric sulfur and are one of the largest uncertainties in global climate modeling. DMS is oxidized to methanesulfonic acid (MSA), sulfur dioxide, and hydroperoxymethyl thioformate, all of which can be oxidized to sulfate. Ice core records of MSA are used to investigate past DMS emissions but rely on the implicit assumption that the relative yield of oxidation products from DMS remains constant. However, this assumption is uncertain because there are no long-term records that compare MSA to other DMS oxidation products. Here, we share the first long-term record of both MSA and DMS-derived biogenic sulfate concentration in Greenland ice core samples from 1200 to 2006 CE. While MSA declines on average by 0.2 µg S kg-1 over the industrial era, biogenic sulfate from DMS increases by 0.8 µg S kg-1. This increasing biogenic sulfate contradicts previous assertions of declining North Atlantic primary productivity inferred from decreasing MSA concentrations in Greenland ice cores over the industrial era. The changing ratio of MSA to biogenic sulfate suggests that trends in MSA could be caused by time-varying atmospheric chemistry and that MSA concentrations alone should not be used to infer past primary productivity.

3.
Proc Natl Acad Sci U S A ; 119(40): e2200835119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161936

RESUMEN

Ice cores from alpine glaciers are unique archives of past global and regional climate conditions. However, recovering climate records from these ice cores is often hindered by the lack of a reliable chronology, especially in the age range of 100 to 500 anni (a) for which radiometric dating has not been available so far. We report on radiometric 39Ar dating of an ice core from the Tibetan Plateau and the construction of a chronology covering the past 1,300 a using the obtained 39Ar ages. This is made possible by advances in the analysis of 39Ar using the laser-based detection method atom trap trace analysis, resulting in a twofold increase in the upper age limit of 39Ar dating. By measuring the anthropogenic 85Kr along with 39Ar we quantify and correct modern air contamination, thus removing a major systematic uncertainty of 39Ar dating. Moreover, the 85Kr data for the top part of the ice core provide information on firn processes, including the age difference between the ice and its enclosed gas. This first application of 39Ar and 85Kr to an ice core facilitates further ice cores from nonpolar glaciers to be used for recovering climate records of the Common Era, a period including pronounced anomalies such as the Little Ice Age and the Medieval Warm Period.


Asunto(s)
Cubierta de Hielo , Datación Radiométrica , Clima , Cambio Climático , Datación Radiométrica/métodos , Tibet
4.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34518222

RESUMEN

Reconstruction of the North Atlantic jet stream (NAJ) presents a critical, albeit largely unconstrained, paleoclimatic target. Models suggest northward migration and changing variance of the NAJ under 21st-century warming scenarios, but assessing the significance of such projections is hindered by a lack of long-term observations. Here, we incorporate insights from an ensemble of last-millennium water isotope-enabled climate model simulations and a wide array of mean annual water isotope ([Formula: see text]O) and annually accumulated snowfall records from Greenland ice cores to reconstruct North Atlantic zonal-mean zonal winds back to the 8th century CE. Using this reconstruction we provide preobservational constraints on both annual mean NAJ position and intensity to show that late 20th- and early 21st-century NAJ variations were likely not unique relative to natural variability. Rather, insights from our 1,250 year reconstruction highlight the overwhelming role of natural variability in thus far masking the response of midlatitude atmospheric dynamics to anthropogenic forcing, consistent with recent large-ensemble transient modeling experiments. This masking is not projected to persist under high greenhouse gas emissions scenarios, however, with model projected annual mean NAJ position emerging as distinct from the range of reconstructed natural variability by as early as 2060 CE.

5.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33723012

RESUMEN

Understanding the history of the Greenland Ice Sheet (GrIS) is critical for determining its sensitivity to warming and contribution to sea level; however, that history is poorly known before the last interglacial. Most knowledge comes from interpretation of marine sediment, an indirect record of past ice-sheet extent and behavior. Subglacial sediment and rock, retrieved at the base of ice cores, provide terrestrial evidence for GrIS behavior during the Pleistocene. Here, we use multiple methods to determine GrIS history from subglacial sediment at the base of the Camp Century ice core collected in 1966. This material contains a stratigraphic record of glaciation and vegetation in northwestern Greenland spanning the Pleistocene. Enriched stable isotopes of pore-ice suggest precipitation at lower elevations implying ice-sheet absence. Plant macrofossils and biomarkers in the sediment indicate that paleo-ecosystems from previous interglacial periods are preserved beneath the GrIS. Cosmogenic 26Al/10Be and luminescence data bracket the burial of the lower-most sediment between <3.2 ± 0.4 Ma and >0.7 to 1.4 Ma. In the upper-most sediment, cosmogenic 26Al/10Be data require exposure within the last 1.0 ± 0.1 My. The unique subglacial sedimentary record from Camp Century documents at least two episodes of ice-free, vegetated conditions, each followed by glaciation. The lower sediment derives from an Early Pleistocene GrIS advance. 26Al/10Be ratios in the upper-most sediment match those in subglacial bedrock from central Greenland, suggesting similar ice-cover histories across the GrIS. We conclude that the GrIS persisted through much of the Pleistocene but melted and reformed at least once since 1.1 Ma.


Asunto(s)
Sedimentos Geológicos/análisis , Cubierta de Hielo/química , Dispersión de las Plantas , Aluminio/análisis , Berilio/análisis , Fósiles , Congelación , Sedimentos Geológicos/química , Groenlandia , Radioisótopos/análisis
6.
Proc Natl Acad Sci U S A ; 117(27): 15443-15449, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571905

RESUMEN

The assassination of Julius Caesar in 44 BCE triggered a power struggle that ultimately ended the Roman Republic and, eventually, the Ptolemaic Kingdom, leading to the rise of the Roman Empire. Climate proxies and written documents indicate that this struggle occurred during a period of unusually inclement weather, famine, and disease in the Mediterranean region; historians have previously speculated that a large volcanic eruption of unknown origin was the most likely cause. Here we show using well-dated volcanic fallout records in six Arctic ice cores that one of the largest volcanic eruptions of the past 2,500 y occurred in early 43 BCE, with distinct geochemistry of tephra deposited during the event identifying the Okmok volcano in Alaska as the source. Climate proxy records show that 43 and 42 BCE were among the coldest years of recent millennia in the Northern Hemisphere at the start of one of the coldest decades. Earth system modeling suggests that radiative forcing from this massive, high-latitude eruption led to pronounced changes in hydroclimate, including seasonal temperatures in specific Mediterranean regions as much as 7 °C below normal during the 2 y period following the eruption and unusually wet conditions. While it is difficult to establish direct causal linkages to thinly documented historical events, the wet and very cold conditions from this massive eruption on the opposite side of Earth probably resulted in crop failures, famine, and disease, exacerbating social unrest and contributing to political realignments throughout the Mediterranean region at this critical juncture of Western civilization.


Asunto(s)
Cambio Climático/historia , Clima Frío/efectos adversos , Desastres/historia , Mundo Romano/historia , Erupciones Volcánicas/efectos adversos , Alaska , Clima , Productos Agrícolas/historia , Hambruna/historia , Historia Antigua , Cubierta de Hielo , Región Mediterránea , Política , Erupciones Volcánicas/historia
7.
Environ Sci Technol ; 56(18): 13107-13118, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36083611

RESUMEN

Industrial activities release aerosols containing toxic metals into the atmosphere, where they are transported far from their sources, impacting ecosystems and human health. Concomitantly, long-range-transported mineral dust aerosols play a role in Earth's radiative balance and supply micronutrients to iron-limited ecosystems. To evaluate the sources of dust and pollutant aerosols to Alaska following the 2001 phase-out of leaded gasoline in China, we measured Pb-Sr-Nd isotopic compositions of particles collected in 2016 from snow pits across an elevational transect (2180-5240 m-a.s.l) in Denali National Park, USA. We also determined Pb flux and enrichment from 1991-2011 in the Denali ice core (3870 m-a.s.l). Chinese coal-burning and non-ferrous metal smelting account for up to 64% of Pb deposition at our sites, a value consistent across the western Arctic. Pb isotope ratios in the aerosols did not change between 2001 and 2016, despite the ban on lead additives. Emissions estimates demonstrate that industrial activities have more than compensated for the phase-out of leaded gasoline, with China emitting ∼37,000 metric tons year-1 of Pb during 2013-2015, approximately 78% of the Pb from East Asia. The Pb flux to Alaska now equals that measured in southern Greenland during peak pollution from North America.


Asunto(s)
Polvo , Contaminantes Ambientales , Aerosoles/análisis , China , Carbón Mineral , Ecosistema , Monitoreo del Ambiente , Gasolina , Humanos , Hierro , Isótopos , Plomo , Micronutrientes
8.
Proc Natl Acad Sci U S A ; 116(30): 14910-14915, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31285330

RESUMEN

Lead pollution in Arctic ice reflects large-scale historical changes in midlatitude industrial activities such as ancient lead/silver production and recent fossil fuel burning. Here we used measurements in a broad array of 13 accurately dated ice cores from Greenland and Severnaya Zemlya to document spatial and temporal changes in Arctic lead pollution from 200 BCE to 2010 CE, with interpretation focused on 500 to 2010 CE. Atmospheric transport modeling indicates that Arctic lead pollution was primarily from European emissions before the 19th-century Industrial Revolution. Temporal variability was surprisingly similar across the large swath of the Arctic represented by the array, with 250- to 300-fold increases in lead pollution observed from the Early Middle Ages to the 1970s industrial peak. Superimposed on these exponential changes were pronounced, multiannual to multidecadal variations, marked by increases coincident with exploitation of new mining regions, improved technologies, and periods of economic prosperity; and decreases coincident with climate disruptions, famines, major wars, and plagues. Results suggest substantial overall growth in lead/silver mining and smelting emissions-and so silver production-from the Early through High Middle Ages, particularly in northern Europe, with lower growth during the Late Middle Ages into the Early Modern Period. Near the end of the second plague pandemic (1348 to ∼1700 CE), lead pollution increased sharply through the Industrial Revolution. North American and European pollution abatement policies have reduced Arctic lead pollution by >80% since the 1970s, but recent levels remain ∼60-fold higher than at the start of the Middle Ages.

9.
Molecules ; 27(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35807454

RESUMEN

A lead (Pb) isotopic record, covering the two oldest glacial-interglacial cycles (~572 to 801 kyr ago) characterized by lukewarm interglacials in the European Project for Ice Coring in Antarctica Dome C ice core, provides evidence for dust provenance in central East Antarctic ice prior to the Mid-Brunhes Event (MBE), ~430 kyr ago. Combined with published post-MBE data, distinct isotopic compositions, coupled with isotope mixing model results, suggest Patagonia/Tierra del Fuego (TdF) as the most important sources of dust during both pre-MBE and post-MBE cold and intermediate glacial periods. During interglacials, central-western Argentina emerges as a major contributor, resulting from reduced dust supply from Patagonia/TdF after the MBE, contrasting to the persistent dominance of dust from Patagonia/TdF before the MBE. The data also show a small fraction of volcanic Pb transferred from extra-Antarctic volcanoes during post-MBE interglacials, as opposed to abundant transfer prior to the MBE. These differences are most likely attributed to the enhanced wet removal efficiency with the hydrological cycle intensified over the Southern Ocean, associated with a poleward shift of the southern westerly winds (SWW) during warmer post-MBE interglacials, and vice versa during cooler pre-MBE ones. Our results highlight sensitive responses of the SWW and the associated atmospheric conditions to stepwise Antarctic warming.


Asunto(s)
Polvo , Agua de Mar , Regiones Antárticas , Argentina , Plomo
10.
Environ Sci Technol ; 55(20): 13638-13645, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34587450

RESUMEN

We measure 3H in an ice core from Camp Century. The temporal distribution of 3H concentration in the ice core corresponds generally well with the historical record of explosive yields of atmospheric nuclear weapons tests. Maximum 3H values observed in 1962-1963 are comparable to those in ice core or precipitation in many other locations in the Northern Hemisphere. There is no indication that significant 3H contamination was locally released into the air during the operation of the Camp Century reactor. It is, however, somewhat surprising that several prominent 3H peaks are still observed after 1980. We suggest that these are associated with airborne 3H releases from the civil nuclear industry. A wavelet analysis during 1970-2017 indicates the primary frequency of variability in the 3H record is annual 3H peaks. These annual peaks can be combined with the 3H spikes from global fallout of known nuclear weapons tests to benchmark and evaluate theoretical ice core dating scales back to the 1950s. A positive correlation is observed between annual 3H average concentration and variability of Arctic Oscillation (AO). This highlights the value of 3H as a potential tracer for air masses and airborne pollutants in the Arctic.


Asunto(s)
Contaminantes Ambientales , Armas Nucleares , Regiones Árticas , Groenlandia , Tritio
11.
Proc Natl Acad Sci U S A ; 115(22): 5726-5731, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29760088

RESUMEN

Lead pollution in Arctic ice reflects midlatitude emissions from ancient lead-silver mining and smelting. The few reported measurements have been extrapolated to infer the performance of ancient economies, including comparisons of economic productivity and growth during the Roman Republican and Imperial periods. These studies were based on sparse sampling and inaccurate dating, limiting understanding of trends and specific linkages. Here we show, using a precisely dated record of estimated lead emissions between 1100 BCE and 800 CE derived from subannually resolved measurements in Greenland ice and detailed atmospheric transport modeling, that annual European lead emissions closely varied with historical events, including imperial expansion, wars, and major plagues. Emissions rose coeval with Phoenician expansion, accelerated during expanded Carthaginian and Roman mining primarily in the Iberian Peninsula, and reached a maximum under the Roman Empire. Emissions fluctuated synchronously with wars and political instability particularly during the Roman Republic, and plunged coincident with two major plagues in the second and third centuries, remaining low for >500 years. Bullion in silver coinage declined in parallel, reflecting the importance of lead-silver mining in ancient economies. Our results indicate sustained economic growth during the first two centuries of the Roman Empire, terminated by the second-century Antonine plague.


Asunto(s)
Contaminantes Ambientales , Hielo/análisis , Plomo , Mundo Romano/historia , Conflictos Armados/historia , Brotes de Enfermedades/historia , Contaminantes Ambientales/análisis , Contaminantes Ambientales/historia , Industria Procesadora y de Extracción/historia , Groenlandia , Historia Antigua , Humanos , Plomo/análisis , Plomo/historia , Plata/historia
12.
Proc Natl Acad Sci U S A ; 115(48): 12136-12141, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30420500

RESUMEN

Iodine is an important nutrient and a significant sink of tropospheric ozone, a climate-forcing gas and air pollutant. Ozone interacts with seawater iodide, leading to volatile inorganic iodine release that likely represents the largest source of atmospheric iodine. Increasing ozone concentrations since the preindustrial period imply that iodine chemistry and its associated ozone destruction is now substantially more active. However, the lack of historical observations of ozone and iodine means that such estimates rely primarily on model calculations. Here we use seasonally resolved records from an Alpine ice core to investigate 20th century changes in atmospheric iodine. After carefully considering possible postdepositional changes in the ice core record, we conclude that iodine deposition over the Alps increased by at least a factor of 3 from 1950 to the 1990s in the summer months, with smaller increases during the winter months. We reproduce these general trends using a chemical transport model and show that they are due to increased oceanic iodine emissions, coupled to a change in iodine speciation over Europe from enhanced nitrogen oxide emissions. The model underestimates the increase in iodine deposition by a factor of 2, however, which may be due to an underestimate in the 20th century ozone increase. Our results suggest that iodine's impact on the Northern Hemisphere atmosphere accelerated over the 20th century and show a coupling between anthropogenic pollution and the availability of iodine as an essential nutrient to the terrestrial biosphere.


Asunto(s)
Contaminantes Atmosféricos/química , Hielo/análisis , Yodo/química , Agua de Mar/química , Atmósfera , Clima , Europa (Continente) , Ozono/química , Estaciones del Año
13.
Proc Natl Acad Sci U S A ; 114(29): E5778-E5786, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28673973

RESUMEN

Atmospheric methane (CH4) records reconstructed from polar ice cores represent an integrated view on processes predominantly taking place in the terrestrial biogeosphere. Here, we present dual stable isotopic methane records [δ13CH4 and δD(CH4)] from four Antarctic ice cores, which provide improved constraints on past changes in natural methane sources. Our isotope data show that tropical wetlands and seasonally inundated floodplains are most likely the controlling sources of atmospheric methane variations for the current and two older interglacials and their preceding glacial maxima. The changes in these sources are steered by variations in temperature, precipitation, and the water table as modulated by insolation, (local) sea level, and monsoon intensity. Based on our δD(CH4) constraint, it seems that geologic emissions of methane may play a steady but only minor role in atmospheric CH4 changes and that the glacial budget is not dominated by these sources. Superimposed on the glacial/interglacial variations is a marked difference in both isotope records, with systematically higher values during the last 25,000 y compared with older time periods. This shift cannot be explained by climatic changes. Rather, our isotopic methane budget points to a marked increase in fire activity, possibly caused by biome changes and accumulation of fuel related to the late Pleistocene megafauna extinction, which took place in the course of the last glacial.

14.
Proc Natl Acad Sci U S A ; 114(7): 1492-1497, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28137849

RESUMEN

CO2 emissions from preindustrial land-use change (LUC) are subject to large uncertainties. Although atmospheric CO2 records suggest only a small land carbon (C) source since 5,000 y before present (5 kyBP), the concurrent C sink by peat buildup could mask large early LUC emissions. Here, we combine updated continuous peat C reconstructions with the land C balance inferred from double deconvolution analyses of atmospheric CO2 and [Formula: see text]C at different temporal scales to investigate the terrestrial C budget of the Holocene and the last millennium and constrain LUC emissions. LUC emissions are estimated with transient model simulations for diverging published scenarios of LU area change and shifting cultivation. Our results reveal a large terrestrial nonpeatland C source after the Mid-Holocene (66 [Formula: see text] 25 PgC at 7-5 kyBP and 115 [Formula: see text] 27 PgC at 5-3 kyBP). Despite high simulated per-capita CO2 emissions from LUC in early phases of agricultural development, humans emerge as a driver with dominant global C cycle impacts only in the most recent three millennia. Sole anthropogenic causes for particular variations in the CO2 record ([Formula: see text]20 ppm rise after 7 kyBP and [Formula: see text]10 ppm fall between 1500 CE and 1600 CE) are not supported. This analysis puts a strong constraint on preindustrial vs. industrial-era LUC emissions and suggests that upper-end scenarios for the extent of agricultural expansion before 1850 CE are not compatible with the C budget thereafter.

15.
Proc Natl Acad Sci U S A ; 114(23): 5952-5957, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28512225

RESUMEN

We present a revised and extended high Arctic air temperature reconstruction from a single proxy that spans the past ∼12,000 y (up to 2009 CE). Our reconstruction from the Agassiz ice cap (Ellesmere Island, Canada) indicates an earlier and warmer Holocene thermal maximum with early Holocene temperatures that are 4-5 °C warmer compared with a previous reconstruction, and regularly exceed contemporary values for a period of ∼3,000 y. Our results show that air temperatures in this region are now at their warmest in the past 6,800-7,800 y, and that the recent rate of temperature change is unprecedented over the entire Holocene. The warmer early Holocene inferred from the Agassiz ice core leads to an estimated ∼1 km of ice thinning in northwest Greenland during the early Holocene using the Camp Century ice core. Ice modeling results show that this large thinning is consistent with our air temperature reconstruction. The modeling results also demonstrate the broader significance of the enhanced warming, with a retreat of the northern ice margin behind its present position in the mid Holocene and a ∼25% increase in total Greenland ice sheet mass loss (∼1.4 m sea-level equivalent) during the last deglaciation, both of which have implications for interpreting geodetic measurements of land uplift and gravity changes in northern Greenland.

16.
Int J Syst Evol Microbiol ; 69(11): 3519-3523, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31483241

RESUMEN

A Gram-stain-positive, rod-shaped and motile bacterium with lateral flagellum, designated T3246-1T, was isolated from an ice core, which was drilled from Hariqin Glacier on the Tibetan Plateau, PR China. It grew optimally at 20 °C, pH 7-8 and in the presence of 3 % (w/v) NaCl. The major fatty acid of strain T3246-1T was anteiso-C15 : 0. Major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol. MK-8 was the dominant isoprenoid quinone. The whole-cell sugars were rhamnose, xylose and mannose. The major cell-wall peptidoglycan was lysine. The genomic DNA G+C content of the strain was 71.4 mol%. Results of phylogenetic analysis based on 16S rRNA gene sequences showed that strain T3246-1T formed a lineage within the genus Haloactinobacterium and was closely related to Haloactinobacterium album YIM 93306T with 95.99 % similarity. The average nucleotide identity value between strain T3246-1T and Haloactinobacterium album YIM 93306T was 76.65 %. Based on phenotypic and chemotaxonomic characteristics, strain T3246-1T was considered to represent a novel species of the genus Haloactinobacterium, for which the name Haloactinobacterium glacieicola sp. nov. is proposed. The type strain is T3246-1T (=CGMCC 1.13535T=JCM 32923T).


Asunto(s)
Actinobacteria/clasificación , Cubierta de Hielo/microbiología , Filogenia , Actinobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , Pared Celular/química , China , ADN Bacteriano/genética , Ácidos Grasos/química , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
17.
Geophys Res Lett ; 46(16): 9930-9939, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31762520

RESUMEN

Investigation of organic compounds in ice cores can potentially unlock a wealth of new information in these climate archives. We present results from the first ever ice core drilled on sub-Antarctic island Bouvet, representing a climatologically important but understudied region. We analyze a suite of novel and more familiar organic compounds in the ice core, alongside commonly measured ions. Methanesulfonic acid shows a significant, positive correlation to winter sea ice concentration, as does a fatty acid compound, oleic acid. Both may be sourced from spring phytoplankton blooms, which are larger following greater sea ice extent in the preceding winter. Oxalate, formate, and acetate are positively correlated to sea ice concentration in summer, but sources of these require further investigation. This study demonstrates the potential application of organic compounds from the marine biosphere in generating multiproxy sea ice records, which is critical in improving our understanding of past sea ice changes.

18.
Glob Chang Biol ; 24(5): 2182-2197, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29322639

RESUMEN

We present the first long-term, highly resolved prokaryotic cell concentration record obtained from a polar ice core. This record, obtained from the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core, spanned from the Last Glacial Maximum (LGM) to the early Holocene (EH) and showed distinct fluctuations in prokaryotic cell concentration coincident with major climatic states. The time series also revealed a ~1,500-year periodicity with greater amplitude during the Last Deglaciation (LDG). Higher prokaryotic cell concentration and lower variability occurred during the LGM and EH than during the LDG. A sevenfold decrease in prokaryotic cell concentration coincided with the LGM/LDG transition and the global 19 ka meltwater pulse. Statistical models revealed significant relationships between the prokaryotic cell record and tracers of both marine (sea-salt sodium [ssNa]) and burning emissions (black carbon [BC]). Collectively, these models, together with visual observations and methanosulfidic acid (MSA) measurements, indicated that the temporal variability in concentration of airborne prokaryotic cells reflected changes in marine/sea-ice regional environments of the WAIS. Our data revealed that variations in source and transport were the most likely processes producing the significant temporal variations in WD prokaryotic cell concentrations. This record provided strong evidence that airborne prokaryotic cell deposition differed during the LGM, LDG, and EH, and that these changes in cell densities could be explained by different environmental conditions during each of these climatic periods. Our observations provide the first ice-core time series evidence for a prokaryotic response to long-term climatic and environmental processes.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Cubierta de Hielo/microbiología , Regiones Antárticas , Historia Antigua , Modelos Teóricos , Sodio , Factores de Tiempo
19.
Extremophiles ; 22(1): 29-38, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29071425

RESUMEN

It has been suggested that the cryosphere is a new biome uniquely dominated by microorganisms, although the ecological characteristics of these cold-adapted bacteria are not well understood. We investigated the vertical variation with depth of the proportion of pigmented bacteria recovered from an ice core drilled in the Yuzhufeng Glacier, Tibetan Plateau. A total of 25,449 colonies were obtained from 1250 ice core sections. Colonies grew on only one-third of the inoculated Petri dishes, indicating that although the ice core harbored abundant culturable bacteria, bacteria could not be isolated from every section. Four phyla and 19 genera were obtained; Proteobacteria formed the dominant cluster, followed by Actinobacteria, Bacteroidetes and Firmicutes. The proportion of pigmented bacteria increased with depth from 79 to 95% and yellow-colored colonies predominated throughout the ice core, making up 47% of all the colonies. Pigments including α- and ß-carotene, diatoxanthin, peridinin, zea/lutein, butanoyloxy, fucoxanthin and fucoxanthin were detected in representative colonies with α-carotene being the dominant carotenoid. To the best of our knowledge, this is the highest resolution study of culturable bacteria in a deep ice core reported to date.


Asunto(s)
Cubierta de Hielo/microbiología , Microbiota , Pigmentación , Actinobacteria/aislamiento & purificación , Actinobacteria/metabolismo , Bacteroidetes/aislamiento & purificación , Bacteroidetes/metabolismo , Carotenoides/metabolismo , Firmicutes/aislamiento & purificación , Firmicutes/metabolismo , Tibet
20.
Entropy (Basel) ; 20(12)2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33266655

RESUMEN

Permutation entropy techniques can be useful for identifying anomalies in paleoclimate data records, including noise, outliers, and post-processing issues. We demonstrate this using weighted and unweighted permutation entropy with water-isotope records containing data from a deep polar ice core. In one region of these isotope records, our previous calculations (See Garland et al. 2018) revealed an abrupt change in the complexity of the traces: specifically, in the amount of new information that appeared at every time step. We conjectured that this effect was due to noise introduced by an older laboratory instrument. In this paper, we validate that conjecture by reanalyzing a section of the ice core using a more advanced version of the laboratory instrument. The anomalous noise levels are absent from the permutation entropy traces of the new data. In other sections of the core, we show that permutation entropy techniques can be used to identify anomalies in the data that are not associated with climatic or glaciological processes, but rather effects occurring during field work, laboratory analysis, or data post-processing. These examples make it clear that permutation entropy is a useful forensic tool for identifying sections of data that require targeted reanalysis-and can even be useful for guiding that analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA