Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Development ; 151(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39082949

RESUMEN

In wheat, the transition of the inflorescence meristem to a terminal spikelet (IM→TS) determines the spikelet number per spike (SNS), an important yield component. In this study, we demonstrate that the plant-specific transcription factor LEAFY (LFY) physically and genetically interacts with WHEAT ORTHOLOG OF APO1 (WAPO1) to regulate SNS and floret development. Loss-of-function mutations in either or both genes result in significant and similar reductions in SNS, as a result of a reduction in the rate of spikelet meristem formation per day. SNS is also modulated by significant genetic interactions between LFY and the SQUAMOSA MADS-box genes VRN1 and FUL2, which promote the IM→TS transition. Single-molecule fluorescence in situ hybridization revealed a downregulation of LFY and upregulation of the SQUAMOSA MADS-box genes in the distal part of the developing spike during the IM→TS transition, supporting their opposite roles in the regulation of SNS in wheat. Concurrently, the overlap of LFY and WAPO1 transcription domains in the developing spikelets contributes to normal floret development. Understanding the genetic network regulating SNS is a necessary first step to engineer this important agronomic trait.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Meristema , Proteínas de Plantas , Factores de Transcripción , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Meristema/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Mutación/genética , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Inflorescencia/metabolismo
2.
Development ; 150(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37971083

RESUMEN

Plant organ primordia develop successively at the shoot apical meristem (SAM). In Arabidopsis, primordia formed early in development differentiate into vegetative leaves, whereas those formed later generate inflorescence branches and flowers. TERMINAL FLOWER 1 (TFL1), a negative regulator of transcription, acts in the SAM to delay flowering and to maintain inflorescence meristem indeterminacy. We used confocal microscopy, time-resolved transcript profiling and reverse genetics to elucidate this dual role of TFL1. We found that TFL1 accumulates dynamically in the SAM reflecting its dual function. Moreover, TFL1 represses two major sets of genes. One set includes genes that promote flowering, expression of which increases earlier in tfl1 mutants. The other set is spatially misexpressed in tfl1 inflorescence meristems. The misexpression of these two gene sets in tfl1 mutants depends upon FD transcription factor, with which TFL1 interacts. Furthermore, the MADS-box gene SEPALLATA 4, which is upregulated in tfl1, contributes both to the floral transition and shoot determinacy defects of tfl1 mutants. Thus, we delineate the dual function of TFL1 in shoot development in terms of its dynamic spatial distribution and different modes of gene repression.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación del Desarrollo de la Expresión Génica , Flores , Meristema/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(51): e2311961120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38096411

RESUMEN

Crop engineering and de novo domestication using gene editing are new frontiers in agriculture. However, outside of well-studied crops and model systems, prioritizing engineering targets remains challenging. Evolution can guide us, revealing genes with deeply conserved roles that have repeatedly been selected in the evolution of plant form. Homologs of the transcription factor genes GRASSY TILLERS1 (GT1) and SIX-ROWED SPIKE1 (VRS1) have repeatedly been targets of selection in domestication and evolution, where they repress growth in many developmental contexts. This suggests a conserved role for these genes in regulating growth repression. To test this, we determined the roles of GT1 and VRS1 homologs in maize (Zea mays) and the distantly related grass brachypodium (Brachypodium distachyon) using gene editing and mutant analysis. In maize, gt1; vrs1-like1 (vrl1) mutants have derepressed growth of floral organs. In addition, gt1; vrl1 mutants bore more ears and more branches, indicating broad roles in growth repression. In brachypodium, Bdgt1; Bdvrl1 mutants have more branches, spikelets, and flowers than wild-type plants, indicating conserved roles for GT1 and VRS1 homologs in growth suppression over ca. 59 My of grass evolution. Importantly, many of these traits influence crop productivity. Notably, maize GT1 can suppress growth in arabidopsis (Arabidopsis thaliana) floral organs, despite ca. 160 My of evolution separating the grasses and arabidopsis. Thus, GT1 and VRS1 maintain their potency as growth regulators across vast timescales and in distinct developmental contexts. This work highlights the power of evolution to inform gene editing in crop improvement.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Fenotipo , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Trends Genet ; 38(10): 989-990, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35715277

RESUMEN

Maize and rice were domesticated from their wild progenitors independently. Whether their convergent phenotypic selection was driven by conserved molecular changes remains unclear. We discuss the implications of a recent genome-wide study of convergently selected maize and rice genes showing that maize KERNEL ROW NUMBER2 (KRN2) and its rice ortholog experienced convergent selection.


Asunto(s)
Estudio de Asociación del Genoma Completo , Oryza , Alelos , Oryza/genética , Zea mays/genética
5.
J Plant Res ; 137(5): 907-925, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38963651

RESUMEN

Senegalia was recently described as non-monophyletic; however, its sections exhibit robust monophyletic support, suggesting a potential reclassification into separate genera-Senegalia sect. Monocanthea p.p. is the largest section. It contains 164 species of pantropical distribution and includes all of the current 99 neotropical species of Senegalia; however, no morphological characteristics are available to differentiate this section. To characterize this section, we examined floral developmental traits in four species of Senegalia sect. Monocanthea p.p. These traits were previously considered as potentially distinguishing features within Acacia s.l. and include the onset patterns of the androecium, the timing of calyx union, the origin of the staminal disc, and the presence of stomata on the petals. Furthermore, we analyzed previously unexplored traits, such as corolla union types, inflorescence development, and micromorphological features related to the indumentum, as well as the presence and location of stomata. The characteristics proposed as potential synapomorphies of the group include the postgenital fusion of the corolla and the presence of a staminal disc formed at the base of the filaments. The other analyzed floral characteristics were not informative for the characterization of the group. Future studies of floral ontogeny will help to establish more precise patterns, mainly whether corolla union and staminal tube formation occur similarly in African and Asian sections of Senegalia.


Asunto(s)
Flores , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Flores/fisiología , Fabaceae/crecimiento & desarrollo , Fabaceae/anatomía & histología , Fabaceae/fisiología , Inflorescencia/anatomía & histología , Inflorescencia/crecimiento & desarrollo , Estomas de Plantas/anatomía & histología , Estomas de Plantas/crecimiento & desarrollo , Estomas de Plantas/fisiología , Filogenia
6.
New Phytol ; 240(3): 945-959, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37664990

RESUMEN

The formation of inflorescences and flowers is essential for the successful reproduction of angiosperms. In the past few decades, genetic studies have identified the LEAFY transcription factor and the UNUSUAL FLORAL ORGANS (UFO) F-box protein as two major regulators of flower development in a broad range of angiosperm species. Recent research has revealed that UFO acts as a transcriptional cofactor, redirecting the LEAFY floral regulator to novel cis-elements. In this review, we summarize the various roles of UFO across species, analyze past results in light of new discoveries and highlight the key questions that remain to be solved.

7.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35887236

RESUMEN

Panicle degeneration, sometimes known as abortion, causes heavy losses in grain yield. However, the mechanism of naturally occurring panicle abortion is still elusive. In a previous study, we characterized a mutant, apical panicle abortion1331 (apa1331), exhibiting abortion in apical spikelets starting from the 6 cm stage of panicle development. In this study, we have quantified the five phytohormones, gibberellins (GA), auxins (IAA), abscisic acid (ABA), cytokinins (CTK), and brassinosteroids (BR), in the lower, middle, and upper parts of apa1331 and compared these with those exhibited in its wild type (WT). In apa331, the lower and middle parts of the panicle showed contrasting concentrations of all studied phytohormones, but highly significant changes in IAA and ABA, compared to the upper part of the panicle. A comparative transcriptome of apa1331 and WT apical spikelets was performed to explore genes causing the physiological basis of spikelet abortion. The differential expression analysis revealed a significant downregulation and upregulation of 1587 and 978 genes, respectively. Hierarchical clustering of differentially expressed genes (DEGs) revealed the correlation of gene ontology (GO) terms associated with antioxidant activity, peroxidase activity, and oxidoreductase activity. KEGG pathway analysis using parametric gene set enrichment analysis (PGSEA) revealed the downregulation of the biological processes, including cell wall polysaccharides and fatty acids derivatives, in apa1331 compared to its WT. Based on fold change (FC) value and high variation in expression during late inflorescence, early inflorescence, and antherdevelopment, we predicted a list of novel genes, which presumably can be the potential targets of inflorescence development. Our study not only provides novel insights into the role of the physiological dynamics involved in panicle abortion, but also highlights the potential targets involved in reproductive development.


Asunto(s)
Oryza , Grano Comestible/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Inflorescencia/genética , Inflorescencia/metabolismo , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
BMC Genomics ; 22(1): 483, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34182921

RESUMEN

BACKGROUND: Tripidium ravennae is a cold-hardy, diploid species in the sugarcane complex (Poaceae subtribe Saccharinae) with considerable potential as a genetic resource for developing improved bioenergy and ornamental grasses. An improved understanding of the genetic regulation of reproductive processes (e.g., floral induction, inflorescence development, and seed development) will enable future applications of precision breeding and gene editing of floral and seed development. In particular, the ability to silence reproductive processes would allow for developing seedless forms of valuable but potentially invasive plants. The objective of this research was to characterize the gene expression environment of reproductive development in T. ravennae. RESULTS: During the early phases of inflorescence development, multiple key canonical floral integrators and pathways were identified. Annotations of type II subfamily of MADS-box transcription factors, in particular, were over-represented in the GO enrichment analyses and tests for differential expression (FDR p-value < 0.05). The differential expression of floral integrators observed in the early phases of inflorescence development diminished prior to inflorescence determinacy regulation. Differential expression analysis did not identify many unique genes at mid-inflorescence development stages, though typical biological processes involved in plant growth and development expressed abundantly. The increase in inflorescence determinacy regulatory elements and putative homeotic floral development unigenes at mid-inflorescence development coincided with the expression of multiple meiosis annotations and multicellular organism developmental processes. Analysis of seed development identified multiple unigenes involved in oxidative-reductive processes. CONCLUSION: Reproduction in grasses is a dynamic system involving the sequential coordination of complex gene regulatory networks and developmental processes. This research identified differentially expressed transcripts associated with floral induction, inflorescence development, and seed development in T. ravennae. These results provide insights into the molecular regulation of reproductive development and provide a foundation for future investigations and analyses, including genome annotation, functional genomics characterization, gene family evolutionary studies, comparative genomics, and precision breeding.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Poaceae , Perfilación de la Expresión Génica , Inflorescencia , Fitomejoramiento
9.
Plant Mol Biol ; 105(4-5): 419-434, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33231834

RESUMEN

KEY MESSAGE: A novel MADS-box member SiMADS34 is essential for regulating inflorescence architecture and grain yield in Setaria italica. MADS-box transcription factors participate in regulating various developmental processes in plants. Inflorescence architecture is one of the most important agronomic traits and is closely associated with grain yield in most staple crops. Here, we isolated a panicle development mutant simads34 from a foxtail millet (Setaria italica (L.) P. Beauv.) EMS mutant library. The mutant showed significantly altered inflorescence architecture and decreased grain yield. Investigation of agronomic traits revealed increased panicle width by 16.8%, primary branch length by 10%, and number of primary branches by 30.9%, but reduced panicle length by 25.2%, and grain weight by 25.5% in simads34 compared with wild-type plants. Genetic analysis of a simads34 × SSR41 F2 population indicated that the simads34 phenotype was controlled by a recessive gene. Map-based cloning and bulked-segregant analysis sequencing demonstrated that a single G-to-A transition in the fifth intron of SiMADS34 in the mutant led to an alternative splicing event and caused an early termination codon in this causal gene. SiMADS34 mRNA was expressed in all of the tissues tested, with high expression levels at the heading and panicle development stages. Subcellular localization analysis showed that simads34 predominantly accumulated in the nucleus. Transcriptome sequencing identified 241 differentially expressed genes related to inflorescence development, cell expansion, cell division, meristem growth and peroxide stress in simads34. Notably, an SPL14-MADS34-RCN pathway was validated through both RNA-seq and qPCR tests, indicating the putative molecular mechanisms regulating inflorescence development by SiMADS34. Our study identified a novel MADS-box member in foxtail millet and provided a useful genetic resource for inflorescence architecture and grain yield research.


Asunto(s)
Grano Comestible/genética , Inflorescencia/genética , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Setaria (Planta)/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Inflorescencia/anatomía & histología , Inflorescencia/crecimiento & desarrollo , Proteínas de Dominio MADS/química , Proteínas de Dominio MADS/clasificación , Mutación , Fenotipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Polimorfismo de Nucleótido Simple , Dominios Proteicos , Homología de Secuencia de Aminoácido , Factores de Transcripción/química , Factores de Transcripción/clasificación
10.
Int J Mol Sci ; 22(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068350

RESUMEN

Artificial domestication and improvement of the majority of crops began approximately 10,000 years ago, in different parts of the world, to achieve high productivity, good quality, and widespread adaptability. It was initiated from a phenotype-based selection by local farmers and developed to current biotechnology-based breeding to feed over 7 billion people. For most cereal crops, yield relates to grain production, which could be enhanced by increasing grain number and weight. Grain number is typically determined during inflorescence development. Many mutants and genes for inflorescence development have already been characterized in cereal crops. Therefore, optimization of such genes could fine-tune yield-related traits, such as grain number. With the rapidly advancing genome-editing technologies and understanding of yield-related traits, knowledge-driven breeding by design is becoming a reality. This review introduces knowledge about inflorescence yield-related traits in cereal crops, focusing on rice, maize, and wheat. Next, emerging genome-editing technologies and recent studies that apply this technology to engineer crop yield improvement by targeting inflorescence development are reviewed. These approaches promise to usher in a new era of breeding practice.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Grano Comestible/crecimiento & desarrollo , Edición Génica , Genoma de Planta , Inflorescencia/crecimiento & desarrollo , Fitomejoramiento , Proteínas de Plantas/genética , Productos Agrícolas/genética , Grano Comestible/genética , Inflorescencia/genética
11.
BMC Genomics ; 21(1): 317, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32819282

RESUMEN

BACKGROUND: The investigation of transcriptome profiles using short reads in non-model organisms, which lack of well-annotated genomes, is limited by partial gene reconstruction and isoform detection. In contrast, long-reads sequencing techniques revealed their potential to generate complete transcript assemblies even when a reference genome is lacking. Cynara cardunculus var. altilis (DC) (cultivated cardoon) is a perennial hardy crop adapted to dry environments with many industrial and nutraceutical applications due to the richness of secondary metabolites mostly produced in flower heads. The investigation of this species benefited from the recent release of a draft genome, but the transcriptome profile during the capitula formation still remains unexplored. In the present study we show a transcriptome analysis of vegetative and inflorescence organs of cultivated cardoon through a novel hybrid RNA-seq assembly approach utilizing both long and short RNA-seq reads. RESULTS: The inclusion of a single Nanopore flow-cell output in a hybrid sequencing approach determined an increase of 15% complete assembled genes and 18% transcript isoforms respect to short reads alone. Among 25,463 assembled unigenes, we identified 578 new genes and updated 13,039 gene models, 11,169 of which were alternatively spliced isoforms. During capitulum development, 3424 genes were differentially expressed and approximately two-thirds were identified as transcription factors including bHLH, MYB, NAC, C2H2 and MADS-box which were highly expressed especially after capitulum opening. We also show the expression dynamics of key genes involved in the production of valuable secondary metabolites of which capitulum is rich such as phenylpropanoids, flavonoids and sesquiterpene lactones. Most of their biosynthetic genes were strongly transcribed in the flower heads with alternative isoforms exhibiting differentially expression levels across the tissues. CONCLUSIONS: This novel hybrid sequencing approach allowed to improve the transcriptome assembly, to update more than half of annotated genes and to identify many novel genes and different alternatively spliced isoforms. This study provides new insights on the flowering cycle in an Asteraceae plant, a valuable resource for plant biology and breeding in Cynara and an effective method for improving gene annotation.


Asunto(s)
Cynara , Transcriptoma , Cynara/genética , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Fitomejoramiento
12.
Plant Cell Physiol ; 61(3): 457-469, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31697317

RESUMEN

In plants, reversible histone acetylation and deacetylation play a crucial role in various biological activities, including development and the response to environmental stress. Histone deacetylation, which is generally associated with gene silencing, is catalyzed by multiple histone deacetylases (HDACs). Our understanding of HDAC function in plant development has accumulated from molecular genetic studies in Arabidopsis thaliana. By contrast, how HDACs contribute to the development of rice (Oryza sativa) is poorly understood and no rice mutants of HDAC have been reported. Here we have characterized a new rice mutant showing semi-dwarfism, which we named dwarf with slender leaf1 (dsl1). The mutant showed pleiotropic defects in both vegetative and reproductive developments; e.g. dsl1 produced short and narrow leaves, accompanied by a reduction in the number and size of vascular bundles. The semi-dwarf phenotype was due to suppression of the elongation of some culm (stem) internodes. Interestingly, despite this suppression of the upper internodes, the elongation and generation of lower internodes were slightly enhanced. Inflorescence and spikelet development were also affected by the dsl1 mutation. Some of the observed morphological defects were related to a reduction in cell numbers, in addition to reduced cell division in leaf primordia revealed by in situ hybridization analysis, suggesting the possibility that DSL1 is involved in cell division control. Gene cloning revealed that DSL1 encodes an HDAC belonging to the reduced potassium dependence3/histone deacetylase1 family. Collectively, our study shows that the HDAC DSL1 plays diverse and important roles in development in rice.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Oryza/crecimiento & desarrollo , Oryza/metabolismo , División Celular , Clonación Molecular , Genes de Plantas , Histonas/metabolismo , Mutación , Oryza/genética , Fenotipo , Hojas de la Planta/citología , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Brotes de la Planta/citología , Brotes de la Planta/crecimiento & desarrollo
13.
BMC Plant Biol ; 19(1): 201, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31096901

RESUMEN

BACKGROUND: The kernel row number (KRN) of an ear is an important trait related to yield and domestication in maize. Exploring the underlying genetic mechanisms of KRN has great research significance and application potential. RESULTS: In the present study, N531 with a KRN of 18-22 and SLN with a KRN of 4-6 were used as the recurrent parent and the donor parent, respectively, to develop two introgression lines (ILs), IL_A and IL_B, both of which have common negative-effect alleles from SLN on chromosomes 1, 5 and 10 and significantly reduced inflorescence meristem (IM) diameter and KRN compared with those of N531. We used RNA-Seq to investigate the transcriptome profiles of 5-mm immature ears of N531, IL_A and IL_B. We identified a total of 2872 differentially expressed genes (DEGs) between N531 and IL_A, 2428 DEGs between N531 and IL_B and 1811 DEGs between IL_A and IL_B. A total of 1252 DEGs were detected as overlapping DEGs, and 89 DEGs were located on the common introgression fragments. Furthermore, three DEGs (Zm00001d013277, Zm00001d015310 and Zm00001d015377) containing three SNPs associated with KRN were identified using regional association mapping. CONCLUSIONS: These results will facilitate our understanding of ear development and provide important candidate genes for further study on KRN.


Asunto(s)
Grano Comestible/crecimiento & desarrollo , Zea mays/genética , Mapeo Cromosómico/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Genes de Plantas/fisiología , Estudios de Asociación Genética , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
Ann Bot ; 124(1): 91-102, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31321402

RESUMEN

BACKGROUND AND AIMS: Photoperiod contains information about the progress of seasons. Plants use the changing photoperiod as a cue for the correct timing of important life history events, including flowering. Here the effect of photoperiod on flowering in four Arabidopsis lyrata populations originating from different latitudes was studied, as well as expression levels of candidate genes for governing the between-population differences. METHODS: Flowering of plants from four A. lyrata populations was studied in three different photoperiods after vernalization. Flowering development was separated into three steps: flower primordia formation, inflorescence shoot elongation and opening of the first flower. Circadian expression rhythms of the A. lyrata homologues of GIGANTEA (GI), FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1), CONSTANS (CO) and FLOWERING LOCUS T (FT) were studied in three of the populations in the intermediate (14 h) photoperiod treatment. KEY RESULTS: Most plants in all populations formed visible flower primordia during vernalization. Further inflorescence development after vernalization was strongly inhibited by short days in the northern European population (latitude 61°N), only slightly in the central European population (49°N) and not at all in the North American populations (36°N and 42°N). In the 14 h daylength, where all plants from the three southernmost populations but only 60 % of the northernmost population flowered, the circadian expression rhythm of the A. lyrata FT was only detected in the southern populations, suggesting differentiation in the critical daylength for activation of the long-day pathway. However, circadian expression rhythms of A. lyrata GI, FKF1 and CO were similar between populations. CONCLUSIONS: The results indicate that in A. lyrata, transition to flowering can occur through pathways independent of long days, but elongation of inflorescences is photoperiodically regulated.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flores , Regulación de la Expresión Génica de las Plantas , Inflorescencia , Fotoperiodo
15.
Genome ; 62(9): 623-633, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31269405

RESUMEN

The process of inflorescence development is directly related to yield components that determine the final grain yield in most cereal crops. Here, microarray analysis was conducted for four different developmental stages of inflorescence to identify genes expressed specifically during inflorescence development. To select inflorescence-specific expressed genes, we conducted meta-analysis using 1245 Affymetrix GeneChip array sets obtained from various development stages, organs, and tissues of members of Poaceae. The early stage of inflorescence development was accompanied by a significant upregulation of a large number of cell differentiation genes, such as those associated with the cell cycle, cell division, DNA repair, and DNA synthesis. Moreover, key regulatory genes, including the MADS-box gene, KNOTTED-1-like homeobox genes, GROWTH-REGULATING FACTOR 1 gene, and the histone methyltransferase gene, were highly expressed in the early inflorescence development stage. In contrast, fewer genes were expressed in the later stage of inflorescence development, and played roles in hormone biosynthesis and meiosis-associated genes. Our work provides novel information regarding the gene regulatory network of cell division, key genes involved in the differentiation of inflorescence in wheat, and regulation mechanism of inflorescence development that are crucial stages for determining final grain number per spike and the yield potential of wheat.


Asunto(s)
Inflorescencia/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Perfilación de la Expresión Génica , Genoma de Planta , Inflorescencia/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Triticum/genética
16.
Plant Cell Rep ; 38(3): 333-343, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30617542

RESUMEN

KEY MESSAGE: TFL1homologCorcanTFL1suppresses the initiation of inflorescence development and regulates the inflorescence morphology inCornus canadensis. In flowering plants, there is a wide range of variation of inflorescence morphology. Despite the ecological and evolutionary importance, efforts devoted to the evolutionary study of the genetic basis of inflorescence morphology are far fewer compared to those on flower development. Our previous study on gene expression patterns suggested a CorTFL1-CorAP1 based model for the evolution of determinate umbels, heads, and mini dichasia from elongated inflorescences in Cornus. Here, we tested the function of CorcanTFL1 in regulating inflorescence development in Cornus canadensis through Agrobacterium-mediated transformation. We showed that transgenic plants overexpressing CorcanTFL1 displayed delayed or suppressed inflorescence initiation and development and extended periods of vegetative growth. Transgenic plants within which CorcanTFL1 had been down-regulated displayed earlier emergence of inflorescence and a reduction of bract and inflorescence sizes, conversions of leaves to bracts and axillary leaf buds to small inflorescences at the uppermost node bearing the inflorescence, or phyllotaxy changes of inflorescence branches and leaves from decussate opposite to spirally alternate. These observations support an important role of CorcanTFL1 in determining flowering time and the morphological destinies of leaves and buds at the node bearing the inflorescence. The evidence is in agreement with the predicted function of CorTFL1 from the gene expression model, supporting a key role of CorTFL1 in the evolutionary divergence of inflorescence forms in Cornus.


Asunto(s)
Cornus/metabolismo , Proteínas de Plantas/metabolismo , Cornus/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Inflorescencia/genética , Inflorescencia/metabolismo , Filogenia , Proteínas de Plantas/genética
17.
Proc Natl Acad Sci U S A ; 112(43): 13372-7, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26464512

RESUMEN

In plants, small groups of pluripotent stem cells called axillary meristems are required for the formation of the branches and flowers that eventually establish shoot architecture and drive reproductive success. To ensure the proper formation of new axillary meristems, the specification of boundary regions is required for coordinating their development. We have identified two maize genes, BARREN INFLORESCENCE1 and BARREN INFLORESCENCE4 (BIF1 and BIF4), that regulate the early steps required for inflorescence formation. BIF1 and BIF4 encode AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins, which are key components of the auxin hormone signaling pathway that is essential for organogenesis. Here we show that BIF1 and BIF4 are integral to auxin signaling modules that dynamically regulate the expression of BARREN STALK1 (BA1), a basic helix-loop-helix (bHLH) transcriptional regulator necessary for axillary meristem formation that shows a striking boundary expression pattern. These findings suggest that auxin signaling directly controls boundary domains during axillary meristem formation and define a fundamental mechanism that regulates inflorescence architecture in one of the most widely grown crop species.


Asunto(s)
Flores/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Transducción de Señal/fisiología , Zea mays/crecimiento & desarrollo , Teorema de Bayes , Clonación Molecular , Biología Computacional , Cartilla de ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Hibridación in Situ , Meristema/crecimiento & desarrollo , Modelos Genéticos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Plant J ; 86(1): 75-88, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26932536

RESUMEN

In rice, inflorescence architecture is established at early stages of reproductive development and contributes directly to grain yield potential. After induction of flowering, the complexity of branching, and therefore the number of seeds on the panicle, is determined by the activity of different meristem types and the timing of transitions between them. Although some of the genes involved in these transitions have been identified, an understanding of the network of transcriptional regulators controlling this process is lacking. To address this we used a precise laser microdissection and RNA-sequencing approach in Oryza sativa ssp. japonica cv. Nipponbare to produce quantitative data that describe the landscape of gene expression in four different meristem types: the rachis meristem, the primary branch meristem, the elongating primary branch meristem (including axillary meristems), and the spikelet meristem. A switch in expression profile between apical and axillary meristem types followed by more gradual changes during transitions in axillary meristem identity was observed, and several genes potentially involved in branching were identified. This resource will be vital for a mechanistic understanding of the link between inflorescence development and grain yield.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Captura por Microdisección con Láser/métodos , Oryza/genética , Proteínas de Plantas/genética , Perfilación de la Expresión Génica , Inflorescencia/genética , Inflorescencia/fisiología , Meristema/genética , Meristema/fisiología , Análisis por Micromatrices , Oryza/citología , Oryza/crecimiento & desarrollo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Reproducción , Semillas/genética , Semillas/metabolismo , Análisis de Secuencia de ARN
19.
BMC Genomics ; 18(1): 212, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28241738

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are a class of small non-coding RNAs that play important roles in biotic and abiotic stresses by regulating their target genes. For common wheat, spring frost damage frequently occurs, especially when low temperature coincides with plants at early floral organ differentiation, which may result in significant yield loss. Up to date, the role of miRNAs in wheat response to frost stress is not well understood. RESULTS: We report here the sequencing of small RNA transcriptomes from the young spikes that were treated with cold stress and the comparative analysis with those of the control. A total of 192 conserved miRNAs from 105 families and nine novel miRNAs were identified. Among them, 34 conserved and five novel miRNAs were differentially expressed between the cold-stressed samples and the controls. The expression patterns of 18 miRNAs were further validated by quantitative real time polymerase chain reaction (qRT-PCR). Moreover, nearly half of the miRNAs were cross inducible by biotic and abiotic stresses when compared with previously published work. Target genes were predicted and validated by degradome sequencing. Gene Ontology (GO) enrichment analysis showed that the target genes of differentially expressed miRNAs were enriched for response to the stimulus, regulation of transcription, and ion transport functions. Since many targets of differentially expressed miRNAs were transcription factors that are associated with floral development such as ARF, SPB (Squamosa Promoter Binding like protein), MADS-box (MCM1, AG, DEFA and SRF), MYB, SPX (SYG1, Pho81 and XPR1), TCP (TEOSINTE BRANCHED, Cycloidea and PCF), and PPR (PentatricoPeptide Repeat) genes, cold-altered miRNA expression may cause abnormal reproductive organ development. CONCLUSION: Analysis of small RNA transcriptomes and their target genes provide new insight into miRNA regulation in developing wheat inflorescences under cold stress. MiRNAs provide another layer of gene regulation in cold stress response that can be genetically manipulated to reduce yield loss in wheat.


Asunto(s)
Frío , MicroARNs/genética , Triticum/crecimiento & desarrollo , Triticum/genética , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Triticum/fisiología
20.
BMC Plant Biol ; 17(Suppl 2): 252, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-29297328

RESUMEN

BACKGROUND: Inflorescences of wheat species, spikes, are characteristically unbranched and bear one sessile spikelet at a spike rachis node. Development of supernumerary spikelets (SSs) at rachis nodes or on the extended rachillas is abnormal. Various wheat morphotypes with altered spike morphology, associated with the development of SSs, present an important genetic resource for studies on genetic regulation of wheat inflorescence development. RESULTS: Here we characterized diploid and tetraploid wheat lines of various non-standard spike morphotypes, which allowed for identification of a new mutant allele of the WHEAT FRIZZY PANICLE (WFZP) gene that determines spike branching in diploid wheat Ttiticum monococcum L. Moreover, we found that the development of SSs and spike branching in wheat T. durum Desf. was a result of a wfzp-A/TtBH-A1 mutation that originated from spontaneous hybridization with T. turgidum convar. сompositum (L.f.) Filat. Detailed characterization of the false-true ramification phenotype controlled by the recessive sham ramification 2 (shr2) gene in tetraploid wheat T. turgidum L. allowed us to suggest putative functions of the SHR2 gene that may be involved in the regulation of spikelet meristem fate and in specification of floret meristems. The results of a gene interaction test suggested that genes WFZP and SHR2 function independently in different processes during spikelet development, whereas another spike ramification gene(s) interact(s) with SHR2 and share(s) common functions. CONCLUSIONS: SS mutants represent an important genetic tool for research on the development of the wheat spikelet and for identification of genes that control meristem activities. Further studies on different non-standard SS morphotypes and wheat lines with altered spike morphology will allow researchers to identify new genes that control meristem identity and determinacy, to elucidate the interaction between the genes, and to understand how these genes, acting in concert, regulate the development of the wheat spike.


Asunto(s)
Flores/crecimiento & desarrollo , Genes de Plantas/fisiología , Meristema/crecimiento & desarrollo , Triticum/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas/genética , Triticum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA