Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(14): 3741-3760.e30, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38843831

RESUMEN

Experimental studies on DNA transposable elements (TEs) have been limited in scale, leading to a lack of understanding of the factors influencing transposition activity, evolutionary dynamics, and application potential as genome engineering tools. We predicted 130 active DNA TEs from 102 metazoan genomes and evaluated their activity in human cells. We identified 40 active (integration-competent) TEs, surpassing the cumulative number (20) of TEs found previously. With this unified comparative data, we found that the Tc1/mariner superfamily exhibits elevated activity, potentially explaining their pervasive horizontal transfers. Further functional characterization of TEs revealed additional divergence in features such as insertion bias. Remarkably, in CAR-T therapy for hematological and solid tumors, Mariner2_AG (MAG), the most active DNA TE identified, largely outperformed two widely used vectors, the lentiviral vector and the TE-based vector SB100X. Overall, this study highlights the varied transposition features and evolutionary dynamics of DNA TEs and increases the TE toolbox diversity.


Asunto(s)
Elementos Transponibles de ADN , Humanos , Elementos Transponibles de ADN/genética , Ingeniería Genética/métodos , Genoma Humano , Animales , Evolución Molecular
2.
Annu Rev Biochem ; 86: 461-484, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28654322

RESUMEN

Self-catalyzed DNA depurination is a sequence-specific physiological mechanism mediated by spontaneous extrusion of a stem-loop catalytic intermediate. Hydrolysis of the 5'G residue of the 5'GA/TGG loop and of the first 5'A residue of the 5'GAGA loop, together with particular first stem base pairs, specifies their hydrolysis without involving protein, cofactor, or cation. As such, this mechanism is the only known DNA catalytic activity exploited by nature. The consensus sequences for self-depurination of such G- and A-loop residues occur in all genomes examined across the phyla, averaging one site every 2,000-4,000 base pairs. Because apurinic sites are subject to error-prone repair, leading to substitution and short frameshift mutations, they are both a source of genome damage and a means for creating sequence diversity. Their marked overrepresentation in genomes, and largely unchanging density from the lowest to the highest organisms, indicate their selection over the course of evolution. The mutagenicity at such sites in many human genes is associated with loss of function of key proteins responsible for diverse diseases.


Asunto(s)
Adenina/metabolismo , Síndrome de Bloom/genética , ADN Catalítico/genética , Guanina/metabolismo , Polimorfismo Genético , Síndrome de Werner/genética , Evolución Biológica , Síndrome de Bloom/metabolismo , Síndrome de Bloom/patología , Catálisis , Reparación del ADN , ADN Catalítico/metabolismo , ADN Cruciforme/genética , ADN Cruciforme/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Humanos , Hidrólisis , Secuencias Invertidas Repetidas , Mutación , Síndrome de Werner/metabolismo , Síndrome de Werner/patología , Globinas beta/genética , Globinas beta/metabolismo
3.
BMC Biol ; 22(1): 165, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113037

RESUMEN

BACKGROUND: White clover (Trifolium repens) is a globally important perennial forage legume. This species also serves as an eco-evolutionary model system for studying within-species chemical defense variation; it features a well-studied polymorphism for cyanogenesis (HCN release following tissue damage), with higher frequencies of cyanogenic plants favored in warmer locations worldwide. Using a newly generated haplotype-resolved genome and two other long-read assemblies, we tested the hypothesis that copy number variants (CNVs) at cyanogenesis genes play a role in the ability of white clover to rapidly adapt to local environments. We also examined questions on subgenome evolution in this recently evolved allotetraploid species and on chromosomal rearrangements in the broader IRLC legume clade. RESULTS: Integration of PacBio HiFi, Omni-C, Illumina, and linkage map data yielded a completely de novo genome assembly for white clover (created without a priori sequence assignment to subgenomes). We find that white clover has undergone extensive transposon diversification since its origin but otherwise shows highly conserved genome organization and composition with its diploid progenitors. Unlike some other clover species, its chromosomal structure is conserved with other IRLC legumes. We further find extensive evidence of CNVs at the major cyanogenesis loci; these contribute to quantitative variation in the cyanogenic phenotype and to local adaptation across wild North American populations. CONCLUSIONS: This work provides a case study documenting the role of CNVs in local adaptation in a plant species, and it highlights the value of pan-genome data for identifying contributions of structural variants to adaptation in nature.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genoma de Planta , Trifolium , Adaptación Fisiológica/genética , Trifolium/genética
4.
J Exp Zool B Mol Dev Evol ; 342(6): 419-424, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38318934

RESUMEN

The phylum Nematoda remains very poorly sampled for mtDNA, with a strong bias toward parasitic, economically important or model species of the Chromadoria lineage. Most chromadorian mitogenomes share a specific order of genes encoded on one mtDNA strand. However, the few sequenced representatives of the Dorylaimia lineage exhibit a variable order of mtDNA genes encoded on both strands. While the ancestral arrangement of nematode mitogenome remains undefined, no evidence has been reported for Enoplia, the phylum's third early divergent major lineage. We describe the first mitogenome of an enoplian nematode, Campydora demonstrans, and contend that the complete 37-gene repertoire and both-strand gene encoding are ancestral states preserved in Enoplia and Dorylaimia versus the derived mitogenome arrangement in some Chromadoria. The C. demonstrans mitogenome is 17,018 bp in size and contains a noncoding perfect inverted repeat with 2013 bp-long arms, subdividing the mitogenome into two coding regions. This mtDNA arrangement is very rare among animals and instead resembles that of chloroplast genomes in land plants. Our report broadens mtDNA taxonomic sampling of the phylum Nematoda and adds support to the applicability of cox1 gene as a phylogenetic marker for establishing nematode relationships within higher taxa.


Asunto(s)
Genoma Mitocondrial , Animales , ADN Mitocondrial/genética , Filogenia , Nematodos/genética , Genoma de los Helmintos
5.
Ann Bot ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39213003

RESUMEN

BACKGROUND AND AIMS: Biological aspects of haustorial parasitism have significant effects on the configuration of the plastid genome. Approximately half the diversity of haustorial parasites belongs to the order Santalales, where a clearer picture of plastome evolution in relation to parasitism is starting to emerge. However, in previous studies of plastome evolution there is still a notable under-representation of members from non-parasitic and deep-branching hemiparasitic lineages, limiting evolutionary inference around the time of transition to a parasitic lifestyle. To expand taxon sampling relevant to this transition we therefore targeted three families of non-parasites (Erythropalaceae, Strombosiaceae, and Coulaceae), two families of root-feeding hemiparasites (Ximeniaceae and Olacaceae), and two families of uncertain parasitic status (Aptandraceae and Octoknemaceae). With data from these lineages we aimed to explore plastome evolution in relation to evolution of parasitism. METHODS: From 29 new samples we sequenced and annotated plastomes and the nuclear ribosomal cistron. We examined phylogenetic patterns, plastome evolution, and patterns of relaxed or intensified selection in plastid genes. Available transcriptome data were analyzed to investigate potential transfer of infA to the nuclear genome. RESULTS: Phylogenetic relationships indicate a single functional loss of all plastid ndh genes (ndhA-K) in a clade formed by confirmed parasites and Aptandraceae, and the loss coincides with major size and boundary shifts of the inverted repeat (IR) region. Depending on an autotrophic or heterotrophic lifestyle in Aptandraceae, plastome changes are either correlated with or predate evolution of parasitism. Phylogenetic patterns also indicate repeated loss of infA from the plastome, and based on presence of transcribed sequences with presequences corresponding to thylakoid luminal transit peptides, we infer that the genes were transferred to the nuclear genome. CONCLUSIONS: Except for the loss of the ndh complex, relatively few genes have been lost from the plastome in deep-branching root parasites in Santalales. Prior to loss of the ndh genes, they show signs of relaxed selection indicative of their dispensability. To firmly establish a potential correlation between ndh gene loss, plastome instability and evolution of parasitism, it is pertinent to refute or confirm a parasitic lifestyle all Santalales clades.

6.
Am J Bot ; 111(3): e16300, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38469876

RESUMEN

PREMISE: Many plastomes of autotrophic Piperales have been reported to date, describing a variety of differences. Most studies focused only on a few species or a single genus, and extensive, comparative analyses have not been done. Here, we reviewed publicly available plastome reconstructions for autotrophic Piperales, reanalyzed publicly available raw data, and provided new sequence data for all previously missing genera. Comparative plastome genomics of >100 autotrophic Piperales were performed. METHODS: We performed de novo assemblies to reconstruct the plastomes of newly generated sequence data. We used Sanger sequencing and read mapping to verify the assemblies and to bridge assembly gaps. Furthermore, we reconstructed the phylogenetic relationships as a foundation for comparative plastome genomics. RESULTS: We identified a plethora of assembly and annotation issues in published plastome data, which, if unattended, will lead to an artificial increase of diversity. We were able to detect patterns of missing and incorrect feature annotation and determined that the inverted repeat (IR) boundaries were the major source for erroneous assembly. Accounting for the aforementioned issues, we discovered relatively stable junctions of the IRs and the small single-copy region (SSC), whereas the majority of plastome variations among Piperales stems from fluctuations of the boundaries of the IR and the large single-copy (LSC) region. CONCLUSIONS: This study of all available plastomes of autotrophic Piperales, expanded by new data for previously missing genera, highlights the IR-LSC junctions as a potential marker for discrimination of various taxonomic levels. Our data indicates a pseudogene-like status for cemA and ycf15 in various Piperales. Based on a review of published data, we conclude that incorrect IR-SSC boundary identification is the major source for erroneous plastome assembly. We propose a gold standard for assembly and annotation of high-quality plastomes based on de novo assembly methods and appropriate references for gene annotation.


Asunto(s)
Magnoliopsida , Filogenia , Magnoliopsida/genética , Genómica
7.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928490

RESUMEN

Caragana sensu lato (s.l.) includes approximately 100 species that are mainly distributed in arid and semi-arid regions. Caragana species are ecologically valuable for their roles in windbreaking and sand fixation. However, the taxonomy and phylogenetic relationships of the genus Caragana are still unclear. In this study, we sequenced and assembled the chloroplast genomes of representative species of Caragana and reconstructed robust phylogenetic relationships at the section level. The Caragana chloroplast genome has lost the inverted repeat region and wascategorized in the inverted repeat loss clade (IRLC). The chloroplast genomes of the eight species ranged from 128,458 bp to 135,401 bp and contained 110 unique genes. All the Caragana chloroplast genomes have a highly conserved structure and gene order. The number of long repeats and simple sequence repeats (SSRs) showed significant variation among the eight species, indicating heterogeneous evolution in Caragana. Selective pressure analysis of the genes revealed that most of the protein-coding genes evolved under purifying selection. The phylogenetic analyses indicated that each section forms a clade, except the section Spinosae, which was divided into two clades. This study elucidated the evolution of the chloroplast genome within the widely distributed genus Caragana. The detailed information obtained from this study can serve as a valuable resource for understanding the molecular dynamics and phylogenetic relationships within Caragana.


Asunto(s)
Caragana , Evolución Molecular , Genoma del Cloroplasto , Filogenia , Caragana/genética , Repeticiones de Microsatélite/genética
8.
J Biol Chem ; 298(5): 101894, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35378129

RESUMEN

Extensive portions of the human genome have unknown function, including those derived from transposable elements. One such element, the DNA transposon Hsmar1, entered the primate lineage approximately 50 million years ago leaving behind terminal inverted repeat (TIR) sequences and a single intact copy of the Hsmar1 transposase, which retains its ancestral TIR-DNA-binding activity, and is fused with a lysine methyltransferase SET domain to constitute the chimeric SETMAR gene. Here, we provide a structural basis for recognition of TIRs by SETMAR and investigate the function of SETMAR through genome-wide approaches. As elucidated in our 2.37 Å crystal structure, SETMAR forms a dimeric complex with each DNA-binding domain bound specifically to TIR-DNA through the formation of 32 hydrogen bonds. We found that SETMAR recognizes primarily TIR sequences (∼5000 sites) within the human genome as assessed by chromatin immunoprecipitation sequencing analysis. In two SETMAR KO cell lines, we identified 163 shared differentially expressed genes and 233 shared alternative splicing events. Among these genes are several pre-mRNA-splicing factors, transcription factors, and genes associated with neuronal function, and one alternatively spliced primate-specific gene, TMEM14B, which has been identified as a marker for neocortex expansion associated with brain evolution. Taken together, our results suggest a model in which SETMAR impacts differential expression and alternative splicing of genes associated with transcription and neuronal function, potentially through both its TIR-specific DNA-binding and lysine methyltransferase activities, consistent with a role for SETMAR in simian primate development.


Asunto(s)
Genoma Humano , N-Metiltransferasa de Histona-Lisina/genética , Primates/genética , Animales , Evolución Biológica , Encéfalo/metabolismo , Elementos Transponibles de ADN/genética , Estudio de Asociación del Genoma Completo , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Secuencias Invertidas Repetidas , Lisina/genética , Primates/metabolismo , Transposasas/química
9.
Mol Biol Evol ; 39(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36403966

RESUMEN

Plastids, similar to mitochondria, are organelles of endosymbiotic origin, which retained their vestigial genomes (ptDNA). Their unique architecture, commonly referred to as the quadripartite (four-part) structure, is considered to be strictly conserved; however, the bulk of our knowledge on their variability and evolutionary transformations comes from studies of the primary plastids of green algae and land plants. To broaden our perspective, we obtained seven new ptDNA sequences from freshwater species of photosynthetic euglenids-a group that obtained secondary plastids, known to have dynamically evolving genome structure, via endosymbiosis with a green alga. Our analyses have demonstrated that the evolutionary history of euglenid plastid genome structure is exceptionally convoluted, with a patchy distribution of inverted ribosomal operon (rDNA) repeats, as well as several independent acquisitions of tandemly repeated rDNA copies. Moreover, we have shown that inverted repeats in euglenid ptDNA do not share their genome-stabilizing property documented in chlorophytes. We hypothesize that the degeneration of the quadripartite structure of euglenid plastid genomes is connected to the group II intron expansion. These findings challenge the current global paradigms of plastid genome architecture evolution and underscore the often-underestimated divergence between the functionality of shared traits in primary and complex plastid organelles.


Asunto(s)
Genoma de Plastidios
10.
Curr Issues Mol Biol ; 45(1): 501-511, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36661519

RESUMEN

The efficacy of the available genome-walking methods is restricted by low specificity, high background, or composite operations. We herein conceived bridging PCR, an efficient genome-walking approach. Three primers with random sequences, inner walker primer (IWP), bridging primer (BP), and outer walker primer (OWP), are involved in bridging PCR. The BP is fabricated by splicing OWP to the 5'-end of IWP's 5'-part. A bridging PCR set is constituted by three rounds of amplification reactions, sequentially performed by IWP, BP plus OWP, and OWP, respectively pairing with three nested sequence-specific primers (SSP). A non-target product arising from IWP alone undergoes end-lengthening mediated by BP. This modified non-target product is a preferentially formed hairpin between the lengthened ends, instead of binding with shorter OWP. Meanwhile, a non-target product, triggered by SSP alone or SSP plus IWP, is removed by nested SSP. As a result, only the target DNA is accumulated. The efficacy of bridging PCR was validated by walking the gadA/R genes of Levilactobacillus brevis CD0817 and the hyg gene of rice.

11.
Biochem Biophys Res Commun ; 667: 89-94, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-37209567

RESUMEN

IFI16 (Interferon inducible protein 16) is a DNA sensor responsible for innate immune response stimulation and a direct viral restriction by modulating gene expression and replication. Many IFI16-DNA binding properties were described - length-dependent and sequence-independent binding, oligomerization of IFI16 upon recognition, sliding on the DNA, and preference for supercoiled DNA. However, the question of the role of IFI16-DNA binding in distinct IFI16 functions remains unclear. Here we demonstrate two modes of IFI16 binding to DNA using atomic force microscopy and electrophoretic mobility shift assays. In our study, we show that IFI16 can bind to DNA in the form of globular complexes or oligomers depending on DNA topology and molar ratios. The stability of the complexes is different in higher salt concentrations. In addition, we observed no preferential binding with the HIN-A or HIN-B domains to supercoiled DNA, revealing the importance of the whole protein for this specificity. These results provide more profound insight into IFI16-DNA interactions and may be important in answering the question of self- and non-self-DNA binding by the IFI16 protein and potentially could shed light on the role of DNA binding in distinct IFI16 functions.


Asunto(s)
ADN Superhelicoidal , ADN , ADN/metabolismo , Fosfoproteínas/metabolismo , Inmunidad Innata
12.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37373434

RESUMEN

Chinese kale is a widely cultivated plant in the genus Brassica in the family Brassicaceae. The origin of Brassica has been studied extensively, but the origin of Chinese kale remains unclear. In contrast to Brassica oleracea, which originated in the Mediterranean region, Chinese kale originated in southern China. The chloroplast genome is often used for phylogenetic analysis because of its high conservatism. Fifteen pairs of universal primers were used to amplify the chloroplast genomes of white-flower Chinese kale (Brassica oleracea var. alboglabra cv. Sijicutiao (SJCT)) and yellow-flower Chinese kale (Brassica oleracea var. alboglabra cv. Fuzhouhuanghua (FZHH)) via PCR. The lengths of the chloroplast genomes were 153,365 bp (SJCT) and 153,420 bp (FZHH) and both contained 87 protein-coding genes and eight rRNA genes. There were 36 tRNA genes in SJCT and 35 tRNA genes in FZHH. The chloroplast genomes of both Chinese kale varieties, along with eight other Brassicaceae, were analyzed. Simple sequence repeats, long repeats, and variable regions of DNA barcodes were identified. An analysis of inverted repeat boundaries, relative synonymous codon usage, and synteny revealed high similarity among the ten species, albeit the slight differences that were observed. The Ka/Ks ratios and phylogenetic analysis suggest that Chinese kale is a variant of B. oleracea. The phylogenetic tree shows that both Chinese kale varieties and B. oleracea var. oleracea were clustered in a single group. The results of this study suggest that white and yellow flower Chinese kale comprise a monophyletic group and that their differences in flower color arose late in the process of artificial cultivation. Our results also provide data that will aid future research on genetics, evolution, and germplasm resources of Brassicaceae.


Asunto(s)
Brassica , Genoma del Cloroplasto , Brassica/genética , Filogenia , Análisis de Secuencia de ADN , Flores
13.
J Biol Chem ; 297(4): 101165, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34487761

RESUMEN

The bacterial insertion sequence (IS) IS26 mobilizes and disseminates antibiotic resistance genes. It differs from bacterial IS that have been studied to date as it exclusively forms cointegrates via either a copy-in (replicative) or a recently discovered targeted conservative mode. To investigate how the Tnp26 transposase recognizes the 14-bp terminal inverted repeats (TIRs) that bound the IS, amino acids in two domains in the N-terminal (amino acids M1-P56) region were replaced. These changes substantially reduced cointegration in both modes. Tnp26 was purified as a maltose-binding fusion protein and shown to bind specifically to dsDNA fragments that included an IS26 TIR. However, Tnp26 with an R49A or a W50A substitution in helix 3 of a predicted trihelical helix-turn-helix domain (amino acids I13-R53) or an F4A or F9A substitution replacing the conserved amino acids in a unique disordered N-terminal domain (amino acids M1-D12) did not bind. The N-terminal M1-P56 fragment also bound to the TIR but only at substantially higher concentrations, indicating that other parts of Tnp26 enhance the binding affinity. The binding site was confined to the internal part of the TIR, and a G to T nucleotide substitution in the TGT at positions 6 to 8 of the TIR that is conserved in most IS26 family members abolished binding of both Tnp26 (M1-M234) and Tnp26 M1-P56 fragment. These findings indicate that the helix-turn-helix and disordered domains of Tnp26 play a role in Tnp26-TIR complex formation. Both domains are conserved in all members of the IS26 family.


Asunto(s)
Elementos Transponibles de ADN , ADN Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Secuencias Repetidas Terminales , Transposasas/química , Sustitución de Aminoácidos , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación Missense , Dominios Proteicos , Transposasas/genética , Transposasas/metabolismo
14.
Plant J ; 107(1): 118-135, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33866641

RESUMEN

Transposable elements (TEs) are a rich source of genetic variability. Among TEs, miniature inverted-repeat TEs (MITEs) are of particular interest as they are present in high copy numbers in plant genomes and are closely associated with genes. MITEs are deletion derivatives of class II transposons, and can be mobilized by the transposases encoded by the latter through a typical cut-and-paste mechanism. However, MITEs are typically present at much higher copy numbers than class II transposons. We present here an analysis of 103 109 transposon insertion polymorphisms (TIPs) in 738 Oryza sativa genomes representing the main rice population groups. We show that an important fraction of MITE insertions has been fixed in rice concomitantly with its domestication. However, another fraction of MITE insertions is present at low frequencies. We performed MITE TIP-genome-wide association studies (TIP-GWAS) to study the impact of these elements on agronomically important traits and found that these elements uncover more trait associations than single nucleotide polymorphisms (SNPs) on important phenotypes such as grain width. Finally, using SNP-GWAS and TIP-GWAS we provide evidence of the replicative amplification of MITEs.


Asunto(s)
Elementos Transponibles de ADN/genética , Secuencias Invertidas Repetidas/genética , Oryza/genética , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Oryza/fisiología , Fenotipo , Polimorfismo de Nucleótido Simple
15.
BMC Genomics ; 23(1): 154, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35193500

RESUMEN

BACKGROUND: Plant miRNAs are a class of small non-coding RNAs that can repress gene expression at the post-transcriptional level by targeting RNA degradation or promoting translational repression. There is increasing evidence that some miRNAs can derive from a group of non-autonomous class II transposable elements called Miniature Inverted-repeat Transposable Elements (MITEs). RESULTS: We used public small RNA and degradome libraries from Triticum aestivum to screen for microRNAs production and predict their cleavage target sites. In parallel, we also created a comprehensive wheat MITE database by identifying novel elements and compiling known ones. When comparing both data sets, we found high homology between MITEs and 14% of all the miRNAs production sites detected. Furthermore, we show that MITE-derived miRNAs have preference for targeting degradation sites with MITE insertions in the 3' UTR regions of the transcripts. CONCLUSIONS: Our results revealed that MITE-derived miRNAs can underlay the origin of some miRNAs and potentially shape a regulatory gene network. Since MITEs are found in millions of insertions in the wheat genome and are closely linked to genic regions, this kind of regulatory network could have a significant impact on the post-transcriptional control of gene expression.


Asunto(s)
Elementos Transponibles de ADN , MicroARNs , Triticum , Elementos Transponibles de ADN/genética , Genoma de Planta , Secuencias Invertidas Repetidas , MicroARNs/genética , Triticum/genética
16.
BMC Plant Biol ; 22(1): 339, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35831794

RESUMEN

BACKGROUND: Fagopyrum (Polygonaceae) is a small plant lineage comprised of more than fifteen economically and medicinally important species. However, the phylogenetic relationships of the genus are not well explored, and the characteristics of Fagopyrum chloroplast genomes (plastomes) remain poorly understood so far. It restricts the comprehension of species diversity in Fagopyrum. Therefore, a comparative plastome analysis and comprehensive phylogenomic analyses are required to reveal the taxonomic relationship among species of Fagopyrum. RESULTS: In the current study, 12 plastomes were sequenced and assembled from eight species and two varieties of Fagopyrum. In the comparative analysis and phylogenetic analysis, eight previously published plastomes of Fagopyrum were also included. A total of 49 plastomes of other genera in Polygonaceae were retrieved from GenBank and used for comparative analysis with Fagopyrum. The variation of the Fagopyrum plastomes is mainly reflected in the size and boundaries of inverted repeat/single copy (IR/SC) regions. Fagopyrum is a relatively basal taxon in the phylogenomic framework of Polygonaceae comprising a relatively smaller plastome size (158,768-159,985 bp) than another genus of Polygonaceae (158,851-170,232 bp). A few genera of Polygonaceae have nested distribution of the IR/SC boundary variations. Although most species of Fagopyrum show the same IRb/SC boundary with species of Polygonaceae, only a few species show different IRa/SC boundaries. The phylogenomic analyses of Fagopyrum supported the cymosum and urophyllum groups and resolved the systematic position of subclades within the urophyllum group. Moreover, the repeat sequence types and numbers were found different between groups of Fagopyrum. The plastome sequence identity showed significant differences between intra-group and inter-group. CONCLUSIONS: The deletions of intergenic regions cause a short length of Fagopyrum plastomes, which may be the main reason for plastome size diversity in Polygonaceae species. The phylogenomic reconstruction combined with the characteristics comparison of plastomes supports grouping within Fagopyrum. The outcome of these genome resources may facilitate the taxonomy, germplasm resources identification as well as plant breeding of Fagopyrum.


Asunto(s)
Fagopyrum , Genoma del Cloroplasto , Polygonaceae , Evolución Molecular , Fagopyrum/genética , Genoma del Cloroplasto/genética , Filogenia , Fitomejoramiento , Polygonaceae/genética
17.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33115875

RESUMEN

Marek's disease virus (MDV) is an oncogenic alphaherpesvirus of chickens. The MDV genome consists of two unique regions that are both flanked by inverted repeat regions. These repeats harbor several genes involved in virus replication and pathogenesis, but it remains unclear why MDV and other herpesviruses harbor these large sequence duplications. In this study, we set to determine if both copies of these repeat regions are required for MDV replication and pathogenesis. Our results demonstrate that MDV mutants lacking the entire internal repeat region (ΔIRLS) efficiently replicate and spread from cell-to-cell in vitro However, ΔIRLS replication was severely impaired in infected chickens and the virus caused significantly less frequent disease and tumors compared to the controls. In addition, we also generated recombinant viruses that harbor a deletion of most of the internal repeat region, leaving only short terminal sequences behind (ΔIRLS-HR). These remaining homologous sequences facilitated rapid restoration of the deleted repeat region, resulting in a virus that caused disease and tumors comparable to the wild type. Therefore, ΔIRLS-HR represents an excellent platform for rapid genetic manipulation of the virus genome in the repeat regions. Taken together, our study demonstrates that MDV requires both copies of the repeats for efficient replication and pathogenesis in its natural host.IMPORTANCE Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that infects chickens and causes losses in the poultry industry of up to $2 billion per year. The virus is also widely used as a model to study alphaherpesvirus pathogenesis and virus-induced tumor development in a natural host. MDV and most other herpesviruses harbor direct or inverted repeats regions in their genome. However, the role of these sequence duplications in MDV remains elusive and has never been investigated in a natural virus-host model for any herpesvirus. Here, we demonstrate that both copies of the repeats are needed for efficient MDV replication and pathogenesis in vivo, while replication was not affected in cell culture. With this, we further dissect herpesvirus genome biology and the role of repeat regions in Marek's disease virus replication and pathogenesis.


Asunto(s)
Herpesvirus Gallináceo 2/genética , Herpesvirus Gallináceo 2/patogenicidad , Enfermedad de Marek/virología , Neoplasias/virología , Secuencias Repetitivas de Ácidos Nucleicos , Eliminación de Secuencia , Replicación Viral , Animales , Pollos , Genoma , Enfermedad de Marek/genética , Enfermedad de Marek/patología , Mutación , Neoplasias/genética , Neoplasias/patología
18.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36555263

RESUMEN

Expansion and contraction (ebb and flow events) of inverted repeat (IR) boundaries occur and are generally considered to be major factors affecting chloroplast (cp) genome size changes. Nonetheless, the Adiantum malesianum cp genome does not seem to follow this pattern. We sequenced, assembled and corrected the A. flabellulatum and A. malesianum cp genomes using the Illumina NovaSeq6000 platform, and we performed a comparative genome analysis of six Adiantum species. The results revealed differences in the IR/SC boundaries of A. malesianum caused by a 6876 bp long rpoB-trnD-GUC intergenic spacer (IGS) in the LSC. This IGS may create topological tension towards the LSC/IRb boundary in the cp genome, resulting in a sequential movement of the LSC genes. Consequently, this leads to changes of the IR/SC boundaries and may even destroy the integrity of trnT-UGU, which is located in IRs. This study provides evidence showing that it is the large rpoB-trnD-GUC IGS that leads to A. malesianum cp genome size change, rather than ebb and flow events. Then, the study provides a model to explain how the rpoB-trnD-GUC IGS in LSC affects A. malesianum IR/SC boundaries. Moreover, this study also provides useful data for dissecting the evolution of cp genomes of Adiantum. In future research, we can expand the sample to Pteridaceae to test whether this phenomenon is universal in Pteridaceae.


Asunto(s)
Adiantum , Genoma del Cloroplasto , Pteridaceae , Tamaño del Genoma , Filogenia , Evolución Molecular
19.
Int J Mol Sci ; 23(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35682854

RESUMEN

Cruciforms occur when inverted repeat sequences in double-stranded DNA adopt intra-strand hairpins on opposing strands. Biophysical and molecular studies of these structures confirm their characterization as four-way junctions and have demonstrated that several factors influence their stability, including overall chromatin structure and DNA supercoiling. Here, we review our understanding of processes that influence the formation and stability of cruciforms in genomes, covering the range of sequences shown to have biological significance. It is challenging to accurately sequence repetitive DNA sequences, but recent advances in sequencing methods have deepened understanding about the amounts of inverted repeats in genomes from all forms of life. We highlight that, in the majority of genomes, inverted repeats are present in higher numbers than is expected from a random occurrence. It is, therefore, becoming clear that inverted repeats play important roles in regulating many aspects of DNA metabolism, including replication, gene expression, and recombination. Cruciforms are targets for many architectural and regulatory proteins, including topoisomerases, p53, Rif1, and others. Notably, some of these proteins can induce the formation of cruciform structures when they bind to DNA. Inverted repeat sequences also influence the evolution of genomes, and growing evidence highlights their significance in several human diseases, suggesting that the inverted repeat sequences and/or DNA cruciforms could be useful therapeutic targets in some cases.


Asunto(s)
Ácidos Nucleicos , ADN/genética , ADN Cruciforme , Humanos , Secuencias Invertidas Repetidas , Conformación de Ácido Nucleico , Secuencias Repetitivas de Ácidos Nucleicos/genética
20.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35409332

RESUMEN

Inverted repeat (IR) DNA sequences compose cruciform structures. Some genetic disorders are the result of genome inversion or translocation by cruciform DNA structures. The present study examined whether exogenous DNA integration into the chromosomes of transgenic animals was related to cruciform DNA structures. Large imperfect cruciform structures were frequently predicted around predestinated transgene integration sites in host genomes of microinjection-based transgenic (Tg) animals (αLA-LPH Tg goat, Akr1A1eGFP/eGFP Tg mouse, and NFκB-Luc Tg mouse) or CRISPR/Cas9 gene-editing (GE) animals (αLA-AP1 GE mouse). Transgene cassettes were imperfectly matched with their predestinated sequences. According to the analyzed data, we proposed a putative model in which the flexible cruciform DNA structures acted as a legible template for DNA integration into linear DNAs or double-strand break (DSB) alleles. To demonstrate this model, artificial inverted repeat knock-in (KI) reporter plasmids were created to analyze the KI rate using the CRISPR/Cas9 system in NIH3T3 cells. Notably, the KI rate of the 5' homologous arm inverted repeat donor plasmid (5'IR) with the ROSA gRNA group (31.5%) was significantly higher than the knock-in reporter donor plasmid (KIR) with the ROSA gRNA group (21.3%, p < 0.05). However, the KI rate of the 3' inverted terminal repeat/inverted repeat donor plasmid (3'ITRIR) group was not different from the KIR group (23.0% vs. 22.0%). These results demonstrated that the legibility of the sequence with the cruciform DNA existing in the transgene promoted homologous recombination (HR) with a higher KI rate. Our findings suggest that flexible cruciform DNAs folded by IR sequences improve the legibility and accelerate DNA 3'-overhang integration into the host genome via homologous recombination machinery.


Asunto(s)
ADN Cruciforme , ARN Guía de Kinetoplastida , Animales , Recombinación Homóloga , Ratones , Ratones Transgénicos , Células 3T3 NIH , ARN Guía de Kinetoplastida/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA