Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.667
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 40: 559-587, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35113732

RESUMEN

The immune system employs recognition tools to communicate with its microbial evolutionary partner. Among all the methods of microbial perception, T cells enable the widest spectrum of microbial recognition resolution, ranging from the crudest detection of whole groups of microbes to the finest detection of specific antigens. The application of this recognition capability to the crucial task of combatting infections has been the focus of classical immunology. We now appreciate that the coevolution of the immune system and the microbiota has led to development of a lush immunological decision tree downstream of microbial recognition, of which an inflammatory response is but one branch. In this review we discuss known T cell-microbe interactions in the gut and place them in the context of an algorithmic framework of recognition, context-dependent interpretation, and response circuits across multiple levels of microbial recognition resolution. The malleability of T cells in response to the microbiota presents an opportunity to edit immune response cellularity, identity, and functionality by utilizing microbiota-controlled pathways to promote human health.


Asunto(s)
Microbiota , Linfocitos T , Animales , Humanos
2.
Cell ; 185(22): 4170-4189.e20, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36240781

RESUMEN

Nociceptive pain is a hallmark of many chronic inflammatory conditions including inflammatory bowel diseases (IBDs); however, whether pain-sensing neurons influence intestinal inflammation remains poorly defined. Employing chemogenetic silencing, adenoviral-mediated colon-specific silencing, and pharmacological ablation of TRPV1+ nociceptors, we observed more severe inflammation and defective tissue-protective reparative processes in a murine model of intestinal damage and inflammation. Disrupted nociception led to significant alterations in the intestinal microbiota and a transmissible dysbiosis, while mono-colonization of germ-free mice with Gram+Clostridium spp. promoted intestinal tissue protection through a nociceptor-dependent pathway. Mechanistically, disruption of nociception resulted in decreased levels of substance P, and therapeutic delivery of substance P promoted tissue-protective effects exerted by TRPV1+ nociceptors in a microbiota-dependent manner. Finally, dysregulated nociceptor gene expression was observed in intestinal biopsies from IBD patients. Collectively, these findings indicate an evolutionarily conserved functional link between nociception, the intestinal microbiota, and the restoration of intestinal homeostasis.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Nociceptores/fisiología , Sustancia P , Disbiosis , Inflamación
3.
Immunity ; 54(8): 1683-1697.e3, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34107298

RESUMEN

Microbe-derived acetate activates the Drosophila immunodeficiency (IMD) pathway in a subset of enteroendocrine cells (EECs) of the anterior midgut. In these cells, the IMD pathway co-regulates expression of antimicrobial and enteroendocrine peptides including tachykinin, a repressor of intestinal lipid synthesis. To determine whether acetate acts on a cell surface pattern recognition receptor or an intracellular target, we asked whether acetate import was essential for IMD signaling. Mutagenesis and RNA interference revealed that the putative monocarboxylic acid transporter Tarag was essential for enhancement of IMD signaling by dietary acetate. Interference with histone deacetylation in EECs augmented transcription of genes regulated by the steroid hormone ecdysone including IMD targets. Reduced expression of the histone acetyltransferase Tip60 decreased IMD signaling and blocked rescue by dietary acetate and other sources of intracellular acetyl-CoA. Thus, microbe-derived acetate induces chromatin remodeling within enteroendocrine cells, co-regulating host metabolism and intestinal innate immunity via a Tip60-steroid hormone axis that is conserved in mammals.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/inmunología , Células Enteroendocrinas/metabolismo , Microbioma Gastrointestinal/inmunología , Histona Acetiltransferasas/metabolismo , Intestinos/inmunología , Acetatos/inmunología , Acetilcoenzima A/metabolismo , Animales , Ensamble y Desensamble de Cromatina/fisiología , Drosophila melanogaster/microbiología , Ecdisona/metabolismo , Inmunidad Innata/inmunología , Intestinos/microbiología , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Interferencia de ARN , Transducción de Señal/inmunología , Taquicininas/metabolismo
4.
Immunity ; 46(6): 910-926, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28636959

RESUMEN

Interactions between the nervous and immune systems enable the gut to respond to the variety of dietary products that it absorbs, the broad spectrum of pathogens that it encounters, and the diverse microbiome that it harbors. The enteric nervous system (ENS) senses and reacts to the dynamic ecosystem of the gastrointestinal (GI) tract by translating chemical cues from the environment into neuronal impulses that propagate throughout the gut and into other organs in the body, including the central nervous system (CNS). This review will describe the current understanding of the anatomy and physiology of the GI tract by focusing on the ENS and the mucosal immune system. We highlight emerging literature that the ENS is essential for important aspects of microbe-induced immune responses in the gut. Although most basic and applied research in neuroscience has focused on the brain, the proximity of the ENS to the immune system and its interface with the external environment suggest that novel paradigms for nervous system function await discovery.


Asunto(s)
Sistema Nervioso Central/inmunología , Sistema Nervioso Entérico , Microbioma Gastrointestinal , Tracto Gastrointestinal/fisiología , Sistema Inmunológico/inmunología , Inmunidad Mucosa , Intestinos/inmunología , Animales , Exposición a Riesgos Ambientales , Tracto Gastrointestinal/anatomía & histología , Interacciones Huésped-Patógeno , Humanos , Neuroinmunomodulación
5.
Infect Immun ; 92(7): e0013024, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38842306

RESUMEN

Coccidia of the genus Eimeria are specialized intracellular parasitic protozoa that cause severe coccidiosis when they infect their hosts. Animals infected with Eimeria develop clinical symptoms, such as anorexia, diarrhea, and hematochezia, which can even cause death. Although the current preferred regimen for the treatment of coccidiosis is antibiotics, this treatment strategy is limited by the ban on antibiotics and the growing problem of drug resistance. Therefore, the exploration of alternative methods for controlling coccidiosis has attracted much attention. Lactobacillus plantarum has been shown to have many beneficial effects. In this study, L. plantarum M2 was used as a research object to investigate the effect of L. plantarum on intestinal inflammation induced by infection with Eimeria falciformis in mice by detecting indicators, such as oocyst output, serum cytokines, and the intestinal microbiota. Compared with that in the infection group, the percent weight loss of the mice that were administered with L. plantarum M2 was significantly reduced (P < 0.05). Supplemented L. plantarum M2 and probiotics combined with diclazuril can reduce the total oocyst output significantly (P < 0.05, P < 0.001). L. plantarum M2 had outstanding performance in maintaining intestinal barrier function, and the levels of the mucin MUC1 and the tight junction protein E-cadherin were significantly elevated (P < 0.01, P < 0.05). Studies have shown that probiotic supplementation can alleviate adverse reactions after infection and significantly improve intestinal barrier function. In addition, probiotics combined with diclazuril could optimize the partial efficacy of diclazuril, which not only enhanced the effect of antibiotics but also alleviated their adverse effects. This study expands the application of probiotics, provides new ideas for alternative strategies for coccidia control, and suggests a basis for related research on lactobacilli antagonizing intracellular pathogen infection.IMPORTANCECoccidia of the genus Eimeria are specialized intracellular parasitic protozoa, and the current preferred regimen for the treatment of coccidiosis is antibiotics. However, due to antibiotic bans and drug resistance, the exploration of alternative methods for controlling coccidiosis has attracted much attention. In this work, we focused on Lactobacillus plantarum M2 and found that probiotic supplementation can alleviate adverse reactions after infection and improve intestinal barrier function. This study proposes the possibility of using lactic acid bacteria to control coccidiosis, and its potential mechanism needs further exploration.


Asunto(s)
Coccidiosis , Eimeria , Lactobacillus plantarum , Probióticos , Animales , Coccidiosis/parasitología , Eimeria/efectos de los fármacos , Probióticos/uso terapéutico , Probióticos/administración & dosificación , Ratones , Citocinas/sangre , Citocinas/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Oocistos , Modelos Animales de Enfermedad , Nitrilos , Triazinas
6.
Immunology ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39344356

RESUMEN

What infants eat early in life may shape the immune system and have long-standing consequences on the health of the host during later life. In the early months post-birth, breast milk serves as the exclusive and optimal nourishment for infants, facilitating crucial molecular exchanges between mother and infant. Recent advances have uncovered that some maternal factors influence breastfed infant outcomes, including the risk of food allergy (FA). To date, accumulated data show that breastfed infants have a lower risk of FA. However, the issue remains disputed, some reported preventive allergy effects, while others did not confirm such effects, or if identified, protective effects were limited to early childhood. The disputed outcomes may be attributed to the maternal status, as it determines the compounds of the breast milk that breastfed infants are exposed to. In this review, we first detail the compounds in breast milk and their roles in infant FA. Then, we present maternal factors resulting in alterations in breast milk compounds, such as maternal health status, maternal diet intake, and maternal food allergen intake, which subsequently impact FA in breastfed infants. Finally, we analyze how these compounds in breast milk alleviated the infant FA by mother-to-infant transmission. Altogether, the mechanisms are primarily linked to the synergetic and direct effects of compounds in breast milk, via promoting the colonization of gut microbiota and the development of the immune system in infants.

7.
Curr Issues Mol Biol ; 46(5): 4751-4767, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38785554

RESUMEN

In recent years, further evidence has emerged regarding the involvement of extracellular vesicles in various human physiopathological conditions such as Alzheimer's disease, Parkinson's disease, irritable bowel syndrome, and mental disorders. The biogenesis and cargo of such vesicles may reveal their impact on human health nd disease and set the underpinnings for the development of novel chemical compounds and pharmaceuticals. In this review, we examine the link between bacteria-derived exosomes in the gastrointestinal tract and mental disorders, such as depression and anxiety disorders. Crucially, we focus on whether changes in the gut environment affect the human mental state or the other way around. Furthermore, the possibility of handling bacteria-derived exosomes as vectors of chemicals to treat such conditions is examined.

8.
Curr Issues Mol Biol ; 46(7): 7339-7352, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39057076

RESUMEN

Low back pain is a health problem that represents the greatest cause of years lived with disability. This research seeks to evaluate the bacterial composition of the intestinal microbiota of two similar groups: one with chronic low back pain (PG) and the control group (CG). Clinical data from 73 participants and bacterial genome sequencing data from stool samples were analyzed. There were 40 individuals in PG and 33 in CG, aged between 20 and 50 years and with a body mass index of up to 30 kg/m2. Thus, the intragroup alpha diversity and intergroup beta diversity were analyzed. The significant results (p < 0.05) showed greater species richness in PG compared to CG. Additionally, a greater abundance of the species Clostridium difficile in PG was found along with 52 species with significantly different average relative abundances between groups (adjusted p < 0.05), with 36 more abundant species in PG and 16 in CG. We are the first to unveil significant differences in the composition of the intestinal bacterial microbiota of individuals with chronic low back pain who are non-elderly, non-obese and without any other serious chronic diseases. It could be a reference for a possible intestinal bacterial microbiota signature in chronic low back pain.

9.
Biochem Biophys Res Commun ; 694: 149410, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38134478

RESUMEN

Klebsiella aerogenes (K. aerogenes, KA) is a gram-negative opportunistic pathogen from the Klebsiella species and the Enterobacteriaceae family. However, the impact of K. aerogenes on colorectal cancer (CRC) remains uncertain. A colitis-associated tumorigenesis animal model was established by administering azoxymethane (AOM) and dextran sulfate sodium (DSS) to C57BL/6J mice. The concentration of K. aerogenes gavage in mice was 109 cfu. The study measured the following parameters: tumor formation (number and size), intestinal permeability (MUC2, ZO-1, and Occludin), colonic inflammation (TNF-α, IL-1ß, IL-6, and IL-10), proliferation and the fluctuation of the intestinal flora. Under the AOM/DSS-treated setting, K. aerogenes colonization worsened colitis by exacerbating intestinal inflammatory reaction and destroying the mucosal barrier. The intervention markedly augmented the quantity and dimensions of neoplasm in the AOM/DSS mice, stimulated cellular growth, and impeded cellular programmed cell death. In addition, K. aerogenes exacerbated the imbalance of the intestinal microbiota by elevating the abundance of Pseudomonas, Erysipelatoclostridium, Turicibacter, Rikenella, and Muribaculum and leading to a reduction in the abundance of Odoribacter, Alloprevotella, Roseburia, and Lachnospiraceae_NK4A136_group. The presence of K. aerogenes in AOM/DSS-treated mice promoted tumorigenesis, worsened intestinal inflammation, disrupted the intestinal barrier, and caused disturbance to the gut microbiota.


Asunto(s)
Colitis , Enterobacter aerogenes , Animales , Ratones , Azoximetano/toxicidad , Azoximetano/metabolismo , Ratones Endogámicos C57BL , Colitis/patología , Colon/patología , Inflamación/patología , Carcinogénesis/patología , Transformación Celular Neoplásica/patología , Bacteroidetes , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad
10.
Biochem Biophys Res Commun ; 733: 150580, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39213702

RESUMEN

Colorectal cancer (CRC) is the third most common cancer in the world. With the development of high-throughput gene sequencing technology, homeostasis imbalance of the intestinal microbiota has been proven to play a key role in the pathogenesis of CRC. Furthermore, fecal bacteria transplantation (FMT) has been shown to alter the intestinal microecology, and is potentially an effective treatment for CRC. Sodium selenite plays an important role in anticancer adjuvant therapy due to its high pro-oxidation characteristics. In this study, a murine CRC tumor model was induced by AOM/DSS, and CRC mice were treated by FMT, sodium selenite, and FMT combined with sodium selenite. The results showed that FMT, sodium selenite, and FMT combined with sodium selenite inhibited the occurrence of CRC in mice, increased the abundance of beneficial intestinal bacteria, produced different microorganisms, and changed the metabolic pathways of the intestinal microbiota. In summary, FMT, sodium selenite, and FMT combined with sodium selenite can inhibit the occurrence of CRC by increasing the abundance of beneficial bacteria and regulating phenotypes and metabolic pathways. Notably, the effect of FMT combined with sodium selenite in reducing the number of tumors, protecting intestinal tissues, and restoring the diversity and richness of the intestinal microbiota is superior to that of FMT alone or sodium selenite alone. The results of this study provide new ideas for the application of FMT and selenium in the treatment of CRC.

11.
J Transl Med ; 22(1): 308, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528541

RESUMEN

BACKGROUND: Ulcerative colitisis (UC) classified as a form of inflammatory bowel diseases (IBD) characterized by chronic, nonspecific, and recurrent symptoms with a poor prognosis. Common clinical manifestations of UC include diarrhea, fecal bleeding, and abdominal pain. Even though anti-inflammatory drugs can help alleviate symptoms of IBD, their long-term use is limited due to potential side effects. Therefore, alternative approaches for the treatment and prevention of inflammation in UC are crucial. METHODS: This study investigated the synergistic mechanism of Lactobacillus plantarum SC-5 (SC-5) and tyrosol (TY) combination (TS) in murine colitis, specifically exploring their regulatory activity on the dextran sulfate sodium (DSS)-induced inflammatory pathways (NF-κB and MAPK) and key molecular targets (tight junction protein). The effectiveness of 1 week of treatment with SC-5, TY, or TS was evaluated in a DSS-induced colitis mice model by assessing colitis morbidity and colonic mucosal injury (n = 9). To validate these findings, fecal microbiota transplantation (FMT) was performed by inoculating DSS-treated mice with the microbiota of TS-administered mice (n = 9). RESULTS: The results demonstrated that all three treatments effectively reduced colitis morbidity and protected against DSS-induced UC. The combination treatment, TS, exhibited inhibitory effects on the DSS-induced activation of mitogen-activated protein kinase (MAPK) and negatively regulated NF-κB. Furthermore, TS maintained the integrity of the tight junction (TJ) structure by regulating the expression of zona-occludin-1 (ZO-1), Occludin, and Claudin-3 (p < 0.05). Analysis of the intestinal microbiota revealed significant differences, including a decrease in Proteus and an increase in Lactobacillus, Bifidobacterium, and Akkermansia, which supported the protective effect of TS (p < 0.05). An increase in the number of Aspergillus bacteria can cause inflammation in the intestines and lead to the formation of ulcers. Bifidobacterium and Lactobacillus can regulate the micro-ecological balance of the intestinal tract, replenish normal physiological bacteria and inhibit harmful intestinal bacteria, which can alleviate the symptoms of UC. The relative abundance of Akkermansia has been shown to be negatively associated with IBD. The FMT group exhibited alleviated colitis, excellent anti-inflammatory effects, improved colonic barrier integrity, and enrichment of bacteria such as Akkermansia (p < 0.05). These results further supported the gut microbiota-dependent mechanism of TS in ameliorating colonic inflammation. CONCLUSION: In conclusion, the TS demonstrated a remission of colitis and amelioration of colonic inflammation in a gut microbiota-dependent manner. The findings suggest that TS could be a potential natural medicine for the protection of UC health. The above results suggest that TS can be used as a potential therapeutic agent for the clinical regulation of UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedades Inflamatorias del Intestino , Lactobacillus plantarum , Alcohol Feniletílico/análogos & derivados , Simbióticos , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Aceite de Oliva , FN-kappa B , Ocludina , Modelos Animales de Enfermedad , Colitis/inducido químicamente , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Colon , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Sulfato de Dextran/efectos adversos , Ratones Endogámicos C57BL
12.
Appl Environ Microbiol ; 90(8): e0051424, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39082812

RESUMEN

Despite their low quantity and abundance, the cellulolytic bacteria that inhabit the equine large intestine are vital to their host, as they enable the crucial use of forage-based diets. Fibrobacter succinogenes is one of the most important intestinal cellulolytic bacteria. In this study, Fibrobacter sp. HC4, one cellulolytic strain newly isolated from the horse cecum, was characterized for its ability to utilize plant cell wall fibers. Fibrobacter sp. HC4 consumed only cellulose, cellobiose, and glucose and produced succinate and acetate in equal amounts. Among genes coding for CAZymes, 26% of the detected glycoside hydrolases (GHs) were involved in cellulolysis. These cellulases belong to the GH5, GH8, GH9, GH44, GH45, and GH51 families. Both carboxymethyl cellulase and xylanase activities of Fibrobacter sp. HC4 were detected using the Congo red method and were higher than those of F. succinogenes S85, the type strain. The in vitro addition of Fibrobacter sp. HC4 to a fecal microbial ecosystem of horses with large intestinal acidosis significantly enhanced fibrolytic activity as measured by the increase in gas and volatile fatty acids production during the first 48 h. According to this, the pH decreased and the disappearance of dry matter increased at a faster rate with Fibrobacter sp. HC4. Our data suggest a high specialization of the new strain in cellulose degradation. Such a strain could be of interest for future exploitation of its probiotic potential, which needs to be further determined by in vivo studies.IMPORTANCECellulose is the most abundant of plant cell wall fiber and can only be degraded by the large intestine microbiota, resulting in the production of volatile fatty acids that are essential for the host nutrition and health. Consequently, cellulolytic bacteria are of major importance to herbivores. However, these bacteria are challenged by various factors, such as high starch diets, which acidify the ecosystem and reduce their numbers and activity. This can lead to an imbalance in the gut microbiota and digestive problems such as colic, a major cause of mortality in horses. In this work, we characterized a newly isolated cellulolytic strain, Fibrobacter sp. HC4, from the equine intestinal microbiota. Due to its high cellulolytic capacity, reintroduction of this strain into an equine fecal ecosystem stimulates hay fermentation in vitro. Isolating and describing cellulolytic bacteria is a prerequisite for using them as probiotics to restore intestinal balance.


Asunto(s)
Celulosa , Heces , Fibrobacter , Animales , Celulosa/metabolismo , Fibrobacter/genética , Fibrobacter/enzimología , Fibrobacter/aislamiento & purificación , Fibrobacter/metabolismo , Caballos , Heces/microbiología , Celulasa/metabolismo , Celulasa/genética , Ciego/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microbioma Gastrointestinal , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Celobiosa/metabolismo
13.
BMC Microbiol ; 24(1): 192, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831399

RESUMEN

BACKGROUND: HIV-infected persons demonstrate notable disturbances in their intestinal microbiota; however, the impact of intestinal microbiota on HIV susceptibility in men who have sex with men (MSM), as well as the effects of HIV and antiretroviral therapy (ART) on their gut microbiota, remains under active study. Thus, our research focuses on clarifying the distinctions in intestinal microbiota composition among uninfected MSM and non-MSM healthy controls, investigating the alterations in early-stage intestinal microbial communities following HIV infection, and assessing how ART affects the intestinal microbiota. METHODS: This study enrolled four participant groups: uninfected MSM, Recent HIV-1 infection (RHI) MSM, MSM on ART, and non-MSM healthy controls, with 30 individuals in each group. We utilized 16S ribosomal DNA (16S rDNA) amplicon sequencing to analyze fecal microbiota and employed Luminex multiplex assays to measure plasma markers for microbial translocation (LBP, sCD14) and the inflammatory marker CRP. FINDINGS: Comparing uninfected MSM to non-MSM healthy controls, no substantial variances were observed in α and ß diversity. Uninfected MSM had higher average relative abundances of Bacteroidetes, Prevotella, and Alloprevotella, while Bacteroides, Firmicutes, and Faecalibacterium had lower average relative abundances. MSM on ART had lower intestinal microbiota diversity than RHI MSM and uninfected MSM. In MSM on ART, Megasphaera and Fusobacterium increased, while Faecalibacterium and Roseburia decreased at genus level. Additionally, treatment with a non-nucleoside reverse transcriptase inhibitor (NNRTI) led to significant alterations in intestinal microbiota diversity and composition compared to RHI MSM. The random forest model showed that HIV infection biomarkers effectively distinguished between newly diagnosed HIV-infected MSM and HIV-negative MSM, with an ROC AUC of 76.24% (95% CI: 61.17-91.31%). CONCLUSIONS: MSM showed early intestinal microbiota imbalances after new HIV infection. MSM on ART experienced worsened dysbiosis, indicating a combined effect of HIV and ART. NNRTI-based treatment notably changed intestinal microbiota, suggesting a potential direct impact of NNRTI drugs on intestinal microbiota.


Asunto(s)
Microbioma Gastrointestinal , Infecciones por VIH , Homosexualidad Masculina , ARN Ribosómico 16S , Humanos , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Infecciones por VIH/microbiología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/complicaciones , Adulto , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/efectos de los fármacos , Heces/microbiología , Heces/virología , Persona de Mediana Edad , VIH-1/genética , Disbiosis/microbiología
14.
BMC Microbiol ; 24(1): 171, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760685

RESUMEN

OBJECTIVE: This study aimed to discuss the distinctive features of the intestinal microbiota in neonates with hyperbilirubinemia and to comprehensively analyse the composition of the intestinal microbiota as well as the levels of free amino acids and acylcarnitines in the peripheral blood of neonates experiencing hyperbilirubinemia. RESULTS: At the phylum level, Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and Chloroflexi were the five predominant microbial groups identified in both the hyperbilirubinemia and control groups. Alpha diversity analysis, encompassing seven indices, showed no statistically significant differences between the two groups. However, Beta diversity analysis revealed a significant difference in intestinal microbiota structure between the groups. Linear discriminant analysis effect size (LEfSe) indicated a significant reduction in the abundance of Gammaproteobacteria and Enterobacteriaceae within the hyperbilirubinemia group compared to that in the control group. The heatmap revealed that the control group exhibited increased abundances of Escherichia and Bifidobacterium, while the hyperbilirubinemia group exhibited increased levels of Enterococcus and Streptococcus. Regarding blood amino acids and acylcarnitines, there were greater concentrations of citrulline (Cit), arginine (Arg), ornithine (Orn), and valine (Val) in the hyperbilirubinemia group than in the control group. The hyperbilirubinemia group also exhibited significant increases in medium-chain fatty acids (C6, C8), long-chain fatty acids (C18), and free carnitine (C0). CONCLUSION: By comparing neonates with hyperbilirubinemia to those without, a significant disparity in the community structure of the intestinal microbiota was observed. The intestinal microbiota plays a crucial role in the bilirubin metabolism process. The intestinal microbiota of neonates with hyperbilirubinemia exhibited a certain degree of dysbiosis. The abundances of Bacteroides and Bifidobacterium were negatively correlated with the bilirubin concentration. Therefore, the fact that neonates with hyperbilirubinemia exhibit some variations in blood amino acid and acylcarnitine levels may provide, to a certain degree, a theoretical basis for clinical treatment and diagnosis.


Asunto(s)
Aminoácidos , Bacterias , Carnitina , Microbioma Gastrointestinal , Humanos , Carnitina/análogos & derivados , Carnitina/sangre , Aminoácidos/sangre , Recién Nacido , Masculino , Femenino , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , ARN Ribosómico 16S/genética
15.
BMC Microbiol ; 24(1): 7, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172646

RESUMEN

BACKGROUND: Hosts, parasites, and microbiota interact with each other, forming a complex ecosystem. Alterations to the microbial structure have been observed in various enteric parasitic infections (e.g. parasitic protists and helminths). Interestingly, some parasites are associated with healthy gut microbiota linked to the intestinal eubiosis state. So the changes in bacteria and metabolites induced by parasite infection may offer benefits to the host, including protection from other parasitesand promotion of intestinal health. The only ciliate known to inhabit the hindgut of grass carp, Balantidium ctenopharyngodoni, does not cause obvious damage to the intestinal mucosa. To date, its impact on intestinal microbiota composition remains unknown. In this study, we investigated the microbial composition in the hindgut of grass carp infected with B. ctenopharyngodoni, as well as the changes of metabolites in intestinal contents resulting from infection. RESULTS: Colonization by B. ctenopharyngodoni was associated with an increase in bacterial diversity, a higher relative abundance of Clostridium, and a lower abundance of Enterobacteriaceae. The family Aeromonadaceae and the genus Citrobacter had significantly lower relative abundance in infected fish. Additionally, grass carp infected with B. ctenopharyngodoni exhibited a significant increase in creatine content in the hindgut. This suggested that the presence of B. ctenopharyngodoni may improve intestinal health through changes in microbiota and metabolites. CONCLUSIONS: We found that grass carp infected with B. ctenopharyngodoni exhibit a healthy microbiota with an increased bacterial diversity. The results suggested that B. ctenopharyngodoni reshaped the composition of hindgut microbiota similarly to other protists with low pathogenicity. The shifts in the microbiota and metabolites during the colonization and proliferation of B. ctenopharyngodoni indicated that it may provide positive effects in the hindgut of grass carp.


Asunto(s)
Balantidium , Carpas , Microbioma Gastrointestinal , Animales , Bacterias/genética , Virulencia
16.
BMC Microbiol ; 24(1): 8, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172689

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a prevalent malignant malignancy affecting the gastrointestinal tract that is usually treated clinically with chemotherapeutic agents, whereas chemotherapeutic agents can cause severe gastrointestinal toxicity, which brings great pain to patients. Therefore, finding effective adjuvant agents for chemotherapy is crucial. METHODS: In this study, a CRC mouse model was successfully constructed using AOM/DSS, and the treatment was carried out by probiotic Bifidobacterium longum SX-1326 (B. longum SX-1326) in combination with irinotecan. Combining with various techniques of modern biomedical research, such as Hematoxylin and Eosin (H&E), Immunohistochemistry (IHC), Western blotting and 16S rDNA sequencing, we intend to elucidate the effect and mechanism of B. longum SX-1326 in improving the anticancer efficacy and reducing the side effects on the different levels of molecules, animals, and bacteria. RESULTS: Our results showed that B. longum SX-1326 enhanced the expression of Cleaved Caspase-3 (M vs. U = p < 0.01) and down-regulated the expression level of B-cell lymphoma-2 (Bcl-2) through up-regulation of the p53 signaling pathway in CRC mice, which resulted in an adjuvant effect on the treatment of CRC with irinotecan. Moreover, B. longum SX-1326 was also able to regulate the gut-brain-axis (GBA) by restoring damaged enterochromaffin cells, reducing the release of 5-hydroxytryptamine (5-HT) in brain tissue (I vs. U = 89.26 vs. 75.03, p < 0.05), and further alleviating the adverse effects of nausea and vomiting. In addition, B. longum SX-1326 reversed dysbiosis in CRC model mice by increasing the levels of Dehalobacterium, Ruminnococcus, and Mucispirillum. And further alleviated colorectal inflammation by downregulating the TLR4/MyD88/NF-κB signaling pathway. CONCLUSIONS: In conclusion, our work reveals that B. longum SX-1326 has a favorable effect in adjuvant irinotecan for CRC and amelioration of post-chemotherapy side effects, and also provides the theoretical basis and data for finding a safe and efficient chemotherapeutic adjuvant.


Asunto(s)
Bifidobacterium longum , Microbioma Gastrointestinal , Animales , Humanos , Ratones , Eje Cerebro-Intestino , Irinotecán/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/farmacología
17.
BMC Microbiol ; 24(1): 98, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528458

RESUMEN

OBJECTIVE: The association between heart failure (HF) and intestinal inflammation caused by a disturbed intestinal microbiota in infants with congenital heart disease (CHD) was investigated. METHODS: Twenty infants with HF and CHD who were admitted to our hospital between October 2021 and March 2022 were included in this study. Twenty age- and sex-matched infants without HF at our hospital were selected as the control group. Faecal samples were obtained from each participant and analysed by enzyme-linked immunoassay and 16 S rDNA sequencing to assess intestinal inflammatory factors and the microbiota. RESULTS: The levels of intestinal inflammatory factors, including IL-1ß, IL-4, IL-6, IL-17 A and TNF-α, were greatly increased, while the levels of IL-10 were significantly decreased in the HF group compared to the control group (p < 0.05). The intestinal microbial diversity of patients in the HF group was markedly lower than that in the control group (p < 0.05). The abundance of Enterococcus was significantly increased in the HF group compared to the control group (p < 0.05), but the abundance of Bifidobacterium was significantly decreased in the HF group compared to the control group (p < 0.05). The diversity of the intestinal microbiota was negatively correlated with the levels of IL-1ß, IL-4, IL-6 and TNF-α in the intestinal tract but was positively correlated with that of IL-10. The abundance of Enterococcus was positively associated with the levels of IL-1ß, IL-4, IL-6 and TNF-α in the intestinal tract but was negatively correlated with that of IL-10. NT-proBNP was positively associated with the levels of IL-1ß, IL-4, IL-6 and TNF-α in the HF group but was negatively correlated with that of IL-10. The heart function score was positively associated with the levels of IL-1ß, IL-4, IL-6 and TNF-α in the HF group but was negatively correlated with that of IL-10. CONCLUSIONS: Infants with CHD-related HF had a disordered intestinal microbiota, decreased diversity of intestinal microbes, increased levels of pathogenic bacteria and decreased levels of beneficial bacteria. The increased abundance of Enterococcus and the significant decrease in the diversity of the intestinal microbiota may exacerbate the intestinal inflammatory response, which may be associated with the progression of HF.


Asunto(s)
Cardiopatías Congénitas , Insuficiencia Cardíaca , Lactante , Humanos , Interleucina-10 , Factor de Necrosis Tumoral alfa , Interleucina-6 , Interleucina-4 , Insuficiencia Cardíaca/complicaciones , Cardiopatías Congénitas/complicaciones , Enterococcus/genética , Inflamación
18.
BMC Microbiol ; 24(1): 202, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851699

RESUMEN

BACKGROUND: Bacteroides fragilis group (BFG) species are the most significant anaerobic pathogens and are also the most antibiotic-resistant anaerobic species. Therefore, surveying their antimicrobial resistance levels and investigating their antibiotic resistance mechanisms is recommended. Since their infections are endogenous and they are important constituents of the intestinal microbiota, the properties of the intestinal strains are also important to follow. The aim of this study was to investigate the main antibiotic gene content of microbiota isolates from healthy people and compare them with the gene carriage of strains isolated from infections. RESULTS: We detected 13, mainly antibiotic resistance determinants of 184 intestinal BFG strains that were isolated in 5 European countries (Belgium, Germany, Hungary, Slovenia and Turkey) and compared these with values obtained earlier for European clinical strains. Differences were found between the values of this study and an earlier one for antibiotic resistance genes that are considered to be mobile, with higher degrees for cfxA, erm(F) and tet(Q) and with lower degrees for msrSA, erm(B) and erm(G). In addition, a different gene prevalence was found depending on the taxonomical groups, e.g., B. fragilis and NBFB. Some strains with both the cepA and cfiA ß-lactamase genes were also detected, which is thought to be exceptional since until now, the B. fragilis genetic divisions were defined by the mutual exclusion of these two genes. CONCLUSIONS: Our study detected the prevalences of a series of antibiotic resistance genes in intestinal Bacteroides strains which is a novelty. In addition, based on the current and some previous data we hypothesized that prevalence of some antibiotic resistance genes detected in the clinical and intestinal BFG strains were different, which could be accounted with the differential composition of the Bacteroides microbiota and/or the MGE mobilities at the luminal vs. mucosal sites of the intestine.


Asunto(s)
Antibacterianos , Infecciones por Bacteroides , Bacteroides , Carbapenémicos , Humanos , Europa (Continente) , Antibacterianos/farmacología , Carbapenémicos/farmacología , Infecciones por Bacteroides/microbiología , Bacteroides/genética , Bacteroides/efectos de los fármacos , Bacteroides/aislamiento & purificación , Farmacorresistencia Bacteriana/genética , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Pruebas de Sensibilidad Microbiana , Genes Bacterianos/genética , Intestinos/microbiología , Proteínas Bacterianas/genética
19.
Microb Pathog ; 186: 106496, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072228

RESUMEN

Diarrhea in calves is a common disease that results in poor nutrient absorption, poor growth and early death which leads to productivity and economic losses. Therefore, it is important to explore the methods to reduce diarrhea in yak's calves. Efficacy of lactic acid bacteria (LAB) for improvement of bacterial diarrhea is well recognized. For this purpose, two different doses (107 CFU, 1011 CFU) of Lactobacillus yoelii FYL1 isolated from yaks were fed to juvenile yaks exposed to E. coli O78. After a trial period of ten days fresh feces and intestinal contents of the experimental yaks were collected and metagenomics sequencing was performed. It was found that feeding a high dose of Lactobacillus yoelii FYL1 decreased abundance of phylum Firmicutes in the E. coli O78 infected group whereas, it was high in animals fed low dose of Lactobacillu yoelii FYL1. Results also revealed that counts of bacteria from the family Oscillospiraceae, genus Synergistes and Megasphaera were higher in control group whereas, order Bifidobacteriales and family Bifidobacteriaceae were higher in infected group. It was observed that bacterial counts for Pseudoruminococcus were significantly (P < 0.05) higher in animals of group that were given high dose of Lactobacillus yoelii FYL1 (HLAB). Compared to infected group multiple beneficial bacterial genera such as Deinococus and Clostridium were found higher in the animals that were given a low dose of Lactobacillus yoelii FYL1 (LLAB). The abundance of pathogenic bacterial genera that included Parascardovia, Bacteroides and Methanobrevibacter was decreased (P < 0.05) in the lower dose treated group. The results of functional analysis revealed that animals of LLAB had a higher metabolism of terpenoids and polyketides compared to animals of infected group. Virus annotation also presented a significant inhibitory effect of LLAB on some viruses (P < 0.05). It was concluded that L. yoelii FYL1 had an improved effect on gut microbiota of young yaks infected with E. coli O78. This experiment contributes to establish the positive effects of LAB supplementation while treating diarrhea.


Asunto(s)
Infecciones Bacterianas , Disentería , Microbioma Gastrointestinal , Bovinos , Animales , Lactobacillus , Escherichia coli , Diarrea/veterinaria , Diarrea/microbiología , Bacterias
20.
Microb Pathog ; 195: 106852, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39147213

RESUMEN

The purpose of this study was to evaluate the ability of Bacillus subtilis JATP3 to stimulate immune response and improve intestinal health in piglets during the critical weaning period. Twelve 28-day-old weaned piglets were randomly divided into two groups. One group was fed a basal diet, while the other group was fed a basal diet supplemented with B. subtilis JATP3 (1 × 109 CFU/mL; 10 mL) for 28 days. The results revealed a significant increase in the intestinal villus gland ratio of weaned piglets following the inclusion of B. subtilis JATP3 (P < 0.05). Inclusion of a probiotic supplement improve the intestinal flora of jejunum and ileum of weaned piglets. Metabolomics analysis demonstrated a notable rise in citalopram levels in the jejunum and ileum, along with elevated levels of isobutyric acid and isocitric acid in the ileum. The results of correlation analysis show that indicated a positive correlation between citalopram and microbial changes. Furthermore, the probiotic-treated group exhibited a significant upregulation in the relative expression of Claudin, Zonula Occludens 1 (ZO-1), and Interleukin 10 (IL-10) in the jejunum and ileum, while displaying a noteworthy reduction in the relative expression of Interleukin 1ß (IL-1ß). Overall, these findings suggest that B. subtilis JATP3 can safeguard intestinal health by modulating the structure of the intestinal microbiota and their metabolites, wherein citalopram might be a key component contributing to the therapeutic effects of B. subtilis JATP3.


Asunto(s)
Bacillus subtilis , Citalopram , Microbioma Gastrointestinal , Íleon , Yeyuno , Probióticos , Destete , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Bacillus subtilis/metabolismo , Porcinos , Probióticos/administración & dosificación , Probióticos/farmacología , Íleon/microbiología , Íleon/inmunología , Citalopram/farmacología , Yeyuno/microbiología , Yeyuno/inmunología , Yeyuno/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Metabolómica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Proteína de la Zonula Occludens-1/metabolismo , Suplementos Dietéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA