Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 493
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 118(2): 295-303, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38361343

RESUMEN

Plant genome editing and propagation are important tools in crop breeding and production. Both rely heavily on the development of efficient in vitro plant regeneration systems. Two prominent regeneration systems that are widely employed in crop production are somatic embryogenesis (SE) and de novo shoot regeneration. In many of the protocols for SE or shoot regeneration, explants are treated with the synthetic auxin analog 2,4-dichlorophenoxyacetic acid (2,4-D), since natural auxins, such as indole-3-acetic acid (IAA) or 4-chloroindole-3-acetic acid (4-Cl-IAA), are less effective or even fail to induce regeneration. Based on previous reports that 2,4-D, compared to endogenous auxins, is not effectively exported from plant cells, we investigated whether efflux inhibition of endogenous auxins could convert these auxins into efficient inducers of SE in Arabidopsis immature zygotic embryos (IZEs). We show that natural auxins and synthetic analogs thereof become efficient inducers of SE when their efflux is transiently inhibited by co-application of the auxin transport inhibitor naphthylphthalamic acid (NPA). Moreover, IZEs of auxin efflux mutants pin2 or abcb1 abcb19 show enhanced SE efficiency when treated with IAA or efflux-inhibited IAA, confirming that auxin efflux reduces the efficiency of Arabidopsis SE. Importantly, in contrast to the 2,4-D system, where only 50-60% of the embryos converted to seedlings, all SEs induced by transport-inhibited natural auxins converted to seedlings. Efflux-inhibited IAA, like 2,4-D, also efficiently induced SE from carrot suspension cells, whereas IAA alone could not, and efflux-inhibited 4-Cl-IAA significantly improved de novo shoot regeneration in Brassica napus. Our data provides new insights into the action of 2,4-D as an efficient inducer of plant regeneration but also shows that replacing this synthetic auxin for efflux-inhibited natural auxin significantly improves different types of plant regeneration, leading to a more synchronized and homogenous development of the regenerated plants.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Reguladores del Crecimiento de las Plantas/farmacología , Fitomejoramiento , Ácidos Indolacéticos/farmacología , Plantas/genética , Ácido 2,4-Diclorofenoxiacético/farmacología
2.
Am J Respir Cell Mol Biol ; 71(3): 307-317, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38761166

RESUMEN

Lung microvascular endothelial cell (EC) dysfunction is the pathological hallmark of acute respiratory distress syndrome. Heat shock protein 90 (HSP90) is a key regulator in control of endothelial barrier disruption and inflammation. Our recent study has demonstrated that ubiquitin-specific peptidase 40 (USP40) preserves endothelial integrity by targeting HSP90ß for its deubiquitination and inactivation. Indole-3-acetic acid (IAA), a plant hormone of the auxin class, can also be catabolized from dietary tryptophan by the intestinal microbiota. Accumulating evidence suggests that IAA reduces oxidative stress and inflammation and promotes intestinal barrier function. However, little is known about the role of IAA in endothelial cells and acute lung injury. In this study, we investigated the role of IAA in lung endothelial cell function in the context of acute lung injury. IAA exhibited EC barrier protection against LPS-induced reduction in transendothelial electrical resistance and inflammatory responses. The underlying mechanism of IAA on EC protective effects was investigated by examining the influence of IAA on degrees of HSP90 ubiquitination and USP40 activity. We identified that IAA, acting as a potential activator of USP40, reduces HSP90 ubiquitination, thereby protecting against LPS-induced inflammation in human lung microvascular endothelial cells as well as alleviating experimental lung injury. Furthermore, the EC protective effects of IAA against LPS-induced EC dysfunction and lung injury were abolished in USP40-deficient human lung microvascular endothelial cell and lungs of USP40 EC-specific knockout (USP40cdh5-ECKO) mice. Taken together, this study reveals that IAA protects against LPS-induced EC dysfunction and lung injury through the activation of USP40.


Asunto(s)
Lesión Pulmonar Aguda , Células Endoteliales , Proteínas HSP90 de Choque Térmico , Ácidos Indolacéticos , Lipopolisacáridos , Ubiquitinación , Lipopolisacáridos/farmacología , Animales , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Humanos , Ácidos Indolacéticos/farmacología , Proteínas HSP90 de Choque Térmico/metabolismo , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/inducido químicamente , Ubiquitinación/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Activación Enzimática/efectos de los fármacos , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/genética
3.
New Phytol ; 243(5): 1855-1869, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38962989

RESUMEN

Grain filling in maize (Zea mays) is intricately linked to cell development, involving the regulation of genes responsible for the biosynthesis of storage reserves (starch, proteins, and lipids) and phytohormones. However, the regulatory network coordinating these biological functions remains unclear. In this study, we identified 1744 high-confidence target genes co-regulated by the transcription factors (TFs) ZmNAC128 and ZmNAC130 (ZmNAC128/130) through chromatin immunoprecipitation sequencing coupled with RNA-seq analysis in the zmnac128/130 loss-of-function mutants. We further constructed a hierarchical regulatory network using DNA affinity purification sequencing analysis of downstream TFs regulated by ZmNAC128/130. In addition to target genes involved in the biosynthesis of starch and zeins, we discovered novel target genes of ZmNAC128/130 involved in the biosynthesis of lipids and indole-3-acetic acid (IAA). Consistently, the number of oil bodies, as well as the contents of triacylglycerol, and IAA were significantly reduced in zmnac128/130. The hierarchical regulatory network centered by ZmNAC128/130 revealed a significant overlap between the direct target genes of ZmNAC128/130 and their downstream TFs, particularly in regulating the biosynthesis of storage reserves and IAA. Our results indicated that the biosynthesis of storage reserves and IAA is coordinated by a multi-TFs hierarchical regulatory network in maize endosperm.


Asunto(s)
Endospermo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Ácidos Indolacéticos , Proteínas de Plantas , Factores de Transcripción , Zea mays , Zea mays/genética , Zea mays/metabolismo , Ácidos Indolacéticos/metabolismo , Endospermo/metabolismo , Endospermo/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Genes de Plantas , Mutación/genética , Almidón/metabolismo , Almidón/biosíntesis
4.
J Exp Bot ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058275

RESUMEN

Boron dimerizes RG-II in the plant cell wall and is crucial for plant cell elongation. However, studying RG-II dimerization in plants is challenging because of the severe phenotypes or lethality of RG-II mutants. Boron deprivation abrogates both RG-II dimerization and plant growth, but whether or how these phenotypes are functionally linked has remained unclear. Boric acid analogues can serve as experimental tools to interfere with RG-II cross-linking. Here, we investigated RG-II dimerization and developmental phenotypes in Arabidopsis thaliana seedlings treated with a boric acid analogue, phenylboronic acid (PBA), to test whether the observed developmental phenotypes are attributable to alteration of RG-II dimerization or to other putative functions of boron in plants. We found that PBA treatment altered root development in seedlings while RG-II dimerization and distribution were not affected. Surprisingly, under low boron conditions, PBA treatment i) had no effect on root size but still prevented lateral root development and ii) restored RG-II dimerization. PBA treatment also disrupted auxin levels, potentially explaining the absence of lateral roots in seedlings treated with this analogue. We conclude that PBA interacts both with RG-II and other cellular targets such as auxin signaling components, and that the phenotypes caused by PBA arise from interference with multiple functions of boron.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38214292

RESUMEN

A Gram-negative and rod-shaped bacterium, designated C340-1T, was isolated and screened from paddy soil in Zhongshan County, Guangxi Province, PR China. This strain grew at 20-42 °C (optimum, 37 °C), pH 5.0-9.0 (optimum, pH 7.0) and 0-4 % (w/v) NaCl (optimum, 0-1 %) on Reasoner's 2A medium. The strain could fix atmospheric nitrogen and acetylene reduction activity was recorded up to 120.26 nmol ethylene h-1 (mg protein)-1. Q-10 was the only isoprenoid quinone component; phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, an unidentified aminolipid and an unidentified polar lipid were the major polar lipids. Summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) were the primary cellular fatty acids. The genome of strain C340-1T was 6.18 Mb, and the G+C content was 69.0 mol%. Phylogenetic tree analysis based on 16S rRNA gene and 92 core genes showed that strain C340-1T was closely related to and clustered with the type strains Azospirillum brasilense JCM 1224T, Azospirillum argentinense Az39T, Azospirillum baldaniorum Sp245T and Azospirillum formosense JCM 17639T. The average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) values between strain C340-1T and the closely related type strains mentioned above were significantly lower than the threshold values for species classification (95-96 %, 95-96 % and 70 %, respectively). Based on phylogenetic, genomic, phenotypic, physiological and biochemical data, we have reason to believe that C340-1T represents a new species of the genus Azospirillum, for which the name Azospirillum isscasi sp. nov. is proposed. The type strain is C340-1T(=CCTCC AB 2023105T=KCTC 8126T).


Asunto(s)
Azospirillum brasilense , Oryza , Ácidos Grasos/química , Fosfolípidos/química , Rizosfera , Filogenia , ARN Ribosómico 16S/genética , Ubiquinona/química , Análisis de Secuencia de ADN , Composición de Base , China , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética
6.
Environ Res ; 252(Pt 4): 119093, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38723991

RESUMEN

Regulating the microalgal initial adhesion in biofilm formation is a key approach to address the challenges of attached microalgae cultivation. As a type of phytohormone, Indole-3-acetic acid (IAA) can promote the growth and metabolism of microalgae. However, limited knowledge has been acquired of how IAA can change the initial adhesion of microalgae in biofilm formation. This study focused on investigating the initial adhesion of microalgae under different IAA concentrations exposure in biofilm formation. The results showed that IAA showed obvious hormesis-like effects on the initial adhesion ability of microalgae biofilm. Under exposure to the low concentration (0.1 mg/L) of IAA, the initial adhesion quantity of microalgae on the surface of the carrier reached the highest value of 7.2 g/m2. However, exposure to the excessively high concentration (10 mg/L) of IAA led to a decrease in the initial adhesion capability of microalgal biofilms. The enhanced adhesion of microalgal biofilms due to IAA was attributed to the upregulation of genes related to the Calvin Cycle, which promoted the synthesis of hydrophobic amino acids, leading to increased protein secretion and altering the surface electron donor characteristics of microalgal biofilms. This, in turn, reduced the energy barrier between the carriers and microalgae. The research findings would provide crucial support for the application of IAA in regulating the operation of microalgal biofilm systems.


Asunto(s)
Biopelículas , Ácidos Indolacéticos , Microalgas , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Microalgas/efectos de los fármacos , Microalgas/fisiología , Reguladores del Crecimiento de las Plantas/farmacología
7.
Environ Res ; 246: 118029, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38160980

RESUMEN

Livestock-polluted water is a pressing water environmental issue in plateau pastoral regions, necessitating the adoption of eco-friendly solutions. Despite periphyton being a promising alternative, its efficacy is limited by the prevalence of intense ultraviolet radiation, particularly ultraviolet-B (UVB), in these regions. Therefore, this study employs molecular tools and small-scale trials to explore the crucial role of indole-3-acetic acid (IAA) in modulating periphyton characteristics and mediating nutrient removal from livestock-polluted water under UVB exposure. The results revealed that IAA augments periphyton's resilience to UVB stress through several pathways, including increasing periphyton's biomass, producing more extracellular polymeric substances (EPS), and enhancing antioxidant enzyme activities and photosynthetic activity of periphyton. Moreover, IAA addition increased periphyton's bacterial diversity, reshaped bacterial community structure, enhanced community stability, and elevated the R2 value of neutral processes in bacterial assembly from 0.257 to 0.651 under UVB. Practically, an IAA concentration of 50 mg/L was recommended. Small-scale trials confirmed the effectiveness of IAA in assisting UVB-stressed periphyton to remove nitrogen and phosphorus from livestock-polluted water, without the risk of nitrogen accumulation. These findings offer valuable insights into the protection of aquatic ecosystems in plateau pastoral regions based on periphyton property in an eco-friendly manner.


Asunto(s)
Perifiton , Purificación del Agua , Animales , Rayos Ultravioleta , Ecosistema , Ganado/metabolismo , Ácidos Indolacéticos/farmacología , Nitrógeno/metabolismo , Bacterias/metabolismo , Purificación del Agua/métodos , Agua
8.
Phytopathology ; 114(5): 1050-1056, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709298

RESUMEN

Auxin is an important phytohormone that regulates diverse biologic processes, including plant growth and immunity. Indole-3-acetic acid (IAA), known as one of the main forms of auxin, is able to activate plant immunity. However, it is unknown whether IAA enhances plant resistance and/or suppresses the growth of the fungal pathogen Magnaporthe oryzae. Here, we found that IAA could induce expression levels of pathogenesis-related genes to enhance disease resistance and could control the development of blast disease through inhibiting M. oryzae infection. Exogenous IAA suppressed mycelial growth and delayed spore germination by inhibiting fungal endogenous IAA biosynthesis and impairing redox homeostasis, respectively. When applied to a field test, two IAA analogues, 1-naphthaleneacetic acid and 2,4-dichlorophenoxy acetic acid, can effectively control rice blast disease. Our study advances the understanding of IAA in controlling rice blast disease through suppressing pathogen growth and enhancing plant resistance.


Asunto(s)
Resistencia a la Enfermedad , Ácidos Indolacéticos , Oryza , Enfermedades de las Plantas , Ácidos Indolacéticos/metabolismo , Oryza/microbiología , Oryza/crecimiento & desarrollo , Oryza/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/prevención & control , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ascomicetos/efectos de los fármacos , Ascomicetos/fisiología , Ácidos Naftalenoacéticos/farmacología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo
9.
Biosci Biotechnol Biochem ; 88(11): 1326-1335, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232210

RESUMEN

Cellular auxin (indole-3-acetic acid, IAA) levels are coordinately regulated by IAA biosynthesis and inactivation. IAA is synthesized through sequential reactions by two enzymes, TAA1 and YUCCA, in a linear indole-3-pyruvic acid (IPA) pathway. TAA1 converts tryptophan to IPA, and YUCCA catalyzes the oxidative decarboxylation of IPA into IAA. Arabidopsis UDP-glycosyltransferase UGT76F2 (At3g55710) was previously reported to catalyze the glycosylation of IPA and consequently modulate IAA levels. We carefully analyzed the physiological roles of UGT76F2 and its close homolog UGT76F1 (At3g55700) in IAA homeostasis. We generated two independent ugt76f1 ugt76f2 double null Arabidopsis mutants (ugt76f1f2) with a 2.7 kb deletion, along with two independent ugt76f2 single null mutants by CRISPR/Cas9 gene editing technology. Surprisingly, these null mutants exhibited indistinguishable phenotypes from the wild-type seedlings under our laboratory conditions. Our results indicate that UGT76F1 and UGT76F2 do not play important roles in regulating IAA biosynthesis via IPA glycosylation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Glicosiltransferasas , Homeostasis , Ácidos Indolacéticos , Ácidos Indolacéticos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Glicosilación , Regulación de la Expresión Génica de las Plantas , Mutación , Sistemas CRISPR-Cas , Fenotipo , Indoles/metabolismo
10.
Ecotoxicol Environ Saf ; 276: 116315, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614001

RESUMEN

This study explores the role of endogenous indole-3-acetic acid (IAA) in modulating plant responses to pollution stress and its effect on pollutant accumulation, with a focus on fluoranthene (Flu) in ryegrass. To elucidate the mechanism, we employed an IAA promoter (α-aminobutyric acid [α-AB]) and an IAA inhibitor (naphthylphthalamic acid [NPA]) to regulate IAA levels and analyze Flu uptake characteristics. The experimental setup included a Flu treatment group (ryegrass with Flu addition) and a control group (ryegrass without Flu). Our findings demonstrate that Flu treatment enhanced IAA content and plant growth in ryegrass compared to the control. The Flu+AB treatment further enhanced these effects, while the Flu+NPA treatment exhibited a contrasting trend. Moreover, Flu+AB treatment led to increased Flu accumulation, in contrast to the inhibitory effect observed with Flu+NPA treatment. Flu treatment also enhanced the activities of key antioxidant enzymes (SOD, POD, CAT) and increased soluble sugar and protein levels, indicative of enzymatic and nonenzymatic defense responses, respectively. The Flu+AB treatment amplified these responses, whereas the Flu+NPA treatment attenuated them. Significantly, Flu treatment raised H+-ATPase activity compared to the control, an effect further elevated by Flu+AB treatment and diminished by Flu+NPA treatment. A random forest analysis suggested that Flu accumulation dependency varied under different treatments: it relied more on H+-ATPase activity under Flu+AB treatment and more on SOD activity under Flu+NPA treatment. Additionally, Flu+AB treatment boosted the transpiration rate in ryegrass, thereby increasing the Flu translocation factor, a trend reversed by Flu+NPA treatment. This research highlights crucial factors influencing Flu accumulation in ryegrass, offering potential new avenues for controlling the gathering of contaminants within plant systems.


Asunto(s)
Fluorenos , Ácidos Indolacéticos , Lolium , Superóxido Dismutasa , Fluorenos/toxicidad , Lolium/efectos de los fármacos , Lolium/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Superóxido Dismutasa/metabolismo , Contaminantes del Suelo/toxicidad , Reguladores del Crecimiento de las Plantas , Antioxidantes/metabolismo
11.
Ecotoxicol Environ Saf ; 284: 116992, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39244882

RESUMEN

Indole-3-acetic acid (IAA) can regulate plant growth and thus modulate the accumulation of polycyclic aromatic hydrocarbons (PAHs). However, the effect of endogenous IAA on PAHs accumulation and its influencing factors remains unclear. To unravel this, two different IAA expression genotypes of Arabidopsis thaliana, i.e., IAA-underproducing yucca1D [YUC1] mutant and wild type [WT]) were selected and treated with different fluoranthene (Flu) concentrations (0 mg/L [CK], 5 mg/L [Flu5], and 20 mg/L [Flu20]) to reveal the impact mechanism of endogenous IAA on Flu uptake by plants. The results indicated that under Flu5 treatment, the bioconcentration factors (BCF) and translocation factors (TF) of Flu in WT were 41.4 % and 14.3 % higher than those in YUC1. Similarly, under Flu20 treatment, the BCF and TF of Flu in WT were also 42.2 % and 8.2 % higher than those in YUC1. In addition, the BCF and TF were 72.5 % and 35.8 % higher under Flu5 treatment compared to Flu20 treatment for WT, and 73.4 % and 28.6 % higher respectively for YUC1. Moreover, WT exhibited higher plant growth (biomass, root morphology indicators [root length, root area and number of tips]) and IAA content compared to YUC1 under identical Flu treatments. Plant growth and IAA content declined with the increase of Flu concentration in both YUC1 and WT leaves compared with CK treatment. Conversely, in WT roots, root biomass and morphology indicators promoted followed by a decrease as the concentration of Flu increased. Additionally, the antioxidant enzyme activities (SOD, POD, and CAT) of WT were 11.1 %, 16.7 %, and 28.9 % higher than those of YUC1 under Flu5 treatment, and 13.6 %, 12.9 %, and 26.5 % higher under Flu20 treatment. Compared with CK treatment, SOD and POD activities promoted with increasing Flu concentration, whereas CAT activities decreased. Variability separation analysis revealed that level of IAA primarily influenced Flu accumulation in WT or under Flu5 treatments, whereas antioxidant enzyme activity primarily affected Flu accumulation in YUC1 or under Flu20 treatments. Exploring the relationship between the IAA synthesis gene YUCCA and IAA levels, alongside Flu accumulation, could yield novel insights into the regulation of PAH accumulation in plants.


Asunto(s)
Arabidopsis , Fluorenos , Ácidos Indolacéticos , Arabidopsis/efectos de los fármacos , Fluorenos/toxicidad , Ácidos Indolacéticos/metabolismo , Antioxidantes/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
12.
Mikrochim Acta ; 191(10): 628, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39327334

RESUMEN

Stainless steel sheets were coated with carbon ink to obtain disposable carbon electrodes, which were used as supports for moleculary imprinted polymer (MIP) electrochemical sensors by electropolymerizing o-phenylenediamine and o-aminophenol along with indole-3-acetic acid (IAA) as the template. After optimization, the MIP biosensors could be used for sensitive and selective detection of IAA with the limit of quantification of 0.1 µM. Our experimental results showed that stable and reproducible electrochemical responses could be achieved for the disposable MIP biosensors. This approach was successfully used for detection of IAA in different tissues of pea sprouts. This study reveals the potential of MIP electrochemical sensors in practical applications and shrinks the trench between the research and the real world.

13.
Int J Mol Sci ; 25(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39273513

RESUMEN

The lateral root (LR) is an essential component of the plant root system, performing important functions for nutrient and water uptake in plants and playing a pivotal role in cereal crop productivity. Nitrate (NO3-) is an essential nutrient for plants. In this study, wheat plants were grown in 1/2 strength Hoagland's solution containing 5 mM NO3- (check; CK), 0.1 mM NO3- (low NO3-; LN), or 0.1 mM NO3- plus 60 mg/L 2,3,5-triiodobenzoic acid (TIBA) (LNT). The results showed that LN increased the LR number significantly at 48 h after treatment compared with CK, while not increasing the root biomass, and LNT significantly decreased the LR number and root biomass. The transcriptomic analysis showed that LN induced the expression of genes related to root IAA synthesis and transport and cell wall remodeling, and it was suppressed in the LNT conditions. A physiological assay revealed that the LN conditions increased the activity of IAA biosynthesis-related enzymes, the concentrations of tryptophan and IAA, and the activity of cell wall remodeling enzymes in the roots, whereas the content of polysaccharides in the LRP cell wall was significantly decreased compared with the control. Fourier-transform infrared spectroscopy and atomic microscopy revealed that the content of cell wall polysaccharides decreased and the cell wall elasticity of LR primordia (LRP) increased under the LN conditions. The effects of LN on IAA synthesis and polar transport, cell wall remodeling, and LR development were abolished when TIBA was applied. Our findings indicate that NO3- starvation may improve auxin homeostasis and the biological properties of the LRP cell wall and thus promote LR initiation, while TIBA addition dampens the effects of LN on auxin signaling, gene expression, physiological processes, and the root architecture.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Nitratos , Raíces de Plantas , Transducción de Señal , Triticum , Triticum/metabolismo , Triticum/genética , Triticum/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Nitratos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Pared Celular/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Organogénesis de las Plantas/genética , Perfilación de la Expresión Génica
14.
Int J Mol Sci ; 25(19)2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39409172

RESUMEN

The plant vacuole is a very dynamic organelle that can occupy more than 90% of the cell volume and is essential to plant cell growth and development, the processes in which auxin (indole-3-acetic acid, IAA) is a central player. It was found that when IAA or FC (fusicoccin) was present in the control medium of vacuoles isolated from red beet taproots at a final concentration of 1 µM, it increased their volume to a level that was 26% or 36% higher than that observed in the control medium without growth regulators, respectively. In the presence of IAA and FC, the time after which most vacuoles ruptured was about 10 min longer for IAA than for FC. However, when cadmium (Cd) or lead (Pb) was present in the control medium at a final concentration of 100 µM, it increased the volume of the vacuoles by about 26% or 80% compared to the control, respectively. The time after which the vacuoles ruptured was similar for both metals. The combined effect of IAA and Pb on the volume of the vacuoles was comparable with that observed in the presence of Pb only, while for FC combined with Pb, it was additive. The use of IAA or FC together with Cd caused in both cases a decrease in the vacuole volumes by about 50%. The data presented in this study are discussed, taking into account the structure and function of the vacuolar membrane (tonoplast) and their changes in the presence of growth substances, heavy metals, and their combination.


Asunto(s)
Beta vulgaris , Ácidos Indolacéticos , Metales Pesados , Raíces de Plantas , Vacuolas , Beta vulgaris/crecimiento & desarrollo , Beta vulgaris/efectos de los fármacos , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo , Ácidos Indolacéticos/farmacología , Metales Pesados/toxicidad , Metales Pesados/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Cadmio/toxicidad , Reguladores del Crecimiento de las Plantas/farmacología , Plomo/toxicidad
15.
Molecules ; 29(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38893338

RESUMEN

Acting as a growth regulator, Indole-3-acetic acid (IAA) is an important phytohormone that can be produced by several Bacillus species. However, few studies have been published on the comprehensive evaluation of the strains for practical applications and the effects of selenium species on their IAA-producing ability. The present study showed the selenite reduction strain Bacillus altitudinis LH18, which is capable of producing selenium nanoparticles (SeNPs) at a high yield in a cost-effective manner. Bio-SeNPs were systematically characterized by using DLS, zeta potential, SEM, and FTIR. The results showed that these bio-SeNPs were small in particle size, homogeneously dispersed, and highly stable. Significantly, the IAA-producing ability of strain was differently affected under different selenium species. The addition of SeNPs and sodium selenite resulted in IAA contents of 221.7 µg/mL and 91.01 µg/mL, respectively, which were 3.23 and 1.33 times higher than that of the control. This study is the first to examine the influence of various selenium species on the IAA-producing capacity of Bacillus spp., providing a theoretical foundation for the enhancement of the IAA-production potential of microorganisms.


Asunto(s)
Bacillus , Ácidos Indolacéticos , Selenio , Ácidos Indolacéticos/metabolismo , Bacillus/metabolismo , Bacillus/efectos de los fármacos , Selenio/química , Selenio/farmacología , Selenio/metabolismo , Nanopartículas/química , Tamaño de la Partícula
16.
Plant Cell Environ ; 46(2): 498-517, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36369997

RESUMEN

Hypocotyl elongation is dramatically influenced by environmental factors and phytohormones. Indole-3-acetic acid (IAA) plays a prominent role in hypocotyl elongation, whereas abscisic acid (ABA) is regarded as an inhibitor through repressing IAA synthesis and signalling. However, the regulatory role of ABA in local IAA deactivation remains largely uncharacterized. In this study, we confirmed the antagonistic interplay of ABA and IAA during the hypocotyl elongation of tomato (Solanum lycopersicum) seedlings. We identified an IAA oxidase enzyme DIOXYGENASE FOR AUXIN OXIDATION2 (SlDAO2), and its expression was induced by both external and internal ABA signals in tomato hypocotyls. Moreover, the overexpression of SlDAO2 led to a reduced sensitivity to IAA, and the knockout of SlDAO2 alleviated the inhibitory effect of ABA on hypocotyl elongation. Furthermore, an ABA-responsive regulatory SlAREB1/SlABI3-1/SlABI5 cascade was identified to act upstream of SlDAO2 and to precisely control its expression. SlAREB1 directly bound to the ABRE present in the SlDAO2 promoter to activate SlDAO2 expression, and SlABI3-1 enhanced while SlABI5 inhibited the activation ability of SlAREB1 by directly interacting with SlAREB1. Our findings revealed that ABA might induce local IAA oxidation and deactivation via SlDAO2 to modulate IAA homoeostasis and thereby repress hypocotyl elongation in tomato.


Asunto(s)
Ácido Abscísico , Solanum lycopersicum , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Hipocótilo/metabolismo , Solanum lycopersicum/genética , Oxidorreductasas/metabolismo , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas
17.
Pharmacol Res ; 197: 106968, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37866705

RESUMEN

The potential of marine natural products as effective drugs for osteoporosis treatment is an understudied area. In this study, we investigated the ability of lead compounds from deep-sea-derived Penicillium solitum MCCC 3A00215 to promote bone formation in vitro and in vivo. We found that penicopeptide A (PPA) promoted osteoblast mineralization among bone marrow mesenchymal stem cells (BMSCs) in a concentration-dependent manner, and thus, we selected this natural peptide for further testing. Our further experiments showed that PPA significantly promoted the osteogenic differentiation of BMSCs while inhibiting their adipogenic differentiation and not affecting their chondrogenic differentiation. Mechanistic studies showed that PPA binds directly to the AKT and GSK-3ß and activates phosphorylation of AKT and GSK-3ß, resulting in the accumulation of ß-catenin. We also evaluated the therapeutic potential of PPA in a female mouse model of ovariectomy-induced systemic bone loss. In this model, PPA treatment prevented decreases in bone volume and trabecular thickness. In conclusion, our in vitro and in vivo results demonstrated that PPA could promote osteoblast-related bone formation via the AKT, GSK-3ß, and ß-catenin signaling pathways, indicating the clinical potential of PPA as a candidate compound for osteoporosis prevention.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteoporosis , Femenino , Animales , Ratones , Humanos , beta Catenina , Glucógeno Sintasa Quinasa 3 beta , Osteogénesis , Proteínas Proto-Oncogénicas c-akt , Hongos , Osteoblastos , Ovariectomía/efectos adversos , Transducción de Señal , Osteoporosis/tratamiento farmacológico , Osteoporosis/etiología
18.
Anal Bioanal Chem ; 415(4): 683-694, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36464734

RESUMEN

Protein-bound uremic toxins, mainly indoxyl sulfate (3-INDS), p-cresol sulfate (pCS), and indole-3-acetic acid (3-IAA) but also phenol (Pol) and p-cresol (pC), are progressively accumulated during chronic kidney disease (CKD). Their accurate measurement in biomatrices is demanded for timely diagnosis and adoption of appropriate therapeutic measures. Multianalyte methods allowing the establishment of a uremic metabolite profile are still missing. Hence, the aim of this work was to develop a rapid and sensitive method based on high-performance liquid chromatography with fluorescence detection for the simultaneous quantification of Pol, 3-IAA, pC, 3-INDS, and pCS in human plasma. Separation was attained in 12 min, using a monolithic C18 column and isocratic elution with acetonitrile and phosphate buffer containing an ion-pairing reagent, at a flow rate of 2 mL min-1. Standards were prepared in plasma and quantification was performed using the background subtraction approach. LOQ values were ≤ 0.2 µg mL-1 for all analytes except for pCS (LOQ of 2 µg mL-1). The method proved to be accurate (93.5-112%) and precise (CV ≤ 14.3%). The multianalyte application of the method, associated to a reduced sample volume (50 µL), a less toxic internal standard (eugenol) in comparison to the previously applied 2,6-dimethylphenol and 4-ethylphenol, and a green extraction solvent (ethanol), resulted in the AGREE score of 0.62 which is in line with the recent trend of green and sustainable analytical chemistry. The validated method was successfully applied to the analysis of plasma samples from control subjects exhibiting normal levels of uremic toxins and CKD patients presenting significantly higher levels of 3-IAA, pC, 3-INDS, and pCS that can be further investigated as biomarkers of disease progression.


Asunto(s)
Insuficiencia Renal Crónica , Toxinas Biológicas , Humanos , Tóxinas Urémicas , Cromatografía Líquida de Alta Presión/métodos , Cresoles/metabolismo , Cresoles/uso terapéutico , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/metabolismo , Fenol , Indicán/química , Indicán/metabolismo , Toxinas Biológicas/metabolismo , Toxinas Biológicas/uso terapéutico
19.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36626727

RESUMEN

AIMS: To isolate and characterize non-rhizobial nodule-associated bacteria (NAB) from cowpea root-nodules regarding their performance of plant-growth-promoting mechanisms and their ability to enhance cowpea growth and symbiosis when co-inoculated with bradyrhizobia. METHODS AND RESULTS: Sixteen NAB were isolated, identified, and in vitro evaluated for plant growth promotion traits. The ability to promote cowpea growth was analyzed when co-inoculated with Bradyrhizobium pachyrhizi BR 3262 in sterile and non-sterile substrates. The 16S rRNA gene sequences analysis revealed that NAB belonged to the genera Chryseobacterium (4), Bacillus (3), Microbacterium (3), Agrobacterium (1), Escherichia (1), Delftia (1), Pelomonas (1), Sphingomonas (1), and Staphylococcus (1). All strains produced different amounts of auxin siderophores and formed biofilms. Twelve out of the 16 strains carried the nifH, a gene associated with nitrogen fixation. Co-inoculation of NAB (ESA 424 and ESA 29) with Bradyrhizobium pachyrhizi BR 3262 significantly promoted cowpea growth, especially after simultaneous inoculation with the three strains. CONCLUSIONS: NAB are efficient cowpea growth promoters and can improve the efficiency of the symbiosis between cowpea and the N2-fixing microsymbiont B. pachyrhizi BR 3262, mainly under a specific triple microbial association.


Asunto(s)
Bradyrhizobium , Pilotos , Rhizobium , Vigna , Humanos , Vigna/genética , Vigna/microbiología , Simbiosis/genética , Rhizobium/genética , ARN Ribosómico 16S/genética , Nódulos de las Raíces de las Plantas/microbiología , Bradyrhizobium/genética , Fijación del Nitrógeno , Filogenia
20.
Biotechnol Appl Biochem ; 70(6): 1870-1880, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37424116

RESUMEN

Artemisinin is the most practical medication for the treatment of malaria, but is only very minimally synthesized in Artemisia annua, significantly less than the market needs. In this study, indole-3-acetic acid (IAA) was used to investigate its effects on trichomes, artemisinin accumulation, and biosynthetic gene expression in A. anuua. The results showed that exogenous IAA could contribute to the growth and development of A. annua and increase the density of trichomes. Analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) indicated that artemisinin and dihydroartemisinic acid (DHAA) contents were increased by 1.9-fold (1.1 mg/g) and 2.1-fold (0.51 mg/g) after IAA treatment in comparison with control lines (CK), respectively. Furthermore, quantitative real-time PCR results showed that AaADS, AaCYP71AV1, AaALDH1, and AaDBR2, four critical enzyme genes for the biosynthesis of artemisinin, had relatively high transcription levels in leaves of A. annua treated with IAA. In summary, this study indicated that exogenous IAA treatment was a feasible strategy to enhance artemisinin production, which paves the way for further metabolic engineering of artemisinin biosynthesis.


Asunto(s)
Artemisia annua , Artemisininas , Artemisia annua/metabolismo , Tricomas/genética , Tricomas/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Artemisininas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA