Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 37: 115-142, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34242059

RESUMEN

Microbes gain access to eukaryotic cells as food for bacteria-grazing protists, for host protection by microbe-killing immune cells, or for microbial benefit when pathogens enter host cells to replicate. But microbes can also gain access to a host cell and become an important-often required-beneficial partner. The oldest beneficial microbial infections are the ancient eukaryotic organelles now called the mitochondrion and plastid. But numerous other host-beneficial intracellular infections occur throughout eukaryotes. Here I review the genomics and cell biology of these interactions with a focus on intracellular bacteria. The genomes of host-beneficial intracellular bacteria have features that span a previously unfilled gap between pathogens and organelles. Host cell adaptations to allow the intracellular persistence of beneficial bacteria are found along with evidence for the microbial manipulation of host cells, but the cellular mechanisms of beneficial bacterial infections are not well understood.


Asunto(s)
Bacterias , Orgánulos , Bacterias/genética , Eucariontes , Células Eucariotas , Genómica , Interacciones Huésped-Patógeno/genética
2.
Trends Biochem Sci ; 48(6): 500-502, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36959017

RESUMEN

Recognition of invasive pathogens by the epithelium that is constantly exposed to microbial products remains incompletely understood. In a recent study, Tadala et al. demonstrated that the entry process of intracellular bacteria is itself a mechanical signal that is detected by the stretch-activated channel Piezo1, which triggers innate immune signaling.


Asunto(s)
Canales Iónicos , Mecanotransducción Celular , Canales Iónicos/metabolismo , Transducción de Señal
3.
Proc Natl Acad Sci U S A ; 119(13): e2122173119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35316134

RESUMEN

Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential riboflavin-derived cofactors involved in a myriad of redox reactions across all forms of life. Nevertheless, the basis of flavin acquisition strategies by riboflavin auxotrophic pathogens remains poorly defined. In this study, we examined how the facultative intracellular pathogen Listeria monocytogenes, a riboflavin auxotroph, acquires flavins during infection. A L. monocytogenes mutant lacking the putative riboflavin transporter (RibU) was completely avirulent in mice but had no detectable growth defect in nutrient-rich media. However, unlike wild type, the RibU mutant was unable to grow in defined media supplemented with FMN or FAD or to replicate in macrophages starved for riboflavin. Consistent with RibU functioning to scavenge FMN and FAD inside host cells, a mutant unable to convert riboflavin to FMN or FAD retained virulence and grew in cultured macrophages and in spleens and livers of infected mice. However, this FMN- and FAD-requiring strain was unable to grow in the gallbladder or intestines, where L. monocytogenes normally grows extracellularly, suggesting that these sites do not contain sufficient flavin cofactors to promote replication. Thus, by deleting genes required to synthesize FMN and FAD, we converted L. monocytogenes from a facultative to an obligate intracellular pathogen. Collectively, these data indicate that L. monocytogenes requires riboflavin to grow extracellularly in vivo but scavenges FMN and FAD to grow in host cells.


Asunto(s)
Proteínas Bacterianas , Mononucleótido de Flavina , Flavina-Adenina Dinucleótido , Listeria monocytogenes , Proteínas de Transporte de Membrana , Riboflavina , Proteínas Bacterianas/metabolismo , Mononucleótido de Flavina/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidad , Proteínas de Transporte de Membrana/metabolismo , Riboflavina/metabolismo
4.
J Bacteriol ; 206(5): e0010924, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38597609

RESUMEN

Pseudomonas aeruginosa is a significant cause of global morbidity and mortality. Although it is often regarded as an extracellular pathogen toward human cells, numerous investigations report its ability to survive and replicate within host cells, and additional studies demonstrate specific mechanisms enabling it to adopt an intracellular lifestyle. This ability of P. aeruginosa remains less well-investigated than that of other intracellular bacteria, although it is currently gaining attention. If intracellular bacteria are not killed after entering host cells, they may instead receive protection from immune recognition and experience reduced exposure to antibiotic therapy, among additional potential advantages shared with other facultative intracellular pathogens. For this review, we compiled studies that observe intracellular P. aeruginosa across strains, cell types, and experimental systems in vitro, as well as contextualize these findings with the few studies that report similar observations in vivo. We also seek to address key findings that drove the perception that P. aeruginosa remains extracellular in order to reconcile what is currently understood about intracellular pathogenesis and highlight open questions regarding its contribution to disease.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Humanos , Infecciones por Pseudomonas/microbiología , Animales , Interacciones Huésped-Patógeno
5.
Mol Microbiol ; 120(2): 194-209, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37429596

RESUMEN

Lipid droplets (LDs) are dynamic and versatile organelles present in most eukaryotic cells. LDs consist of a hydrophobic core of neutral lipids, a phospholipid monolayer coat, and a variety of associated proteins. LDs are formed at the endoplasmic reticulum and have diverse roles in lipid storage, energy metabolism, membrane trafficking, and cellular signaling. In addition to their physiological cellular functions, LDs have been implicated in the pathogenesis of several diseases, including metabolic disorders, cancer, and infections. A number of intracellular bacterial pathogens modulate and/or interact with LDs during host cell infection. Members of the genera Mycobacterium, Legionella, Coxiella, Chlamydia, and Salmonella exploit LDs as a source of intracellular nutrients and membrane components to establish their distinct intracellular replicative niches. In this review, we focus on the biogenesis, interactions, and functions of LDs, as well as on their role in lipid metabolism of intracellular bacterial pathogens.


Asunto(s)
Dieta , Gotas Lipídicas , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos
6.
J Eukaryot Microbiol ; : e13029, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39030770

RESUMEN

Microsporidia are prolific producers of effector molecules, encompassing both proteins and nonproteinaceous effectors, such as toxins, small RNAs, and small peptides. These secreted effectors play a pivotal role in the pathogenicity of microsporidia, enabling them to subvert the host's innate immunity and co-opt metabolic pathways to fuel their own growth and proliferation. However, the genomes of microsporidia, despite falling within the size range of bacteria, exhibit significant reductions in both structural and physiological features, thereby affecting the repertoire of secretory effectors to varying extents. This review focuses on recent advances in understanding how microsporidia modulate host cells through the secretion of effectors, highlighting current challenges and proposed solutions in deciphering the complexities of microsporidial secretory effectors.

7.
J Eukaryot Microbiol ; : e13027, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702921

RESUMEN

The nematode Caenorhabditis elegans is an invaluable host model for studying infections caused by various pathogens, including microsporidia. Microsporidia represent the first natural pathogens identified in C. elegans, revealing the previously unknown Nematocida genus of microsporidia. Following this discovery, the utilization of nematodes as a model host has rapidly expanded our understanding of microsporidia biology and has provided key insights into the cell and molecular mechanisms of antimicrosporidia defenses. Here, we first review the isolation history, morphological characteristics, life cycles, tissue tropism, genetics, and host immune responses for the four most well-characterized Nematocida species that infect C. elegans. We then highlight additional examples of microsporidia that infect related terrestrial and aquatic nematodes, including parasitic nematodes. To conclude, we assess exciting potential applications of the nematode-microsporidia system while addressing the technical advances necessary to facilitate future growth in this field.

8.
Infect Immun ; 91(4): e0006423, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36916918

RESUMEN

The mesenteric lymph nodes (MLN) function as a barrier to systemic spread for both commensal and pathogenic bacteria in the gut. Listeria monocytogenes, a facultative intracellular foodborne pathogen, readily overcomes this barrier and spreads into the bloodstream, causing life-threatening systemic infections. We show here that intracellular replication protected L. monocytogenes from clearance by monocytes and neutrophils and promoted colonization of the small intestine-draining MLN (sMLN) but was not required for dissemination to the colon-draining MLN (cMLN). Intestinal tissue had enough free lipoate to support LplA2-dependent extracellular growth of L. monocytogenes, but exogenous lipoate in the MLN was severely limited, and so the bacteria could replicate only inside cells, where they used LplA1 to scavenge lipoate from host peptides. When foodborne infection was manipulated to allow ΔlplA1 L. monocytogenes to colonize the MLN to the same extent as wild-type bacteria, the mutant was still never recovered in the spleen or liver of any animal. We found that intracellular replication in the MLN promoted actin-based motility and cell-to-cell spread of L. monocytogenes and that rapid efficient exit from the MLN was actA dependent. We conclude that intracellular replication of L. monocytogenes in intestinal tissues is not essential and serves primarily to amplify bacterial burdens above a critical threshold needed to efficiently colonize the cMLN. In contrast, intracellular replication in the MLN is absolutely required for further systemic spread and serves primarily to promote ActA-mediated cell-to-cell spread.


Asunto(s)
Listeria monocytogenes , Listeriosis , Animales , Listeriosis/microbiología , Proteínas Bacterianas/genética , Hígado/patología , Ganglios Linfáticos/microbiología
9.
Infect Immun ; 91(6): e0005923, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37184383

RESUMEN

Histoplasma capsulatum yeasts reside and proliferate within the macrophage phagosome during infection. This nutrient-depleted phagosomal environment imposes challenges to Histoplasma yeasts for nutrition acquisition. Histoplasma yeasts require all 20 amino acids, which can be formed by de novo biosynthesis and/or acquired directly from the phagosomal environment. We investigated how Histoplasma obtains aromatic amino acids (i.e., phenylalanine, tyrosine, and tryptophan) within the phagosome during infection of macrophages. Depletion of key enzymes of the phenylalanine or tyrosine biosynthetic pathway neither impaired Histoplasma's ability to proliferate within macrophages nor resulted in attenuated virulence in vivo. However, loss of tryptophan biosynthesis resulted in reduced growth within macrophages and severely attenuated virulence in vivo. Together, these results indicate that phenylalanine and tyrosine, but not tryptophan, are available to Histoplasma within the macrophage phagosome. The herbicide glyphosate, which targets 5-enolpyruvylshikimate-3-phosphate synthase of the aromatic amino acid biosynthetic pathway, inhibited Histoplasma yeast growth, and this growth inhibition was partially reversed by aromatic amino acid supplementation or overexpression of ARO1. These results suggest that the aromatic amino acid biosynthetic pathway is a candidate drug target to develop novel antifungal therapeutics.


Asunto(s)
Histoplasma , Histoplasmosis , Macrófagos/microbiología , Fagosomas/microbiología , Tirosina/metabolismo , Aminoácidos Aromáticos/metabolismo , Histoplasmosis/metabolismo
10.
Infect Immun ; 91(10): e0022823, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37676013

RESUMEN

Staphylococcus aureus is a facultative intracellular pathogen in many host cell types, facilitating its persistence in chronic infections. The genes contributing to intracellular pathogenesis have not yet been fully enumerated. Here, we cataloged genes influencing S. aureus invasion and survival within human THP-1 derived macrophages using two laboratory strains (ATCC2913 and JE2). We developed an in vitro transposition method to produce highly saturated transposon mutant libraries in S. aureus and performed transposon insertion sequencing (Tn-Seq) to identify candidate genes with significantly altered abundance following macrophage invasion. While some significant genes were strain-specific, 108 were identified as common across both S. aureus strains, with most (n = 106) being required for optimal macrophage infection. We used CRISPR interference (CRISPRi) to functionally validate phenotypic contributions for a subset of genes. Of the 20 genes passing validation, seven had previously identified roles in S. aureus virulence, and 13 were newly implicated. Validated genes frequently evidenced strain-specific effects, yielding opposing phenotypes when knocked down in the alternative strain. Genomic analysis of de novo mutations occurring in groups (n = 237) of clonally related S. aureus isolates from the airways of chronically infected individuals with cystic fibrosis (CF) revealed significantly greater in vivo purifying selection in conditionally essential candidate genes than those not associated with macrophage invasion. This study implicates a core set of genes necessary to support macrophage invasion by S. aureus, highlights strain-specific differences in phenotypic effects of effector genes, and provides evidence for selection of candidate genes identified by Tn-Seq analyses during chronic airway infection in CF patients in vivo.


Asunto(s)
Fibrosis Quística , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/metabolismo , Infecciones Estafilocócicas/metabolismo , Sistema Respiratorio , Fibrosis Quística/complicaciones , Virulencia/genética
11.
Clin Infect Dis ; 77(Suppl 5): S423-S432, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37932114

RESUMEN

Bacteriophages (phages) have shown great potential as natural antimicrobials against extracellular pathogens (eg, Escherichia coli or Klebsiella pneumoniae), but little is known about how they interact with intracellular targets (eg, Shigella spp., Salmonella spp., Mycobacterium spp.) in the mammalian host. Recent research has demonstrated that phages can enter human cells. However, for the design of successful clinical applications, further investigation is required to define their subcellular behavior and to understand the complex biological processes that underlie the interaction with their bacterial targets. In this review, we summarize the molecular evidence of phage internalization in eucaryotic cells, with specific focus on proof of phage activity against their bacterial targets within the eucaryotic host, and the current proposed strategies to overcome poor penetrance issues that may impact therapeutic use against the most clinically relevant intracellular pathogens.


Asunto(s)
Bacteriófagos , Animales , Humanos , Bacterias , Klebsiella pneumoniae , Escherichia coli , Mamíferos
12.
BMC Microbiol ; 23(1): 43, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36803552

RESUMEN

BACKGROUND: Staphylococcus aureus is one of the prevalent etiological agents of contagious bovine mastitis, causing a significant economic burden on the global dairy industry. Given the emergence of antibiotic resistance (ABR) and possible zoonotic spillovers, S aureus from mastitic cattle pose threat to both veterinary and public health. Therefore, assessment of their ABR status and pathogenic translation in human infection models is crucial. RESULTS: In this study, 43 S. aureus isolates associated with bovine mastitis obtained from four different Canadian provinces (Alberta, Ontario, Quebec, and Atlantic provinces) were tested for ABR and virulence through phenotypic and genotypic profiling. All 43 isolates exhibited crucial virulence characteristics such as hemolysis, and biofilm formation, and six isolates from ST151, ST352, and ST8 categories showed ABR. Genes associated with ABR (tetK, tetM, aac6', norA, norB, lmrS, blaR, blaZ, etc.), toxin production (hla, hlab, lukD, etc.), adherence (fmbA, fnbB, clfA, clfB, icaABCD, etc.), and host immune invasion (spa, sbi, cap, adsA, etc.) were identified by analyzing whole-genome sequences. Although none of the isolates possessed human adaptation genes, both groups of ABR and antibiotic-susceptible isolates demonstrated intracellular invasion, colonization, infection, and death of human intestinal epithelial cells (Caco-2), and Caenorhabditis elegans. Notably, the susceptibilities of S. aureus towards antibiotics such as streptomycin, kanamycin, and ampicillin were altered when the bacteria were internalized in Caco-2 cells and C. elegans. Meanwhile, tetracycline, chloramphenicol, and ceftiofur were comparatively more effective with ≤ 2.5 log10 reductions of intracellular S. aureus. CONCLUSIONS: This study demonstrated the potential of S. aureus isolated from mastitis cows to possess virulence characteristics enabling invasion of intestinal cells thus calling for developing therapeutics capable of targeting drug-resistant intracellular pathogens for effective disease management.


Asunto(s)
Mastitis Bovina , Infecciones Estafilocócicas , Animales , Bovinos , Femenino , Antibacterianos/farmacología , Células CACO-2 , Caenorhabditis elegans , Canadá , Farmacorresistencia Microbiana , Genómica , Mastitis Bovina/microbiología , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus
13.
Parasitol Res ; 123(1): 60, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38112844

RESUMEN

Apoptosis is a finely programmed process of cell death in which cells silently dismantle and actively participate in several operations such as immune response, differentiation, and cell growth. It can be initiated by three main pathways: the extrinsic, the perforin granzyme, and the intrinsic that culminate in the activation of several proteins in charge of tearing down the cell. On the other hand, apoptosis represents an ordeal for pathogens that live inside cells and maintain a strong dependency with them; thus, they have evolved multiple strategies to manipulate host cell apoptosis on their behalf. It has been widely documented that diverse intracellular bacteria, fungi, and parasites can interfere with most steps of the host cell apoptotic machinery to inhibit or induce apoptosis. Indeed, the inhibition of apoptosis is considered a virulence property shared by many intracellular pathogens to ensure productive replication. Some pathogens intervene at an early stage by interfering with the sensing of extracellular signals or transduction pathways. Others sense cellular stress or target the apoptosis regulator proteins of the Bcl-2 family or caspases. In many cases, the exact molecular mechanisms leading to the interference with the host cell apoptotic cascade are still unknown. However, intense research has been conducted to elucidate the strategies employed by intracellular pathogens to modulate host cell death. In this review, we summarize the main routes of activation of apoptosis and present several processes used by different bacteria, fungi, and parasites to modulate the apoptosis of their host cells.


Asunto(s)
Apoptosis , Parásitos , Animales , Apoptosis/fisiología , Caspasas/metabolismo , Muerte Celular , Parásitos/metabolismo , Hongos/metabolismo
14.
Immunol Rev ; 288(1): 149-160, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30874358

RESUMEN

B cells expressing the transcription factor T-bet have emerged as participants in a number of protective and pathogenic immune responses. T-bet+ B cells characteristically differentiate in response to combined Toll-like receptor and cytokine signaling, contribute to protective immunity against intracellular pathogens via IgG2a/c production and antibody-independent mechanisms, and are prone to produce autoantibodies. Despite recent advances, a number of questions remain regarding the basic biology of T-bet+ B cells and their functional niche within the immune system. Herein, we review the discovery and defining characteristics of the T-bet+ B cell subset in both mice and humans. We further discuss their origins, the basis for their persistence, and their potential fate in vivo. Evidence indicates that T-bet+ B cells represent a distinct, germinal center-derived memory population that may serve as an important therapeutic target for the improvement of humoral immunity and prevention of autoimmunity.


Asunto(s)
Autoanticuerpos/metabolismo , Subgrupos de Linfocitos B/inmunología , Linfocitos B/inmunología , Proteínas de Dominio T Box/metabolismo , Animales , Autoinmunidad , Diferenciación Celular , Citocinas/metabolismo , Humanos , Memoria Inmunológica , Activación de Linfocitos , Ratones , Transducción de Señal , Proteínas de Dominio T Box/genética , Receptores Toll-Like/metabolismo
15.
BMC Microbiol ; 22(1): 211, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36045335

RESUMEN

Macrophages play an essential role in the process of recognition and containment of microbial infections. These immune cells are recruited to infectious sites to reach and phagocytose pathogens. Specifically, in this article, bacteria from the genus Mycobacterium, Salmonella and Escherichia, were selected to study the directional macrophage movement towards different bacterial fractions. We recreated a three-dimensional environment in a microfluidic device, using a collagen-based hydrogel that simulates the mechanical microarchitecture associated to the Extra Cellular Matrix (ECM). First, we showed that macrophage migration is affected by the collagen concentration of their environment, migrating greater distances at higher velocities with decreasing collagen concentrations. To recreate the infectious microenvironment, macrophages were exposed to lateral gradients of bacterial fractions obtained from the intracellular pathogens M. tuberculosis and S. typhimurium. Our results showed that macrophages migrated directionally, and in a concentration-dependent manner, towards the sites where bacterial fractions are located, suggesting the presence of attractants molecules in all the samples. We confirmed that purified M. tuberculosis antigens, as ESAT-6 and CFP-10, stimulated macrophage recruitment in our device. Finally, we also observed that macrophages migrate towards fractions from non-pathogenic bacteria, such as M. smegmatis and Escherichia coli. In conclusion, our microfluidic device is a useful tool which opens new perspectives to study the recognition of specific antigens by innate immune cells.


Asunto(s)
Escherichia coli , Macrófagos , Mycobacterium tuberculosis , Tuberculosis , Técnicas de Cultivo Tridimensional de Células , Colágeno , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Microfluídica/métodos , Salmonella
16.
Pharm Res ; 39(6): 1085-1114, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35146592

RESUMEN

This meta-analysis aims to evaluate the trend, methodological quality and completeness of studies on intracellular delivery of antimicrobial agents. PubMed, Embase, and reference lists of related reviews were searched to identify original articles that evaluated carrier-mediated intracellular delivery and pharmacodynamics (PD) of antimicrobial therapeutics against intracellular pathogens in vitro and/or in vivo. A total of 99 studies were included in the analysis. The most commonly targeted intracellular pathogens were bacteria (62.6%), followed by viruses (16.2%) and parasites (15.2%). Twenty-one out of 99 (21.2%) studies performed neither microscopic imaging nor flow cytometric analysis to verify that the carrier particles are present in the infected cells. Only 31.3% of studies provided comparative inhibitory concentrations against a free drug control. Approximately 8% of studies, albeit claimed for intracellular delivery of antimicrobial therapeutics, did not provide any experimental data such as microscopic imaging, flow cytometry, and in vitro PD. Future research on intracellular delivery of antimicrobial agents needs to improve the methodological quality and completeness of supporting data in order to facilitate clinical translation of intracellular delivery platforms for antimicrobial therapeutics.


Asunto(s)
Antibacterianos , Sistemas de Liberación de Medicamentos
17.
Semin Immunol ; 38: 15-23, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29551246

RESUMEN

Interleukin 32 (IL-32) is an intracellular cytokine produced by immune and non immune cells after different stimuli. It contributes to inflammation and control of intracellular pathogens mainly by inducing proinflammatory cytokines and microbicidal molecules. Evidence is rising showing that IL-32 can be considered an endogenous danger signal after tissue injury, amplifying the inflammatory process and acquired immune responses. It seems to be a master regulator of intracellular infectious diseases. In this review, first the general properties of IL-32 are described followed by its role in the immunopathogenesis of inflammatory and infectious diseases. Roles of IL-32 in the control of infectious diseases caused by intracellular pathogens are reported, and later a focus on IL-32 in leishmaniases, diseases caused by an intracellular protozoan, is presented.


Asunto(s)
Mediadores de Inflamación/inmunología , Interleucinas/inmunología , Espacio Intracelular/inmunología , Leishmania/inmunología , Leishmaniasis/inmunología , Transducción de Señal/inmunología , Animales , Citocinas/inmunología , Citocinas/metabolismo , Interacciones Huésped-Parásitos/inmunología , Humanos , Mediadores de Inflamación/metabolismo , Interleucinas/metabolismo , Espacio Intracelular/parasitología , Leishmania/fisiología , Leishmaniasis/metabolismo , Leishmaniasis/parasitología
18.
Wiad Lek ; 75(5 pt 2): 1342-1346, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35758456

RESUMEN

OBJECTIVE: The aim: To identify clinical and immunological features of acute rotavirus gastroenteritis occurring against the background of Epstein-Barr virus infection. PATIENTS AND METHODS: Materials and methods: The study involved examination of 56 children. Of them, 33 children (1 group) did not have a background infection and 23 patients (2 group) suffered from rotavirus infection on the background of the latent form of Epstein-Barr virus infection. Children in these groups were compared by gender, age, severity of the disease and other parameters. Quantitative data were presented as mean and standard deviation (M±SD). Differences at p <0.05 were considered statistically significant. RESULTS: Results: The data suggest that the presence of background Epstein-Barr virus in children with rotavirus infection leads to later hospitalization, lower temperature response rates, lower frequency of vomiting at the onset of the disease, and longer duration of fever and diarrhea. At the same time, in children infected with Epstein-Barr virus, the relative content of CD8+ T lymphocytes dominated both in the acute period of the disease and in the period of convalescence against the background of reduced relative content of CD16+, CD22+ T lymphocytes and IgM in the period of early convalescence. CONCLUSION: Conclusions: The study allowed to reveal the influence of latent EBV infection on the clinical and immunological parameters of rotavirus gastroenteritis.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Gastroenteritis , Infecciones por Rotavirus , Niño , Convalecencia , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/diagnóstico , Gastroenteritis/complicaciones , Herpesvirus Humano 4 , Humanos , Infecciones por Rotavirus/complicaciones
19.
Annu Rev Microbiol ; 70: 413-33, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27607556

RESUMEN

The gram-negative bacterial pathogen Legionella pneumophila creates a novel organelle inside of eukaryotic host cells that supports intracellular replication. The L. pneumophila-containing vacuole evades fusion with lysosomes and interacts intimately with the host endoplasmic reticulum (ER). Although the natural hosts for L. pneumophila are free-living protozoa that reside in freshwater environments, the mechanisms that enable this pathogen to replicate intracellularly also function when mammalian macrophages phagocytose aerosolized bacteria, and infection of humans by L. pneumophila can result in a severe pneumonia called Legionnaires' disease. A bacterial type IVB secretion system called Dot/Icm is essential for intracellular replication of L. pneumophila. The Dot/Icm apparatus delivers over 300 different bacterial proteins into host cells during infection. These bacterial proteins have biochemical activities that target evolutionarily conserved host factors that control membrane transport processes, which results in the formation of the ER-derived vacuole that supports L. pneumophila replication. This review highlights research discoveries that have defined interactions between vacuoles containing L. pneumophila and the host ER. These studies reveal how L. pneumophila creates a vacuole that supports intracellular replication by subverting host proteins that control biogenesis and fusion of early secretory vesicles that exit the ER and host proteins that regulate the shape and dynamics of the ER. In addition to recruiting ER-derived membranes for biogenesis of the vacuole in which L. pneumophila replicates, these studies have revealed that this pathogen has a remarkable ability to interfere with the host's cellular process of autophagy, which is an ancient cell autonomous defense pathway that utilizes ER-derived membranes to target intracellular pathogens for destruction. Thus, this intracellular pathogen has evolved multiple mechanisms to control membrane transport processes that center on the involvement of the host ER.


Asunto(s)
Autofagia , Retículo Endoplásmico/microbiología , Legionella pneumophila/fisiología , Enfermedad de los Legionarios/microbiología , Enfermedad de los Legionarios/fisiopatología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Legionella pneumophila/genética , Vacuolas/microbiología
20.
J Bacteriol ; 202(23)2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32928930

RESUMEN

Many pathogenic bacteria translocate virulence factors into their eukaryotic hosts by means of type IV secretion systems (T4SS) spanning the inner and outer membranes. Genes encoding components of these systems have been identified within the order Rickettsiales based upon their sequence similarities to other prototypical systems. Anaplasma phagocytophilum strains are obligate intracellular, tick-borne bacteria that are members of this order. The organization of these components at the genomic level was determined in several Anaplasma phagocytophilum strains, showing overall conservation, with the exceptions of the virB2 and virB6 genes. The virB6 loci are characterized by the presence of four virB6 copies (virB6-1 through virB6-4) arranged in tandem within a gene cluster known as the sodB-virB operon. Interestingly, the virB6-4 gene varies significantly in length among different strains due to extensive tandem repeats at the 3' end. To gain an understanding of how these enigmatic virB6 genes function in A. phagocytophilum, we investigated their expression in infected human and tick cells. Our results show that these genes are expressed by A. phagocytophilum replicating in both cell types and that VirB6-3 and VirB6-4 proteins are surface exposed. Analysis of an A. phagocytophilum mutant carrying the Himar1 transposon within the virB6-4 gene demonstrated that the insertion not only disrupted its expression but also exerted a polar effect on the sodB-virB operon. Moreover, the altered expression of genes within this operon was associated with the attenuated in vitro growth of A. phagocytophilum in human and tick cells, indicating the importance of these genes in the physiology of this obligate intracellular bacterium in such different environments.IMPORTANCE Knowledge of the T4SS is derived from model systems, such as Agrobacterium tumefaciens The structure of the T4SS in Rickettsiales differs from the classical arrangement. These differences include missing and duplicated components with structural alterations. Particularly, two sequenced virB6-4 genes encode unusual C-terminal structural extensions resulting in proteins of 4,322 (GenBank accession number AGR79286.1) and 9,935 (GenBank accession number ANC34101.1) amino acids. To understand how the T4SS is used in A. phagocytophilum, we describe the expression of the virB6 paralogs and explore their role as the bacteria replicate within its host cell. Conclusions about the importance of these paralogs for colonization of human and tick cells are supported by the deficient phenotype of an A. phagocytophilum mutant isolated from a sequence-defined transposon insertion library.


Asunto(s)
Anaplasma phagocytophilum/crecimiento & desarrollo , Anaplasma phagocytophilum/genética , Proteínas Bacterianas/genética , Anaplasma phagocytophilum/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Línea Celular , Ehrlichiosis/microbiología , Humanos , Mutagénesis Insercional , Operón , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA