Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(42): e2204073119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215498

RESUMEN

Sustainable circular economy requires materials that possess a property profile comparable to synthetic polymers and, additionally, processing and sourcing of raw materials that have a small environmental footprint. Here, we present a paradigm for processing marine biopolymers into materials that possess both elastic and plastic behavior within a single system involving a double-interpenetrating polymer network comprising the elastic phase of dynamic physical cross-links and stress-dissipating ionically cross-linked domains. As a proof of principle, films possessing more than twofold higher elastic modulus, ultimate tensile strength, and yield stress than those of polylactic acid were realized by blending two water-soluble marine polysaccharides, namely alginic acid (Alg) with physically cross-linkable carboxylated agarose (CA) followed by ionic cross-linking with a divalent cation. Dried CAAlg films showed homogeneous nano-micro-scale domains, with yield stress and size of the domains scaling inversely with calcium concentration. Through surface activation/cross-linking using calcium, CAAlg films could be further processed using wet bonding to yield laminated structures with interfacial failure loads (13.2 ± 0.81 N) similar to the ultimate loads of unlaminated films (10.09 ± 1.47 N). Toward the engineering of wood-marine biopolymer composites, an array of lines of CAAlg were printed on wood veneers (panels), dried, and then bonded following activation with calcium to yield fully bonded wood two-ply laminate. The system presented herein provides a blueprint for the adoption of marine algae-derived polysaccharides in the development of sustainable high-performance materials.


Asunto(s)
Ácido Algínico , Calcio , Biopolímeros/química , Cationes Bivalentes , Plásticos , Polímeros/química , Polisacáridos/química , Sefarosa , Agua/química
2.
Macromol Rapid Commun ; 45(5): e2300508, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38049086

RESUMEN

Interface tissue repair requires the construction of biomaterials with integrated structures of multiple protein types. Hydrogels that modulate internal porous structures provide a 3D microenvironment for encapsulated cells, making them promise for interface tissue repair. Currently, reduction of intrinsic immunogenicity and increase of bioactive extracellular matrix (ECM) secretion are issues to be considered in these materials. In this study, gelatin methacrylate (GelMA) hydrogel is used to encapsulate chondrocytes and construct a phase transition 3D cell culture system (PTCC) by utilizing the thermosensitivity of gelatin microspheres to create micropores within the hydrogel. The types of bioactive extracellular matrix protein formation by chondrocytes encapsulated in hydrogels are investigated in vitro. After 28 days of culture, GelMA PTCC forms an extracellular matrix predominantly composed of collagen type II, collagen type I, and fibronectin. After decellularization, the protein types and mechanical properties are well preserved, fabricating a decellularized tissue-engineered extracellular matrix and GelMA hydrogel interpenetrating network hydrogel (dECM-GelMA IPN) consisting of GelMA hydrogel as the first-level network and the ECM secreted by chondrocytes as the second-level network. This material has the potential to mediate the repair and regeneration of tendon-bone interface tissues with multiple protein types.


Asunto(s)
Gelatina , Hidrogeles , Hidrogeles/química , Gelatina/química , Materiales Biocompatibles/química , Ingeniería de Tejidos , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Metacrilatos , Técnicas de Cultivo Tridimensional de Células , Andamios del Tejido/química
3.
Molecules ; 28(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37764467

RESUMEN

To enhance the mechanical strength and cell adhesion of alginate hydrogel, making it satisfy the requirements of an ideal tissue engineering scaffold, the grafting of Arg-Gly-Asp (RGD) polypeptide sequence onto the alginate molecular chain was conducted by oxidation of sodium periodate and subsequent reduction amination of 2-methylpyridine borane complex (2-PBC) to synthesize alginate dialdehyde grafted RGD derivatives (ADA-RGD) with good cellular affinity. The interpenetrating network (IPN) composite hydrogels of alginate/polyvinyl alcohol/cellulose nanocrystals (ALG/PVA/CNCs) were fabricated through a physical mixture of ion cross-linking of sodium alginate (SA) with hydroxyapatite/D-glucono-δ-lactone (HAP/GDL), and physical cross-linking of polyvinyl alcohol (PVA) by a freezing/thawing method, using cellulose nanocrystals (CNCs) as the reinforcement agent. The effects of the addition of CNCs and different contents of PVA on the morphology, thermal stability, mechanical properties, swelling, biodegradability, and cell compatibility of the IPN composite hydrogels were investigated, and the effect of RGD grafting on the biological properties of the IPN composite hydrogels was also studied. The resultant IPN ALG/PVA/CNCs composite hydrogels exhibited good pore structure and regular 3D morphology, whose pore size and porosity could be regulated by adjusting PVA content and the addition of CNCs. By increasing the PVA content, the number of physical cross-linking points in PVA increased, resulting in greater stress support for the IPN composite hydrogels of ALG/PVA/CNCs and consequently improving their mechanical characteristics. The creation of the IPN ALG/PVA/CNCs composite hydrogels' physical cross-linking network through intramolecular or intermolecular hydrogen bonding led to improved thermal resistance and reduced swelling and biodegradation rate. Conversely, the ADA-RGD/PVA/CNCs IPN composite hydrogels exhibited a quicker degradation rate, attributed to the elimination of ADA-RGD by alkali. The results of the in vitro cytocompatibility showed that ALG/0.5PVA/0.3%CNCs and ADA-RGD/PVA/0.3%CNCs composite hydrogels showed better proliferative activity in comparison with other composite hydrogels, while ALG/PVA/0.3%CNCs and ADA-RGD/PVA/0.3%CNCs composite hydrogels displayed obvious proliferation effects, indicating that PVA, CNCs, and ADA-RGD with good biocompatibility were conducive to cell proliferation and differentiation for the IPN composite hydrogels.


Asunto(s)
Nanopartículas , Alcohol Polivinílico , Alcohol Polivinílico/química , Hidrogeles/química , Alginatos/química , Oligopéptidos , Celulosa/química
4.
Molecules ; 28(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37513341

RESUMEN

In this work, a thiol-ene coupling reaction was employed to prepare the semi-interpenetrating polymer network AEMs. The obtained QP-1/2 membrane exhibits high hydroxide conductivity (162.5 mS cm-1 at 80 °C) with a relatively lower swelling ratio, demonstrating its mechanical strength of 42 MPa. This membrane is noteworthy for its improved alkaline stability, as the semi-interpenetrating network effectively limits the attack of hydroxide. Even after being treated in 2 M NaOH at 80 °C for 600 h, 82.5% of the hydroxide conductivity is maintained. The H2/O2 fuel cell with QP-1/2 membrane displays a peak power density of 521 mW cm-2. Alkaline water electrolyzers based on QP-1/2 membrane demonstrated a current density of 1460 mA cm-2 at a cell voltage of 2.00 V using NiCoFe catalysts in the anode. All the results demonstrate that a semi-interpenetrating structure is a promising way to enhance the mechanical property, ionic conductivity, and alkaline stability of AEMs for the application of alkaline fuel cells and water electrolyzers.

5.
Saudi Pharm J ; 31(8): 101671, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37484541

RESUMEN

Background & Objectives: This study aimed to create a controlled delivery system for Tapentadol Hydrochloride by developing interpenetrating networks (IPNs) of Natrosol-Pectin copolymerized with Acrylic Acid and Methylene bisacrylamide, and to analyze the effects of various ingredients on the physical and chemical characteristics of the IPNs. Methods: Novel Tapentadol Hydrochloride-loaded Natrosol-Pectin based IPNs were formulated by using the free radical polymerization technique. Co-polymerization of Acrylic Acid (AA) with Natrosol and Pectin was performed by using Methylene bisacrylamide (MBA). Ammonium persulfate (APS) was used as the initiator of crosslinking process. The impact of ingredients i.e. Natrosol, Pectin, MBA, and Acrylic Acid on the gel fraction, porosity, swelling (%), drug loading, and drug release was investigated. FTIR, DSC, TGA, SEM and EDX studies were conducted to confirm the grafting of polymers and to evaluate the thermal stability and surface morphology of the developed IPNs. Results: Swelling studies exhibited an increase in swelling percentage from 84.27 to 91.17% upon increasing polymer (Natrosol and Pectin) contents. An increase in MBA contents resulted in a decrease in swelling from 85 to 67.63%. Moreover, the swelling was also observed to increase with higher AA contents. Significant drug release was noted at higher pH instead of gastric pH value. Oral toxicological studies revealed the nontoxic and biocompatible nature of Natrosol-Pectin IPNs. Interpretation & Conclusion: The developed IPNs were found to be an excellent system for the controlled delivery of Tapentadol Hydrochloride.

6.
Mater Sci Eng R Rep ; 1462021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34483486

RESUMEN

Hydrogels have been widely investigated in biomedical fields due to their similar physical and biochemical properties to the extracellular matrix (ECM). Collagen and hyaluronic acid (HA) are the main components of the ECM in many tissues. As a result, hydrogels prepared from collagen and HA hold inherent advantages in mimicking the structure and function of the native ECM. Numerous studies have focused on the development of collagen and HA hydrogels and their biomedical applications. In this extensive review, we provide a summary and analysis of the sources, features, and modifications of collagen and HA. Specifically, we highlight the fabrication, properties, and potential biomedical applications as well as promising commercialization of hydrogels based on these two natural polymers.

7.
Chemistry ; 27(28): 7773-7780, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33780578

RESUMEN

Solid polymer electrolytes with relatively low ionic conductivity at room temperature and poor mechanical strength greatly restrict their practical applications. Herein, we design semi-interpenetrating network polymer (SNP) electrolyte composed of an ultraviolet-crosslinked polymer network (ethoxylated trimethylolpropane triacrylate), linear polymer chains (polyvinylidene fluoride-co-hexafluoropropylene) and lithium salt solution to satisfy the demand of high ionic conductivity, good mechanical flexibility, and electrochemical stability for lithium metal batteries. The semi-interpenetrating network has a pivotal effect in improving chain relaxation, facilitating the local segmental motion of polymer chains and reducing the polymer crystallinity. Thanks to these advantages, the SNP electrolyte shows a high ionic conductivity (1.12 mS cm-1 at 30 °C), wide electrochemical stability window (4.6 V vs. Li+ /Li), good bendability and shape versatility. The promoted ion transport combined with suppressed impedance growth during cycling contribute to good cell performance. The assembled quasi-solid-state lithium metal batteries (LiFePO4 /SNP/Li) exhibit good cycling stability and rate capability at room temperature.

8.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919275

RESUMEN

Three polymers with excellent absorption properties were synthesized by graft polymerization: soluble starch-g-poly(acrylic acid-co-2-hydroxyethyl methacrylate), poly(vinyl alcohol)/potato starch-g-poly(acrylic acid-co-acrylamide), poly(vinyl alcohol)/potato starch-g-poly(acrylic acid-co-acrylamide-co-2-acrylamido-2-methylpropane sulfonic acid). Ammonium persulfate and potassium persulfate were used as initiators, while N,N'-methylenebisacrylamide was used as the crosslinking agent. The molecular structure of potato and soluble starch grafted by synthetic polymers was characterized by means of Fourier Transform Infrared Spectroscopy (FTIR). The morphology of the resulting materials was studied using a scanning electron microscope (SEM). Thermal stability was tested by thermogravimetric measurements. The absorption properties of the obtained biopolymers were tested in deionized water, sodium chroma solutions of various concentrations and in buffer solutions of various pH.


Asunto(s)
Hidrogeles/síntesis química , Polímeros/síntesis química , Acrilamida/química , Acrilatos/química , Hidrogeles/química , Metacrilatos/química , Microscopía Electrónica de Rastreo , Polímeros/química , Alcohol Polivinílico/química , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/química , Ácidos Sulfónicos/química , Termogravimetría
9.
Pharm Res ; 37(11): 220, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33051728

RESUMEN

PURPOSE: Gold porphyrin (AuP) is a complex that has been shown to be potent against various tumors. A biocompatible interpenetrating network (IPN) system comprised of polyethyleneglycol diacrylate (PEGdA) and chemically-modified gelatin has been shown to be an effective implantable drug depot to deliver AuP locally. Here we designed IPN microparticles complexed with AuP to facilitate intravenous administration and to diminish systemic toxicity. METHODS: We have synthesized and optimized an IPN microparticle formulation complexed with AuP. Tumor cell cytotoxicity, antitumor activity, and survival rate in lung cancer bearing nude mice were analyzed. RESULTS: IPN microparticles maintained AuP bioactivity against lung cancer cells (NCI-H460). In vivo study showed no observable systemic toxicity in nude mice bearing NCI-H460 xenografts after intravenous injection of 6 mg/kg AuP formulated with IPN microparticles. An anti-tumor activity level comparable to free AuP was maintained. Mice treated with 6 mg/kg AuP in IPN microparticles showed 100% survival rate while the survival rate of mice treated with free AuP was much less. Furthermore, microparticle-formulated AuP significantly reduced the intratumoral microvasculature when compared with the control. CONCLUSION: AuP in IPN microparticles can reduce the systemic toxicity of AuP without compromising its antitumor activity. This work highlighted the potential application of AuP in IPN microparticles for anticancer chemotherapy.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Oro/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Metaloporfirinas/farmacología , Administración Intravenosa , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/química , Animales , Línea Celular Tumoral , Composición de Medicamentos , Oro/administración & dosificación , Oro/química , Humanos , Neoplasias Pulmonares/patología , Metaloporfirinas/administración & dosificación , Metaloporfirinas/química , Ratones Endogámicos BALB C , Ratones Desnudos , Tamaño de la Partícula , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Small ; 15(27): e1901406, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31025545

RESUMEN

Electrically conductive materials that mimic physical and biological properties of tissues are urgently required for seamless brain-machine interfaces. Here, a multinetwork hydrogel combining electrical conductivity of 26 S m-1 , stretchability of 800%, and tissue-like elastic modulus of 15 kPa with mimicry of the extracellular matrix is reported. Engineering this unique set of properties is enabled by a novel in-scaffold polymerization approach. Colloidal hydrogels of the nanoclay Laponite are employed as supports for the assembly of secondary polymer networks. Laponite dramatically increases the conductivity of in-scaffold polymerized poly(ethylene-3,4-diethoxy thiophene) in the absence of other dopants, while preserving excellent stretchability. The scaffold is coated with a layer containing adhesive peptide and polysaccharide dextran sulfate supporting the attachment, proliferation, and neuronal differentiation of human induced pluripotent stem cells directly on the surface of conductive hydrogels. Due to its compatibility with simple extrusion printing, this material promises to enable tissue-mimetic neurostimulating electrodes.


Asunto(s)
Arcilla/química , Conductividad Eléctrica , Hidrogeles/química , Células Madre Pluripotentes Inducidas/citología , Nanopartículas/química , Resinas Acrílicas/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Adhesión Celular , Humanos , Polimerizacion , Polímeros/química , Silicatos/química
11.
Pharm Res ; 36(4): 61, 2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850894

RESUMEN

PURPOSE: Interpenetrating network system (IPN), consisting of polyethylene glycol (PEG) -diacrylate (PEGdA) and modified gelatin, is a biocompatible and biodegradable hydrogel and has been studied for the local delivery of bioactive molecules and drugs. Gold(III) porphyrin(AuP) is a stable metal compound in the development for anticancer application when administered systemically. The aim of this work is to develop a novel formulation for AuP based on IPN for local delivery. METHODS: IPN loaded with AuP hydrogel was optimized and synthesized. Drug release kinetics, cytotoxicity against tumor cells, and antitumor activity in lung cancer bearing nude mice were studied. RESULTS: AuP released from the IPN followed a first order kinetics in vitro. The AuP loaded IPN showed higher cytotoxicity against human lung cancer cell lines compared to IPN only. In mice bearing human lung cancer xenograft, AuP loaded IPN inhibited tumor growth and reduced angiogenesis. No sign of systemic toxicity was observed for all treatment groups. CONCLUSION: AuP loaded IPN provides an improved formulation over systemic delivery for tumor inhibition to complement surgical intervention. Graphical Abstract Injectable multifunctional matrix of polyethylene glycol and gelatin derivatives for the delivery of gold porphyrinto inhibit tumor growth.


Asunto(s)
Compuestos de Oro/farmacología , Xenoinjertos/efectos de los fármacos , Hidrogeles/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Materiales Biocompatibles/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Gelatina/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Cinética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neovascularización Patológica/tratamiento farmacológico , Polietilenglicoles/química , Trasplante Heterólogo/métodos
12.
Heliyon ; 10(13): e33574, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040369

RESUMEN

Enamel is composed of numerous uniformly wide, well-oriented hydroxyapatite crystals. It possesses an acellular structure that cannot be repaired after undergoing damage. Therefore, remineralization after enamel defects has become a focal point of research. Hydrogels, which are materials with three-dimensional structures derived from cross-linking polymers, have garnered significant attention in recent studies. Their exceptional properties make them valuable in the application of enamel remineralization. In this review, we summarize the structure and formation of enamel, present the design considerations of hydrogels for enamel remineralization, explore diverse hydrogels types in this context, and finally, shed light on the potential future applications in this field.

13.
Polymers (Basel) ; 16(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39065367

RESUMEN

Significant developments have been achieved with the invention of hydrogels. They are effective in many fields such as wastewater treatment, food, agriculture, pharmaceutical applications, and drug delivery. Although hydrogels have been used successfully in these areas, there is a need to make them better for future applications. Interpenetrating polymer networks (IPNs) can be created to make hydrogels more adjustable and suitable for a specific purpose. IPN formation is an innovative approach for polymeric systems. It brings two or more polymer networks together with entanglements. The properties of IPNs are controlled by its chemistry, crosslinking density, and morphology. Therefore, it is necessary to understand characterization methods in order to detect the formation of IPN structure and to develop the properties of hydrogels. In recent studies, IPN structure in hydrogels has been determined via chemical, physical, and mechanical methods such as Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X-ray diffraction (XRD), and rheology methods. In this paper, these characterization methods will be explained, recent studies will be scrutinized, and the effectiveness of these methods to confirm IPN formation will be evaluated.

14.
Int J Biol Macromol ; 276(Pt 1): 133760, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39013510

RESUMEN

The concentration of urea in sweat serves as a valuable indicator of an individual's overall health. In this study, we present a novel hydrogel sensor (BAF-CPu), based on cellulose nanofiber and polyvinyl alcohol, designed to achieve non-invasive in situ and highly sensitive detection of urea in sweat by combining the dual-mode response of colorimetric and ratiometric fluorescence techniques. The bright red fluorescent gold­copper bimetallic nanoclusters and green fluorescent fluorescein isothiocyanate-modified cellulose nanofibers endowed BAF-CPu with proportional fluorescence responsive properties. Under the catalytic action of urease, the hydrolysis of urea raises the pH, resulting in diminished red fluorescence along with enhanced green fluorescence, and the fluorescence color of BAF-CPu changes from red to green. Moreover, BAF-CPu hydrogel encapsulates pH-responsive bromothymol blue (BTB), which changes from yellow to blue in the presence of urea. Importantly, BAF-CPu absorbs sweat by adhering directly to the skin surface, avoiding the complicated sampling process and improving the maneuverability of the detection process. With both ratiometric fluorescence and colorimetric modes, BAF-CPu is not only able to detect sweat in situ, but also can reduce the interference of the complex sweat environment on the urea detection, and realize the high sensitivity detection of urea in sweat.

15.
Int J Biol Macromol ; 277(Pt 3): 134340, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094889

RESUMEN

Hydrogels based on biopolymers have attracted considerable interest in the last decades. Herein, an interpenetrating network hydrogel (IPN-Gel) adsorbent from starch-chitosan was fabricated facilely in one-pot through tandem Schiff base reaction and photopolymerization. First, aldehyde starch (DAS) was synthesized by the reaction of soluble starch with sodium periodate. Afterward, acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), polyethylene glycol dimethacrylate (PEGDMA), photoinitiator, chitosan and DAS were dissolved in water to obtain a clear solution. Schiff base reaction between chitosan and DAS took place quickly to form the first network, and then photopolymerization of AM, AMPS, and PEGDMA occurred under ultraviolet radiation to form the second network. The preparation conditions of the as-prepared IPN-Gel were optimized with two indexes of gel mass fraction and swelling ratio. Its swelling behavior with pH and temperature change was explored. Finally, its adsorption performance was characterized with methylene blue (MB) as a model contaminant. The maximum adsorption capacity of IPN-Gel can reach 2039 mg·g-1 at pH =10. Its adsorption performance accords with Langmuir isothermal model and pseudo-second-order kinetic model and it was mainly controlled by chemisorption. This strategy is expected to found broad application prospects in the preparation of hydrogel adsorbents.

16.
Int J Biol Macromol ; 268(Pt 2): 131735, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653424

RESUMEN

The CMC-PNIPAM hydrogel with semi-interpenetrating structure and temperature-sensitivity was prepared by in-situ polymerization of N-isopropylacrylamide (NIPAM) in sodium carboxymethylcellulose (CMC) solution at room temperature. The mass ratio of CMC to NIPAM was a key factor influencing the network structure and property of CMC-PNIPAM hydrogel. The low critical phase transition temperature (LCST) of CMC-PNIPAM hydrogels increased from 34.4 °C to 35.8 °C with the mass ratio of CMC to NIPAM rising from 0 to 1.2. The maximum compressive stress of CMC-PNIPAM hydrogel reached to 26.7 kPa and the relaxation elasticity was 52 % at strain of 60 %. The viscoelasticity of CMC-PNIPAM hydrogel was consistent with the generalized Maxwell model. The maximum swelling ratio in deionized water was 170.25 g·g-1 (dried hydrogel) with swelling rate of 2.57 g·g-1·min-1 at 25 °C. CMC-PNIPAM hydrogel hardly absorbed water above LCST, but the swollen hydrogel could release water at the rate of 0.36 g·g-1·min-1 once exceeding LCST. The test of water retention showed that soil mixed with 2 wt% dried CMC-PNIPAM hydrogel could retain 13.08 wt% water after 30 days at 25 °C that was 4.4 times than that of controlled soil without CMC-PNIPAM hydrogel. The semi-interpenetrating CMC-PNIPAM hydrogel showed a potential to conserve water responding to temperature.


Asunto(s)
Resinas Acrílicas , Carboximetilcelulosa de Sodio , Hidrogeles , Temperatura , Agua , Resinas Acrílicas/química , Agua/química , Hidrogeles/química , Carboximetilcelulosa de Sodio/química , Transición de Fase , Viscosidad , Acrilamidas/química
17.
Int J Biol Macromol ; 267(Pt 2): 131519, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608985

RESUMEN

Hydrogel has attracted tremendous attentions due to its excellent biocompatibility and adaptability in biomedical field. However, it is challenging by the conflicts between inadequate mechanical properties and service requirements. Herein, a rapid and robust hydrogel was developed by interpenetrating networks between chitosan and silk fibroin macromolecules. Thanks to these unique networks, the chitosan-based hydrogel exhibited superior mechanical performances. The maximum breaking strength, Young's modulus and swelling ratio of the hydrogel were 1187.8 kPa, 383.1 MPa and 4.5 % respectively. The hydrogel also supported the proliferation of human umbilical vein endothelial cells for 7 days. Notably, the hydrogel was easily molded into bone screw, and demonstrated compressive strengths of 45.7 MPa, Young's modulus of 675.6 MPa, respectively. After 49-day biodegradation, the residual rate of the screw in collagenase I solution was up to 89.6 % of the initial weight. In vitro, the screws not only had high resistance to biodegradation, but also had outstanding biocompatibility of osteoblast. This study provided a promising physical-chemical double crosslinking strategy to build orthopedic materials, holding a great potential in biomedical devices.


Asunto(s)
Materiales Biocompatibles , Tornillos Óseos , Quitosano , Fibroínas , Células Endoteliales de la Vena Umbilical Humana , Ensayo de Materiales , Quitosano/química , Quitosano/farmacología , Fibroínas/química , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Hidrogeles/química , Proliferación Celular/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Fuerza Compresiva , Módulo de Elasticidad
18.
Sci Rep ; 14(1): 7172, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531891

RESUMEN

To address the concern that biodegradable elastomers are environmental-friendly but usually associated with poor properties for practical utilization, we report a star-crosslinked poly(ethylene glycol-glycerol-itaconate-sebacate) (PEGIS) elastomer synthesized by esterification, polycondensation and UV curing, and reinforced by bacterial cellulose (BC). The interpenetrating network of primary BC backbone and vulcanized elastomer is achieved by the "in-situ secondary network construction" strategy. With the well dispersion of BC without agglomeration, the mechanical properties of PEGIS are significantly enhanced in tensile strength, Young's modulus and elongation at break. The reinforcement strategy is demonstrated to be efficient and offers a route to the development of biodegradable elastomers for a variety of applications in the future.


Asunto(s)
Celulosa , Decanoatos , Elastómeros , Glicerol/análogos & derivados , Polímeros , Succinatos , Glicol de Etileno , Ensayo de Materiales
19.
BMC Chem ; 18(1): 134, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39049105

RESUMEN

Typically, hydrogels are described as three-dimensional networks of hydrophilic polymers that are able to capture a certain mass of water within their structure. Recently, hydrogels have been widely used as drawing agents in forward osmosis (FO) desalination processes. The major aim of this study is to prepare a novel semi-interpenetrating hydrogel by crosslinking sodium alginate (SA) and polyvinyl alcohol (PVA) by using the epichlorohydrin (ECH) crosslinker and polyethylene glycol (PEG) interpenetrated within the hydrogel's network as a linear polymer. Based on the optimum composition of SA/PVA composite hydrogel obtained from our earlier research, the effect of various percentages of PEG on the response of the hydrogel was investigated. The optimal composition of SA/PVA/PEG hydrogel was characterized by scanning electron microscopy (SEM), compression strength testing, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The morphological and mechanical properties of the SA/PVA/PEG semi-interpenetrating hydrogel were also compared to those of the SA/PVA composite hydrogel. Moreover, the performance of the optimal SA/PVA/PEG hydrogel in a FO batch unit as a drawing agent was investigated based on the optimal operation conditions from our previous experiments. The results showed that the optimal PEG/polymer blend mass ratio was 0.25, which increased the swelling ratio (SR) (%) of the hydrogel from 645.42 (of the neat SA/PVA hydrogel) to 2683. The SA/PVA/PEG semi-interpenetrating hydrogel was superior to the SA/PVA copolymer hydrogel in pore structure and mechanical properties. Additionally, in terms of FO desalination, the achieved water flux by SA/PVA/PEG hydrogel is higher than that accomplished by SA/PVA hydrogel.

20.
Adv Mater ; 36(26): e2313270, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38538535

RESUMEN

Printing of biologically functional constructs is significant for applications in tissue engineering and regenerative medicine. Designing bioinks remains remarkably challenging due to the multifaceted requirements in terms of the physical, chemical, and biochemical properties of the three-dimensional matrix, such as cytocompatibility, printability, and shape fidelity. In order to promote matrix and materials stiffness, while not sacrificing stress relaxation mechanisms which support cell spreading, migration, and differentiation, this work reports an interpenetrating network (IPN) bioink design. The approach makes use of a chemically defined network, combining physical and chemical crosslinking units with a tunable composition and network density, as well as spatiotemporal control over post-assembly material stiffening. To this end, star-shaped poly(ethylene glycol)s functionalized with Phe-Gly-Gly tripeptide or photoactive stilbazolium are synthesized, and used to prepare three-dimensional networks with cucurbit[8]uril (CB[8]) through supramolecular host-guest complexation. The hydrogel obtained shows fast relaxation and thus supports the proliferation and differentiation of cells. Upon irradiation, the mechanical properties of the hydrogel can be rapidly adapted via selective photochemical dimerization of stilbazolium within CB[8], leading to IPNs with increased form stability while retaining the dynamic nature of the hydrogels. This modular approach opens new design opportunities for extrudable and cell-friendly dynamic biomaterials for applications in 3D-bioprinting.


Asunto(s)
Bioimpresión , Hidrocarburos Aromáticos con Puentes , Hidrogeles , Imidazoles , Polietilenglicoles , Impresión Tridimensional , Hidrogeles/química , Imidazoles/química , Hidrocarburos Aromáticos con Puentes/química , Bioimpresión/métodos , Polietilenglicoles/química , Materiales Biocompatibles/química , Animales , Humanos , Reactivos de Enlaces Cruzados/química , Ratones , Procesos Fotoquímicos , Compuestos Heterocíclicos con 2 Anillos , Compuestos Macrocíclicos , Imidazolidinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA