Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 766
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mass Spectrom Rev ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087820

RESUMEN

Recently, ion mobility spectrometry-mass spectrometry (IMS-MS) has become more readily incorporated into various omics-based workflows. These growing applications are due to developments in instrumentation within the last decade that have enabled higher-resolution ion mobility separations. Two such platforms are the cyclic (cIMS) and structures for lossless ion manipulations (SLIM), both of which use traveling wave ion mobility spectrometry (TWIMS). High-resolution separations achieved with these techniques stem from the drastically increased pathlengths, on the order of 10 s of meters to >1 km, in both cIMS-MS and SLIM IMS-MS, respectively. Herein, we highlight recent developments and advances, for the period 2019-2023, in high-resolution traveling wave-based IMS-MS through instrumentation, calibration strategies, hyphenated techniques, and applications. Specifically, we will discuss applications including CCS calculations in multipass IMS-MS separations, coupling of IMS-MS with chromatography, imaging, and cryogenic infrared spectroscopy, and isomeric separations of glycans, lipids, and other small metabolites.

2.
Mass Spectrom Rev ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504498

RESUMEN

Mass spectrometry (MS) has become an essential technique to characterize dendrimers as it proved efficient at tackling analytical challenges raised by their peculiar onion-like structure. Owing to their chemical diversity, this review covers benefits of MS methods as a function of dendrimer classes, discussing advantages and limitations of ionization techniques, tandem mass spectrometry (MS/MS) strategies to determine the structure of defective species, as well as most recently demonstrated capabilities of ion mobility spectrometry (IMS) in the field. Complementarily, the well-defined structure of these macromolecules offers major advantages in the development of MS-based method, as reported in a second section reviewing uses of dendrimers as MS and IMS calibration standards and as multifunctional charge inversion reagents in gas phase ion/ion reactions.

3.
Mol Cell Proteomics ; 22(12): 100665, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839701

RESUMEN

Multiplexed and label-free mass spectrometry-based approaches with single-cell resolution have attributed surprising heterogeneity to presumed homogenous cell populations. Even though specialized experimental designs and instrumentation have demonstrated remarkable advances, the efficient sample preparation of single cells still lags. Here, we introduce the proteoCHIP, a universal option for single-cell proteomics sample preparation including multiplexed labeling up to 16-plex with high sensitivity and throughput. The automated processing using a commercial system combining single-cell isolation and picoliter dispensing, the cellenONE, reduces final sample volumes to low nanoliters submerged in a hexadecane layer simultaneously eliminating error-prone manual sample handling and overcoming evaporation. The specialized proteoCHIP design allows direct injection of single cells via a standard autosampler resulting in around 1500 protein groups per TMT10-plex with reduced or eliminated need for a carrier proteome. We evaluated the effect of wider precursor isolation windows at single-cell input levels and found that using 2 Da isolation windows increased overall sensitivity without significantly impacting interference. Using the dedicated mass spectrometry acquisition strategies detailed here, we identified on average close to 2000 proteins per TMT10-plex across 170 multiplexed single cells that readily distinguished human cell types. Overall, our workflow combines highly efficient sample preparation, chromatographic and ion mobility-based filtering, rapid wide-window data-dependent acquisition analysis, and intelligent data analysis for optimal multiplexed single-cell proteomics. This versatile and automated proteoCHIP-based sample preparation approach is sufficiently sensitive to drive biological applications of single-cell proteomics and can be readily adopted by proteomics laboratories.


Asunto(s)
Proteoma , Proteómica , Humanos , Proteómica/métodos , Flujo de Trabajo , Espectrometría de Masas/métodos , Proteoma/metabolismo
4.
Proteomics ; 24(3-4): e2200471, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38282202

RESUMEN

Enzymatic catalysis is one of the fundamental processes that drives the dynamic landscape of post-translational modifications (PTMs), expanding the structural and functional diversity of proteins. Here, we assessed enzyme specificity using a top-down ion mobility spectrometry (IMS) and tandem mass spectrometry (MS/MS) workflow. We successfully applied trapped IMS (TIMS) to investigate site-specific N-ε-acetylation of lysine residues of full-length histone H4 catalyzed by histone lysine acetyltransferase KAT8. We demonstrate that KAT8 exhibits a preference for N-ε-acetylation of residue K16, while also adding acetyl groups on residues K5 and K8 as the first degree of acetylation. Achieving TIMS resolving power values of up to 300, we fully separated mono-acetylated regioisomers (H4K5ac, H4K8ac, and H4K16ac). Each of these separated regioisomers produce unique MS/MS fragment ions, enabling estimation of their individual mobility distributions and the exact localization of the N-ε-acetylation sites. This study highlights the potential of top-down TIMS-MS/MS for conducting enzymatic assays at the intact protein level and, more generally, for separation and identification of intact isomeric proteoforms and precise PTM localization.


Asunto(s)
Espectrometría de Movilidad Iónica , Espectrometría de Masas en Tándem , Espectrometría de Movilidad Iónica/métodos , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación
5.
Proteomics ; 24(3-4): e2200389, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37963825

RESUMEN

Characterization of histone proteoforms with various post-translational modifications (PTMs) is critical for a better understanding of functions of histone proteoforms in epigenetic control of gene expression. Mass spectrometry (MS)-based top-down proteomics (TDP) is a valuable approach for delineating histone proteoforms because it can provide us with a bird's-eye view of histone proteoforms carrying diverse combinations of PTMs. Here, we present the first example of coupling capillary zone electrophoresis (CZE), ion mobility spectrometry (IMS), and MS for online multi-dimensional separations of histone proteoforms. Our CZE-high-field asymmetric waveform IMS (FAIMS)-MS/MS platform identified 366 (ProSight PD) and 602 (TopPIC) histone proteoforms from a commercial calf histone sample using a low microgram amount of histone sample as the starting material. CZE-FAIMS-MS/MS improved the number of histone proteoform identifications by about 3 folds compared to CZE-MS/MS alone (without FAIMS). The results indicate that CZE-FAIMS-MS/MS could be a useful tool for comprehensive characterization of histone proteoforms with high sensitivity.


Asunto(s)
Histonas , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Espectrometría de Movilidad Iónica , Procesamiento Proteico-Postraduccional , Electroforesis Capilar/métodos
6.
Proteomics ; 24(12-13): e2200436, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38438732

RESUMEN

Ion mobility spectrometry-mass spectrometry (IMS-MS or IM-MS) is a powerful analytical technique that combines the gas-phase separation capabilities of IM with the identification and quantification capabilities of MS. IM-MS can differentiate molecules with indistinguishable masses but different structures (e.g., isomers, isobars, molecular classes, and contaminant ions). The importance of this analytical technique is reflected by a staged increase in the number of applications for molecular characterization across a variety of fields, from different MS-based omics (proteomics, metabolomics, lipidomics, etc.) to the structural characterization of glycans, organic matter, proteins, and macromolecular complexes. With the increasing application of IM-MS there is a pressing need for effective and accessible computational tools. This article presents an overview of the most recent free and open-source software tools specifically tailored for the analysis and interpretation of data derived from IM-MS instrumentation. This review enumerates these tools and outlines their main algorithmic approaches, while highlighting representative applications across different fields. Finally, a discussion of current limitations and expectable improvements is presented.


Asunto(s)
Algoritmos , Espectrometría de Movilidad Iónica , Espectrometría de Masas , Programas Informáticos , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos , Proteómica/métodos , Metabolómica/métodos , Humanos
7.
J Lipid Res ; 65(6): 100567, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38795862

RESUMEN

Lipids play pivotal roles in an extensive range of metabolic and physiological processes. In recent years, the convergence of trapped ion mobility spectrometry and MS has enabled 4D-lipidomics, a highly promising technology for comprehensive lipid analysis. 4D-lipidomics assesses lipid annotations across four distinct dimensions-retention time, collisional cross section, m/z (mass-to-charge ratio), and MS/MS spectra-providing a heightened level of confidence in lipid annotation. These advantages prove particularly valuable when investigating complex disorders involving lipid metabolism, such as adrenoleukodystrophy (ALD). ALD is characterized by the accumulation of very-long-chain fatty acids (VLCFAs) due to pathogenic variants in the ABCD1 gene. A comprehensive 4D-lipidomics strategy of ALD fibroblasts demonstrated significant elevations of various lipids from multiple classes. This indicates that the changes observed in ALD are not confined to a single lipid class and likely impacts a broad spectrum of lipid-mediated physiological processes. Our findings highlight the incorporation of mainly saturated and monounsaturated VLCFA variants into a range of lipid classes, encompassing phosphatidylcholines, triacylglycerols, and cholesterol esters. These include ultra-long-chain fatty acids with a length of up to thirty carbon atoms. Lipid species containing C26:0 and C26:1 were the most frequently detected VLCFA lipids in our study. Furthermore, we report a panel of 121 new candidate biomarkers in fibroblasts, exhibiting significant differentiation between controls and individuals with ALD. In summary, this study demonstrates the capabilities of a 4D-lipid profiling workflow in unraveling novel insights into the intricate lipid modifications associated with metabolic disorders like ALD.


Asunto(s)
Adrenoleucodistrofia , Espectrometría de Movilidad Iónica , Lipidómica , Adrenoleucodistrofia/metabolismo , Adrenoleucodistrofia/genética , Humanos , Lipidómica/métodos , Lípidos/análisis , Metabolismo de los Lípidos
8.
J Proteome Res ; 23(9): 3867-3876, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39177337

RESUMEN

The amino acid position within a histone sequence and the chemical nature of post-translational modifications (PTMs) are essential for elucidating the "Histone Code". Previous work has shown that PTMs induce specific biological responses and are good candidates as biomarkers for diagnostics. Here, we evaluate the analytical advantages of trapped ion mobility (TIMS) with parallel accumulation-serial fragmentation (PASEF) and tandem mass spectrometry (MS/MS) for bottom-up proteomics of model cancer cells. The study also considered the use of nanoliquid chromatography (LC) and traditional methods: LC-TIMS-PASEF-ToF MS/MS vs nLC-TIMS-PASEF-ToF MS/MS vs nLC-MS/MS. The addition of TIMS and PASEF-MS/MS increased the number of detected peptides due to the added separation dimension. All three methods showed high reproducibility and low RSD in the MS domain (<5 ppm). While the LC, nLC and TIMS separations showed small RSD across samples, the accurate mobility (1/K0) measurements (<0.6% RSD) increased the confidence of peptide assignments. Trends were observed in the retention time and mobility concerning the number and type of PTMs (e.g., ac, me1-3) and their corresponding unmodified, propionylated peptide that aided in peptide assignment. Mobility separation permitted the annotation of coeluting structural and positional isomers and compared with nLC-MS/MS showed several advantages due to reduced chemical noise.


Asunto(s)
Histonas , Espectrometría de Movilidad Iónica , Procesamiento Proteico-Postraduccional , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Histonas/química , Histonas/análisis , Humanos , Cromatografía Liquida/métodos , Espectrometría de Movilidad Iónica/métodos , Proteómica/métodos , Secuencia de Aminoácidos , Reproducibilidad de los Resultados , Línea Celular Tumoral , Datos de Secuencia Molecular
9.
Prostate ; 84(8): 756-762, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38497426

RESUMEN

BACKGROUND: Many diseases leave behind specific metabolites which can be detected from breath and urine as volatile organic compounds (VOC). Our group previously described VOC-based methods for the detection of bladder cancer and urinary tract infections. This study investigated whether prostate cancer can be diagnosed from VOCs in urine headspace. METHODS: For this pilot study, mid-stream urine samples were collected from 56 patients with histologically confirmed prostate cancer. A control group was formed with 53 healthy male volunteers matched for age who had recently undergone a negative screening by prostate-specific antigen (PSA) and digital rectal exam. Headspace measurements were performed with the electronic nose Cyranose 320TM. Statistical comparison was performed using principal component analysis, calculating Mahalanobis distance, and linear discriminant analysis. Further measurements were carried out with ion mobility spectrometry (IMS) to compare detection accuracy and to identify potential individual analytes. Bonferroni correction was applied for multiple testing. RESULTS: The electronic nose yielded a sensitivity of 77% and specificity of 62%. Mahalanobis distance was 0.964, which is indicative of limited group separation. IMS identified a total of 38 individual analytical peaks, two of which showed significant differences between groups (p < 0.05). To discriminate between tumor and controls, a decision tree with nine steps was generated. This model led to a sensitivity of 98% and specificity of 100%. CONCLUSIONS: VOC-based detection of prostate cancer seems feasible in principle. While the first results with an electronic nose show some limitations, the approach can compete with other urine-based marker systems. However, it seems less reliable than PSA testing. IMS is more accurate than the electronic nose with promising sensitivity and specificity, which warrants further research. The individual relevant metabolites identified by IMS should further be characterized using gas chromatography/mass spectrometry to facilitate potential targeted rapid testing.


Asunto(s)
Nariz Electrónica , Espectrometría de Movilidad Iónica , Neoplasias de la Próstata , Compuestos Orgánicos Volátiles , Humanos , Masculino , Compuestos Orgánicos Volátiles/orina , Compuestos Orgánicos Volátiles/análisis , Neoplasias de la Próstata/orina , Neoplasias de la Próstata/diagnóstico , Espectrometría de Movilidad Iónica/métodos , Anciano , Persona de Mediana Edad , Proyectos Piloto , Sensibilidad y Especificidad , Anciano de 80 o más Años
10.
Mass Spectrom Rev ; 42(4): 1129-1151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34747528

RESUMEN

An increasing number of studies take advantage of ion mobility spectrometry (IMS) coupled to mass spectrometry (IMS-MS) to investigate the spatial structure of gaseous ions. Synthetic polymers occupy a unique place in the field of IMS-MS. Indeed, due to their intrinsic dispersity, they offer a broad range of homologous ions with different lengths. To help rationalize experimental data, various theoretical approaches have been described. First, the study of trend lines is proposed to derive physicochemical and structural parameters. However, the evaluation of data fitting reflects the overall behavior of the ions without reflecting specific information on their conformation. Atomistic simulations constitute another approach that provide accurate information about the ion shape. The overall scope of this review is dedicated to the synergy between IMS-MS and theoretical approaches, including computational chemistry, demonstrating the essential role they play to fully understand/interpret IMS-MS data.

11.
Anal Biochem ; 687: 115427, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38123110

RESUMEN

In practical applications, analytical instruments are used for both qualitative and quantitative analysis. However, for high-field asymmetric-waveform ion mobility spectrometry (FAIMS), most studies to date have been focused on the qualitative analysis of substances, with limited research on quantitative analysis. Explored here is the feasibility of using deep learning in FAIMS for quantitative analysis, aided by redesigning the FAIMS upper computer. Integrating spectrum creation and deep learning analysis into the FAIMS upper computer boosts the processing and analysis of FAIMS data, laying a foundation for applying FAIMS practically. For analysis using image processing, multiple FAIMS spectral lines obtained under different conditions are converted into a three-dimensional thermodynamic map known as a FAIMS spectrum, and multiple FAIMS spectrum are preprocessed to obtain the data set of this experiment. The principles of partial-least-squares regression and the XGBoost and ResNeXt models are introduced in detail, and the data are analyzed using these models, while exploring the effects of different model parameters and determining their optimal values. The experimental results show that the pre-trained ResNeXt deep learning model performs the best on the test set, with a root mean square error of 0.86 mg/mL, indicating the potential of deep learning in realizing quantitative analysis of substances in FAIMS.


Asunto(s)
Aprendizaje Profundo , Espectrometría de Movilidad Iónica , Espectrometría de Movilidad Iónica/métodos , Acetona
12.
World J Urol ; 42(1): 353, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795133

RESUMEN

PURPOSE: Despite many efforts, no reliable urinary marker system has so far shown the potential to substitute cystoscopy. Measuring volatile organic compounds (VOCs) from urine is a promising alternative. VOCs are metabolic products which can be measured from the headspace of urine samples. Previous studies confirmed that the urine of bladder tumor patients has a different VOC profile than healthy controls. In this pilot study, the feasibility of discriminating VOCs from urine of bladder cancer patients from that of healthy control subjects was investigated. Aim of this study was to investigate whether VOC-based diagnosis of bladder cancer from urine samples is feasible using multicapillary column ion mobility spectrometry (MCC/IMS) and to identify potential molecular correlates to the relevant analytes. METHODS: Headspace measurements of urine samples of 30 patients with confirmed transitional cell carcinoma (TCC) and 30 healthy controls were performed using MCC/IMS. In the results of the measurements, peaks showing significant differences between both groups were identified and implemented into a decision tree with respect to achieve group separation. Molecular correlates were predicted using a pre-defined dataset. RESULTS: Eight peaks with significantly differing intensity were identified, 5 of which were highly significant. Using a six-step decision tree, MCC/IMS showed a sensitivity of 90% and specificity of 100% in group separation. CONCLUSION: VOC-based detection of bladder cancer is feasible. MCC/IMS is a suitable method for urine-based diagnosis and should be further validated. The molecular characteristics and metabolic background of the analytes require further workup.


Asunto(s)
Carcinoma de Células Transicionales , Espectrometría de Movilidad Iónica , Neoplasias de la Vejiga Urinaria , Compuestos Orgánicos Volátiles , Humanos , Neoplasias de la Vejiga Urinaria/orina , Neoplasias de la Vejiga Urinaria/diagnóstico , Compuestos Orgánicos Volátiles/orina , Proyectos Piloto , Espectrometría de Movilidad Iónica/métodos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Carcinoma de Células Transicionales/orina , Carcinoma de Células Transicionales/diagnóstico , Estudios de Factibilidad , Anciano de 80 o más Años , Biomarcadores de Tumor/orina
13.
Am J Bot ; : e16408, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39305022

RESUMEN

PREMISE: Plants generate a wide array of signals such as olfactory cues to attract and manipulate the response of pollinators. The present study addresses the temporal patterns of scent emission as an additional dimension to the scent composition. The expectation is that divergent floral function is reflected in divergent qualitative and temporal emission patterns. METHODS: We used GC-ion mobility spectrometry with an integrated pre-concentration for automated acquisition of the temporal trends in floral volatile emissions for N. viridiflorus, N. papyraceus, and N. cantabricus subsp. foliosus. RESULTS: We found a considerable increase in scent emissions and changes in scent composition for N. viridiflorus at night. This increase was particularly pronounced for aromatic substances such as benzyl acetate and p-cresol. We found no diurnal patterns in N. papyraceus, despite a similar qualitative composition of floral volatiles. Narcissus cantabricus subsp. foliosus showed no diurnal patterns either and differed considerably in floral scent composition. CONCLUSIONS: Scent composition, circadian emission patterns, and floral morphology indicate divergent, but partially overlapping pollinator communities. However, the limited pollinator data from the field only permits a tentative correlation between emission patterns and flower visitors. Narcissus papyraceus and N. cantabricus show no clear diurnal patterns and thus no adjustment to the activity patterns of their diurnal pollinators. In N. viridiflorus, timing of scent emission indicates an adaptation to nocturnal flower visitors, contradicting Macroglossum as the only reported pollinator. We propose that the legitimate pollinators of N. viridiflorus are nocturnal and are still unidentified.

14.
Environ Sci Technol ; 58(32): 14486-14495, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39066709

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a class of thousands of man-made chemicals that are persistent and highly stable in the environment. Fish consumption has been identified as a key route of PFAS exposure for humans. However, routine fish monitoring targets only a handful of PFAS, and non-targeted analyses have largely only evaluated fish from heavily PFAS-impacted waters. Here, we evaluated PFAS in fish fillets from recreational and drinking water sources in central North Carolina to assess whether PFAS are present in these fillets that would not be detected by conventional targeted methods. We used liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) to collect full scan feature data, performed suspect screening using an in-house library of 100 PFAS for high confidence feature identification, searched for additional PFAS features using non-targeted data analyses, and quantified perfluorooctanesulfonic acid (PFOS) in the fillet samples. A total of 36 PFAS were detected in the fish fillets, including 19 that would not be detected using common targeted methods, with a minimum of 6 and a maximum of 22 in individual fish. Median fillet PFOS levels were concerningly high at 11.6 to 42.3 ppb, and no significant correlation between PFOS levels and number of PFAS per fish was observed. Future PFAS monitoring in this region should target more of these 36 PFAS, and other regions not considered heavily PFAS contaminated should consider incorporating non-targeted analyses into ongoing fish monitoring studies.


Asunto(s)
Peces , Contaminantes Químicos del Agua , Animales , Peces/metabolismo , Contaminantes Químicos del Agua/análisis , Fluorocarburos/análisis , North Carolina , Cromatografía Liquida , Monitoreo del Ambiente , Ácidos Alcanesulfónicos/análisis
15.
Environ Sci Technol ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264360

RESUMEN

Quaternary ammonium compounds (QACs) are high-production chemicals used as cleaning and disinfecting agents. Due to their ubiquitous presence in the environment and several toxic effects described, human exposure to these chemicals gained increasing attention in recent years. However, very limited data on the biotransformation of QACs is available, hampering exposure assessment. In this study, three QACs (dimethyl dodecyl ammonium, C10-DDAC; benzyldimethyl dodecylammonium, C12-BAC; cetyltrimethylammonium, C16-ATMAC) commonly detected in indoor microenvironments were incubated with human liver microsomes and cytosol (HLM/HLC) simulating Phase I and II metabolism. Thirty-one Phase I metabolites were annotated originating from 19 biotransformation reactions. Four metabolites of C10-DDAC were described for the first time. A detailed assessment of experimental fragmentation spectra allowed to characterize potential oxidation sites. For each annotated metabolite, drift-tube ion-mobility derived collision cross section (DTCCSN2) values were reported, serving as an additional identification parameter and allowing the characterization of changes in DTCCSN2 values following metabolism. Lastly, eight metabolites, including four metabolites of both C12-BAC and C10-DDAC, were confirmed in human urine samples showing high oxidation states through introduction of up to four oxygen atoms. This is the first report of higher oxidized C10-DDAC metabolites in human urine facilitating future biomonitoring studies on QACs.

16.
Anal Bioanal Chem ; 416(2): 559-568, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040943

RESUMEN

Ion mobility spectrometry-mass spectrometry (IMS-MS) separates gas phase ions due to differences in drift time from which reproducible and analyte-specific collision cross section (CCS) values can be derived. Internally conducted in vitro and in vivo metabolism (biotransformation) studies indicated repetitive shifts in measured CCS values (CCSmeas) between parent drugs and their metabolites. Hence, the purpose of the present article was (i) to investigate if such relative shifts in CCSmeas were biotransformation-specific and (ii) to highlight their potential benefits for biotransformation studies. First, mean CCSmeas values of 165 compounds were determined (up to n = 3) using a travelling wave IMS-MS device with nitrogen as drift gas (TWCCSN2, meas). Further comparison with their predicted values (TWCCSN2, pred, Waters CCSonDemand) resulted in a mean absolute error of 5.1%. Second, a reduced data set (n = 139) was utilized to create compound pairs (n = 86) covering eight common types of phase I and II biotransformations. Constant, discriminative, and almost non-overlapping relative shifts in mean TWCCSN2, meas were obtained for demethylation (- 6.5 ± 2.1 Å2), oxygenation (hydroxylation + 3.8 ± 1.4 Å2, N-oxidation + 3.4 ± 3.3 Å2), acetylation (+ 13.5 ± 1.9 Å2), sulfation (+ 17.9 ± 4.4 Å2), glucuronidation (N-linked: + 41.7 ± 7.5 Å2, O-linked: + 38.1 ± 8.9 Å2), and glutathione conjugation (+ 49.2 ± 13.2 Å2). Consequently, we propose to consider such relative shifts in TWCCSN2, meas (rather than absolute values) as well for metabolite assignment/confirmation complementing the conventional approach to associate changes in mass-to-charge (m/z) values between a parent drug and its metabolite(s). Moreover, the comparison of relative shifts in TWCCSN2, meas significantly simplifies the mapping of metabolites into metabolic pathways as demonstrated.


Asunto(s)
Cisteamina , Nitrógeno , Espectrometría de Masas/métodos , Biotransformación
17.
Anal Bioanal Chem ; 416(1): 151-162, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37917349

RESUMEN

Lipid droplets (LDs) are intracellular storage vesicles composed of a neutral lipid core surrounded by a glycerophospholipid membrane. LD accumulation is associated with different stages of cancer progression and stress responses resulting from chemotherapy. In previous work, a novel dual nano-electrospray ionization source and data-dependent acquisition method for measuring the relative abundances of lipid species between two extracts were described and validated. Here, this same source and method were used to determine if oxaliplatin-sensitive and resistant cells undergo similar lipid profile changes, with the goal of identifying potential signatures that could predict the effectiveness of an oxaliplatin-containing treatment. Oxaliplatin is commonly used in the treatment of colorectal cancer. When compared to a no-drug control, oxaliplatin dosing caused significant increases in triglyceride (TG) and cholesterol ester (CE) species. These increases were more pronounced in the oxaliplatin-sensitive cells than in oxaliplatin-resistant cells. The increased neutral lipid abundance correlated with LD formation, as confirmed by confocal micrographs of Nile Red-stained cells. Untargeted proteomic analyses also support LD formation after oxaliplatin treatment, with an increased abundance of LD-associated proteins in both the sensitive and resistant cells.


Asunto(s)
Gotas Lipídicas , Proteómica , Humanos , Oxaliplatino/farmacología , Gotas Lipídicas/metabolismo , Células HCT116 , Proteómica/métodos , Triglicéridos/metabolismo
18.
Anal Bioanal Chem ; 416(1): 313-319, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37940728

RESUMEN

Steroids are one of the important indicators of health and disease. However, due to the high similarity of steroid structures, there are several potential obstacles in the differentiation of steroids, especially for their isomers. Herein, we described a trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) approach based on the steroid analogue adduction for isomer-specific identification of steroids. The application of dexamethasone (DEX) to form heterodimers with steroids enhanced the separation of their isomers in TIMS. Two isomer pairs including 17-hydroxyprogesterone/11-deoxycorticosterone and androsterone/epiandrosterone were successfully separated as the heterodimers with DEX by TIMS. The stability of DEX-adducted heterodimers is comparable with steroid dimers. Owing to the high separation efficiency and stability, the relative quantification of steroid isomers was demonstrated with the proposed method.


Asunto(s)
Espectrometría de Movilidad Iónica , Esteroides , Espectrometría de Movilidad Iónica/métodos , Isomerismo , Espectrometría de Masas/métodos , Esteroides/análisis
19.
Anal Bioanal Chem ; 416(23): 5037-5048, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39031229

RESUMEN

The emergence of a crystal nucleus from disordered states is a critical and challenging aspect of the crystallization process, primarily due to the extremely short length and timescales involved. Methods such as liquid-cell or low-dose focal-series transmission electron microscopy (TEM) are often employed to probe these events. In this study, we demonstrate that ion mobility spectrometry-mass spectrometry (IMS-MS) offers a complementary and insightful perspective on the nucleation process by examining the sizes and shapes of small clusters, specifically those ranging from n = 2 to 40. Our findings reveal the significant role of sulfate ions in the growth of adeninediium sulfate clusters, which are the precursors to the formation of single crystals. Specifically, sulfate ions stabilize adenine clusters at the 1:1 ratio. In contrast, guanine sulfate forms smaller clusters with varied ratios, which become stable as they approach the 1:2 ratio. The nucleation size is predicted to be between n = 8 and 14, correlating well with the unit cell dimensions of adenine crystals. This correlation suggests that IMS-MS can identify critical nucleation sizes and provide valuable structural information consistent with established crystallographic data. We also discuss the strengths and limitations of IMS-MS in this context. IMS-MS offers rapid and robust experimental protocols, making it a valuable tool for studying the effects of various additives on the assembly of small molecules. Additionally, it aids in elucidating nucleation processes and the growth of different crystal polymorphs.

20.
Anal Bioanal Chem ; 416(25): 5423-5429, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38814344

RESUMEN

The importance of lipids in biology continues to grow with their recent linkages to more diseases and conditions, microbiome fluctuations, and environmental exposures. These associations have motivated researchers to evaluate lipidomic changes in numerous matrices and studies. Lipidomic analyses, however, present numerous challenges as lipid species have broad chemistries that require different extraction methods and instrumental analyses to evaluate and separate their many isomers and isobars. Increasing knowledge about different lipid characteristics is therefore crucial for improving their separation and identification. Here, we present a multidimensional database for lipids analyzed on a platform combining reversed-phase liquid chromatography, drift tube ion mobility spectrometry, collision-induced dissociation, and mass spectrometry (RPLC-DTIMS-CID-MS). This platform and the different separation characteristics it provides enables more confident lipid annotations when compared to traditional tandem mass spectrometry platforms, especially when analyzing highly isomeric molecules such as lipids. This database expands on our previous publication containing only human plasma and bronchoalveolar lavage fluid lipids and provides experimental RPLC retention times, IMS collision cross section (CCS) values, and m/z information for 877 unique lipids from additional biofluids and tissues. Specifically, the database contains 1504 precursor [M + H]+, [M + NH4]+, [M + Na]+, [M-H]-, [M-2H]2-, [M + HCOO]-, and [M + CH3COO]- ion species and their associated CID fragments which are commonly targeted in clinical and environmental studies, in addition to being present in the chloroform layer of Folch extractions. Furthermore, this multidimensional RPLC-DTIMS-CID-MS database spans 5 lipid categories (fatty acids, sterols, sphingolipids, glycerolipids, and glycerophospholipids) and 24 lipid classes. We have also created a webpage (tarheels.live/bakerlab/databases/) to enhance the accessibility of this resource which will be populated regularly with new lipids as we identify additional species and integrate novel standards.


Asunto(s)
Bases de Datos Factuales , Espectrometría de Movilidad Iónica , Lipidómica , Lípidos , Espectrometría de Masas en Tándem , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas en Tándem/métodos , Lipidómica/métodos , Humanos , Lípidos/análisis , Lípidos/química , Cromatografía Liquida/métodos , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA