Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 244: 117783, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38048862

RESUMEN

Although bone marrow mesenchymal stem cells (BM-MSCs)-derived exosomes have been reported to be closely associated with acute myeloid leukemia (AML) progression and chemo-resistance, but its detailed functions and molecular mechanisms have not been fully delineated. Besides, serum RNA m6A demethylase fat mass and obesity-associated protein (FTO)-containing exosomes are deemed as important indicators for cancer progression, and this study aimed to investigate the role of BM-MSCs-derived FTO-exosomes in regulating the malignant phenotypes of AML cells. Here, we verified that BM-MSCs-derived exosomes delivered FTO to promote cancer aggressiveness, stem cell properties and Cytosine arabinoside (Ara-C)-chemoresistance in AML cells, and the underlying mechanisms were also uncovered. Our data suggested that BM-MSCs-derived FTO-exo demethylated m6A modifications in the m6A-modified LncRNA GLCC1 to facilitate its combination with the RNA-binding protein Hu antigen R (HuR), which further increased the stability and expression levels of LncRNA GLCC1. In addition, LncRNA GLCC1 was verified as an oncogene to facilitate cell proliferation and enhanced Ara-C-chemoresistance in AML cells. Further experiments confirmed that demethylated LncRNA GLCC1 served as scaffold to facilitate the formation of the IGF2 mRNA binding protein 1 (IGF2BP1)-c-Myc complex, which led to the activation of the downstream tumor-promoting c-Myc-associated signal pathways. Moreover, our rescuing experiments validated that the promoting effects of BM-MSCs-derived FTO-exo on cancer aggressiveness and drug resistance in AML cells were abrogated by silencing LncRNA GLCC1 and c-Myc. Thus, the present firstly investigated the functions and underlying mechanisms by which BM-MSCs-derived FTO-exo enhanced cancer aggressiveness and chemo-resistance in AML by modulating the LncRNA GLCC1-IGF2BP1-c-Myc signal pathway, and our work provided novel biomarkers for the diagnosis, treatment and therapy of AML in clinic.


Asunto(s)
Adenina/análogos & derivados , Exosomas , Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , ARN Largo no Codificante , Humanos , Exosomas/metabolismo , Exosomas/patología , Resistencia a Antineoplásicos , ARN Largo no Codificante/metabolismo , Leucemia Mieloide Aguda/genética , Citarabina/farmacología , Citarabina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Desmetilación , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
2.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928344

RESUMEN

The association between leukemic stem cells (LSCs) and leukemia development has been widely established in the context of genetic alterations, epigenetic pathways, and signaling pathway regulation. Hematopoietic stem cells are at the top of the bone marrow hierarchy and can self-renew and progressively generate blood and immune cells. The microenvironment, niche cells, and complex signaling pathways that regulate them acquire genetic mutations and epigenetic alterations due to aging, a chronic inflammatory environment, stress, and cancer, resulting in hematopoietic stem cell dysregulation and the production of abnormal blood and immune cells, leading to hematological malignancies and blood cancer. Cells that acquire these mutations grow at a faster rate than other cells and induce clone expansion. Excessive growth leads to the development of blood cancers. Standard therapy targets blast cells, which proliferate rapidly; however, LSCs that can induce disease recurrence remain after treatment, leading to recurrence and poor prognosis. To overcome these limitations, researchers have focused on the characteristics and signaling systems of LSCs and therapies that target them to block LSCs. This review aims to provide a comprehensive understanding of the types of hematopoietic malignancies, the characteristics of leukemic stem cells that cause them, the mechanisms by which these cells acquire chemotherapy resistance, and the therapies targeting these mechanisms.


Asunto(s)
Neoplasias Hematológicas , Células Madre Neoplásicas , Humanos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Neoplasias Hematológicas/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Hematopoyéticas/metabolismo , Leucemia/patología , Leucemia/genética , Leucemia/metabolismo , Transducción de Señal , Animales , Microambiente Tumoral/genética , Resistencia a Antineoplásicos/genética , Epigénesis Genética , Mutación
3.
Rinsho Ketsueki ; 65(5): 385-389, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38825517

RESUMEN

Imatinib, the first ABL-tyrosine kinase inhibitor (TKI), was approved in 2000 for the treatment of chronic myeloid leukemia (CML). Second- and third-generation TKIs, as well as asciminib, which targets a different site of BCR-ABL1 (the myristoyl pocket), were later approved in 2022. Currently, six drugs are approved for the treatment of CML. Revisions to the clinical guidelines for hematopoietic tumors in 2023 provided new guidance on the utility of new agents as well as TKI dose reduction and treatment discontinuation. This article outlines recently reported predictions regarding TKI treatment response, the role of asciminib in the treatment of CML, and development of new agents, as well as the latest findings regarding the current state of TKI treatment discontinuation.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Inhibidores de Proteínas Quinasas , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/diagnóstico , Inhibidores de Proteínas Quinasas/uso terapéutico , Antineoplásicos/uso terapéutico
4.
Curr Issues Mol Biol ; 45(3): 2121-2135, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36975506

RESUMEN

Mesenchymal stromal cells (MSC) are part of the bone marrow architecture and contribute to the homeostasis of hematopoietic stem cells. Moreover, they are known to regulate immune effector cells. These properties of MSC are pivotal under physiologic conditions, and they may aberrantly also protect malignant cells. MSCs are also found in the leukemic stem cell niche of the bone marrow and as part of the tumor microenvironment. Here, they protect malignant cells from chemotherapeutic drugs and from immune effector cells in immunotherapeutic approaches. Modulation of these mechanisms may improve the efficacy of therapeutic regimens. We investigated the effect of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA, Vorinostat™) on the immunomodulatory effect and cytokine profile of MSC derived from bone marrow and pediatric tumors. The immune phenotype of MSC was not markedly affected. SAHA-treated MSC showed reduced immunomodulatory effects on T cell proliferation and NK cell cytotoxicity. This effect was accompanied by an altered cytokine profile of MSC. While untreated MSC inhibited the production of certain pro-inflammatory cytokines, SAHA treatment led to a partial increase in IFNγ and TNFα secretion. These alterations of the immunosuppressive milieu might be beneficial for immunotherapeutic approaches.

5.
J Cell Sci ; 134(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34435622

RESUMEN

Leukemic stem cells (LSCs) adhere to bone niches through adhesion molecules. These interactions, which are deeply reorganized in tumors, contribute to LSC resistance to chemotherapy and leukemia relapse. However, LSC adhesion mechanisms and potential therapeutic disruption using blocking antibodies remain largely unknown. Junctional adhesion molecule C (JAM-C, also known as JAM3) overexpression by LSCs correlates with increased leukemia severity, and thus constitutes a putative therapeutic target. Here, we took advantage of the ability of nanoscopy to detect single molecules with nanometric accuracy to characterize junctional adhesion molecule (JAM) dynamics at leuko-stromal contacts. Videonanoscopy trajectories were reconstructed using our dedicated multi-target tracing algorithm, pipelined with dual-color analyses (MTT2col). JAM-C expressed by LSCs engaged in transient interactions with JAM-B (also known as JAM2) expressed by stromal cells. JAM recruitment and colocalization at cell contacts were proportional to JAM-C level and reduced by a blocking anti-JAM-C antibody. MTT2col revealed, at single-molecule resolution, the ability of blocking antibodies to destabilize LSC binding to their niches, opening opportunities for disrupting LSC resistance mechanisms.


Asunto(s)
Células Madre Mesenquimatosas , Adhesión Celular , Moléculas de Adhesión Celular/genética
6.
Cell Commun Signal ; 21(1): 283, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828578

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) is an aggressive hematologic malignancy characterized by an accumulation of immature leukemic myeloblasts initiating from leukemic stem cells (LSCs)-the subpopulation that is also considered the root cause of chemotherapy resistance. Repurposing cardiac glycosides to treat cancers has gained increasing attention and supporting evidence, but how cardiac glycosides effectively target LSCs, e.g., whether it involves cell differentiation, remains largely unexplored. METHODS: Digoxin, a user-designed digitoxigenin-α-L-rhamnoside (D6-MA), and ouabain were tested against various human AML-derived cells with different maturation phenotypes. Herein, we established two study models to specifically determine the effects of cardiac glycosides on LSC death and differentiation-one allowed change in dynamics of LSCs and leukemic progenitor cells (LPCs), while another maintained their undifferentiated status. Regulatory mechanisms underlying cardiac glycoside-induced cytotoxicity were investigated and linked to cell cycle distribution and apoptotic machinery. RESULTS: Primitive AML cells containing CD34+ LSCs/LPCs were very responsive to nanomolar concentrations of cardiac glycosides, with ouabain showing the greatest efficiency. Ouabain preferentially induces caspase-dependent apoptosis in LSCs, independent of its cell differentiation status, as evidenced by (i) the tremendous induction of apoptosis by ouabain in AML cells that acquired less than 15% differentiation and (ii) the higher rate of apoptosis in enriched LSCs than in LPCs. We sorted LSCs and LPCs according to their cell cycle distribution into G0/G1, S, and G2/M cells and revealed that G0/G1 cells in LSCs, which was its major subpopulation, were the top ouabain responders, indicating that the difference in ouabain sensitivity between LSCs and LPCs involved both distinct cell cycle distribution and intrinsic apoptosis regulatory mechanisms. Further, Mcl-1 and c-Myc, which were differentially expressed in LSCs and LPCs, were found to be the key apoptosis mediators that determined ouabain sensitivity in AML cells. Ouabain induces a more rapid loss of Mcl-1 and c-Myc in LSCs than in LPCs via the mechanisms that in part involve an inhibition of Mcl-1 protein synthesis and an induction of c-Myc degradation. CONCLUSIONS: Our data provide new insight for repurposing cardiac glycosides for the treatment of relapsed/refractory AML through targeting LSCs via distinct cell cycle and apoptosis machinery. Video Abstract.


Asunto(s)
Glicósidos Cardíacos , Leucemia Mieloide Aguda , Humanos , Glicósidos Cardíacos/farmacología , Glicósidos Cardíacos/metabolismo , Glicósidos Cardíacos/uso terapéutico , Ouabaína/farmacología , Ouabaína/metabolismo , Ouabaína/uso terapéutico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Leucemia Mieloide Aguda/patología , Diferenciación Celular , Células Madre/metabolismo , Células Madre Neoplásicas/metabolismo , Apoptosis
7.
Adv Exp Med Biol ; 1442: 125-135, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38228962

RESUMEN

Hematopoietic stem cells (HSCs) are the source for all blood cells, including immune cells, and they interact dynamically with the immune system. This chapter will explore the nature of stem cells, particularly HSCs, in the context of their immune microenvironment. The dynamic interactions between stem cells and the immune system can have profound implications for current and future therapies, particularly regarding a potential "immune-privileged" HSC microenvironment. Immune/stem cell interactions change during times of stress and injury. Recent advances in cancer immunotherapy have overturned the long-standing belief that, being derived from the self, cancer cells should be immunotolerant. Instead, an immunosurveillance system recognizes and eliminates emergent pre-cancerous cells. Only in the context of a failing immunosurveillance system does cancer fully develop. Combined with the knowledge that stem cells or their unique properties can be critically important for cancer initiation, persistence, and resistance to therapy, understanding the unique immune properties of stem cells will be critical for the development of future cancer therapies. Accordingly, the therapeutic implications for leukemic stem cells (LSCs) inheriting an immune-privileged state from HSCs will be discussed. Through their dynamic interactions with a diverse immune system, stem cells serve as the light and dark root of cancer prevention vs. development.


Asunto(s)
Leucemia , Nicho de Células Madre , Humanos , Células Madre Neoplásicas , Células Madre Hematopoyéticas , Leucemia/terapia , Sistema Inmunológico , Microambiente Tumoral
8.
Curr Oncol Rep ; 24(4): 415-426, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35141859

RESUMEN

PURPOSE OF REVIEW: Clinical factors alone do not enable us to differentiate which patients will maintain treatment-free remission (TFR) from those who are likely to relapse. Thus, patient-specific factors must also play a role. This review will update the reader on the most recent studies presenting biological factors that can help predict tyrosine kinase inhibitor (TKI) discontinuation success. RECENT FINDINGS: Cellular and molecular factors with a suggested role in TFR include immune factors and leukemic stem cell (LSC) persistence; the BCR::ABL1 transcript type, halving time, and BCR::ABL1 DNA and RNA positivity; as well as other molecular factors such as somatic mutations, RNA expression, and telomere length. Our review presents several biomarkers with predictive value for TFR but also highlights areas of unmet need. Future discontinuation guidelines will likely include biological factors for the personalization of TFR prediction. However, it will be important that such advances do not prevent more patients from making a TKI discontinuation attempt.


Asunto(s)
Factores Biológicos , Leucemia Mielógena Crónica BCR-ABL Positiva , Proteínas de Fusión bcr-abl/genética , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Inducción de Remisión
9.
Ann Hematol ; 100(2): 487-498, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33225420

RESUMEN

Expression of long non-coding RNA KIAA0125 has been incorporated in various gene expression signatures for prognostic prediction in acute myeloid leukemia (AML) patients, yet its functions and clinical significance remain unclear. This study aimed to investigate the clinical and biological characteristics of AML bearing different levels of KIAA0125. We profiled KIAA0125 expression levels in bone marrow cells from 347 de novo AML patients and found higher KIAA0125 expression was closely associated with RUNX1 mutation, but inversely correlated with t(8;21) and t(15;17) karyotypes. Among the 227 patients who received standard chemotherapy, those with higher KIAA0125 expression had a lower complete remission rate, shorter overall survival (OS) and disease-free survival (DFS) than those with lower expression. The prognostic significance was validated in both TCGA and GSE12417 cohorts. Subgroup analyses showed that higher KIAA0125 expression also predicted shorter DFS and OS in patients with normal karyotype or non-M3 AML. In multivariable analysis, higher KIAA0125 expression remained an adverse risk factor independent of age, WBC counts, karyotypes, and mutation patterns. Bioinformatics analyses revealed that higher KIAA0125 expression was associated with hematopoietic and leukemic stem cell signatures and ATP-binding cassette transporters, two predisposing factors for chemoresistance.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda , ARN Largo no Codificante/biosíntesis , ARN Neoplásico/biosíntesis , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Supervivencia sin Enfermedad , Femenino , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidad , Masculino , Persona de Mediana Edad , Tasa de Supervivencia
10.
Ann Hematol ; 100(1): 63-78, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32556451

RESUMEN

Myelodysplastic syndromes (MDS) are a heterogeneous group of diseases, with a variable probability of transformation into acute leukemia, which is, in the vast majority of cases, of myeloid lineage. Nevertheless, rare cases of acute lymphoblastic leukemia in patients with previously diagnosed MDS have been reported. We describe a series of 3 cases of MDS/CMML marked with evolution to acute lymphoblastic leukemia (ALL) and provide a comprehensive review of the 49 cases documented in the literature so far. These sporadic events have only been published as single-case reports or small series to date. Such atypical cases emphasize the possibility of major phenotypic switches arising at the leukemic stem cell (LSC) and/or early progenitor levels, as a consequence of epigenetic and genomic events driving these changes in the bone marrow niche.


Asunto(s)
Progresión de la Enfermedad , Síndromes Mielodisplásicos/sangre , Síndromes Mielodisplásicos/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangre , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
11.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202238

RESUMEN

Acute myeloid leukemia (AML) is a hematologic malignancy caused by a wide range of alterations responsible for a high grade of heterogeneity among patients. Several studies have demonstrated that the hypoxic bone marrow microenvironment (BMM) plays a crucial role in AML pathogenesis and therapy response. This review article summarizes the current literature regarding the effects of the dynamic crosstalk between leukemic stem cells (LSCs) and hypoxic BMM. The interaction between LSCs and hypoxic BMM regulates fundamental cell fate decisions, including survival, self-renewal, and proliferation capacity as a consequence of genetic, transcriptional, and metabolic adaptation of LSCs mediated by hypoxia-inducible factors (HIFs). HIF-1α and some of their targets have been associated with poor prognosis in AML. It has been demonstrated that the hypoxic BMM creates a protective niche that mediates resistance to therapy. Therefore, we also highlight how hypoxia hallmarks might be targeted in the future to hit the leukemic population to improve AML patient outcomes.


Asunto(s)
Médula Ósea/metabolismo , Médula Ósea/patología , Hipoxia/metabolismo , Leucemia Mieloide Aguda/etiología , Leucemia Mieloide Aguda/metabolismo , Microambiente Tumoral , Animales , Línea Celular Tumoral , Reprogramación Celular , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Metabolismo Energético , Epigénesis Genética , Regulación Leucémica de la Expresión Génica , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/terapia , Terapia Molecular Dirigida , Células Madre Neoplásicas/metabolismo , Transducción de Señal
12.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502319

RESUMEN

HOXA9 and MEIS1 are frequently upregulated in acute myeloid leukemia (AML), including those with MLL-rearrangement. Because of their pivotal role in hemostasis, HOXA9 and MEIS1 appear non-druggable. We, thus, interrogated gene expression data of pre-leukemic (overexpressing Hoxa9) and leukemogenic (overexpressing Hoxa9 and Meis1; H9M) murine cell lines to identify cancer vulnerabilities. Through gene expression analysis and gene set enrichment analyses, we compiled a list of 15 candidates for functional validation. Using a novel lentiviral multiplexing approach, we selected and tested highly active sgRNAs to knockout candidate genes by CRISPR/Cas9, and subsequently identified a H9M cell growth dependency on the cytosolic phospholipase A2 (PLA2G4A). Similar results were obtained by shRNA-mediated suppression of Pla2g4a. Remarkably, pharmacologic inhibition of PLA2G4A with arachidonyl trifluoromethyl ketone (AACOCF3) accelerated the loss of H9M cells in bulk cultures. Additionally, AACOCF3 treatment of H9M cells reduced colony numbers and colony sizes in methylcellulose. Moreover, AACOCF3 was highly active in human AML with MLL rearrangement, in which PLA2G4A was significantly higher expressed than in AML patients without MLL rearrangement, and is sufficient as an independent prognostic marker. Our work, thus, identifies PLA2G4A as a prognostic marker and potential therapeutic target for H9M-dependent AML with MLL-rearrangement.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Sistemas CRISPR-Cas , Regulación Neoplásica de la Expresión Génica , Fosfolipasas A2 Grupo IV/antagonistas & inhibidores , Proteínas de Homeodominio/metabolismo , Leucemia Mieloide Aguda/patología , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Fosfolipasas A2 Grupo IV/genética , Ensayos Analíticos de Alto Rendimiento , Proteínas de Homeodominio/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Células Tumorales Cultivadas
13.
Molecules ; 26(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34641328

RESUMEN

This study aims to enhance efficacy and reduce toxicity of the combination treatment of a drug and curcumin (Cur) on leukemic stem cell and leukemic cell lines, including KG-1a and KG-1 (FLT3+ LSCs), EoL-1 (FLT3+ LCs), and U937 (FLT3- LCs). The cytotoxicity of co-treatments of doxorubicin (Dox) or idarubicin (Ida) at concentrations of the IC10-IC80 values and each concentration of Cur at the IC20, IC30, IC40, and IC50 values (conditions 1, 2, 3, and 4) was determined by MTT assays. Dox-Cur increased cytotoxicity in leukemic cells. Dox-Cur co-treatment showed additive and synergistic effects in several conditions. The effect of this co-treatment on FLT3 expression in KG-1a, KG-1, and EoL-1 cells was examined by Western blotting. Dox-Cur decreased FLT3 protein levels and total cell numbers in all the cell lines in a dose-dependent manner. In summary, this study exhibits a novel report of Dox-Cur co-treatment in both enhancing cytotoxicity of Dox and inhibiting cell proliferation via FLT3 protein expression in leukemia stem cells and leukemic cells. This is the option of leukemia treatment with reducing side effects of chemotherapeutic drugs to leukemia patients.


Asunto(s)
Curcumina/farmacología , Doxorrubicina/farmacología , Idarrubicina/farmacología , Leucemia Mieloide Aguda/metabolismo , Tirosina Quinasa 3 Similar a fms/metabolismo , Antígenos de Neoplasias/efectos de los fármacos , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Curcuma/química , Proteínas del Citoesqueleto/efectos de los fármacos , Proteínas del Citoesqueleto/metabolismo , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Rizoma/química
14.
J Cell Physiol ; 235(6): 4989-4998, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31709540

RESUMEN

The existence of cancer stem cells is debatable in numerous solid tumors, yet in leukemia, there is compelling evidence of this cell population. Leukemic stem cells (LSCs) are altered cells in which accumulating genetic and/or epigenetic alterations occur, resulting in the transition between the normal, preleukemic, and leukemic status. These cells do not follow the normal differentiation program; they are arrested in a primitive state but with high proliferation potential, generating undifferentiated blast accumulation and a lack of a mature cell population. The identification of LSCs might guide stem cell biology research and provide key points of distinction between these cells and their normal counterparts. The identification and characterization of the main features of LSCs can be useful as tools for diagnosis and treatment. In this context, the aim of the present review was to connect immunophenotype data in the main types of leukemia to further guide technical improvements.


Asunto(s)
Inmunofenotipificación/tendencias , Leucemia/diagnóstico , Leucemia/inmunología , Células Madre Neoplásicas/inmunología , Biomarcadores de Tumor/inmunología , Biomarcadores de Tumor/uso terapéutico , Diferenciación Celular/inmunología , Citometría de Flujo , Humanos , Leucemia/patología , Leucemia/terapia , Células Madre Neoplásicas/patología , Pronóstico
15.
Ann Hematol ; 99(5): 991-1006, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32253454

RESUMEN

Separase, a cysteine endopeptidase, is a key player in mitotic sister chromatid separation, replication fork dynamics, and DNA repair. Aberrant expression and/or altered separase proteolytic activity are associated with aneuploidy, tumorigenesis, and disease progression. Since genomic instability and clonal evolution are hallmarks of progressing chronic myeloid leukemia (CML), we have comparatively examined separase proteolytic activity in TKI-treated chronic phase CML. Separase proteolytic activity was analyzed on single cell level in 88 clinical samples and in 14 healthy controls by a flow cytometric assay. In parallel, BCR-ABL1 gene expression and replication fork velocity were measured by qRT-PCR and DNA fiber assays, respectively. The separase activity distribution (SAD) value indicating the occurrence of MNCs with elevated separase proteolytic activity within samples was found to positively correlate with BCR-ABL1 gene expression levels and loss of MMR (relapse) throughout routine BCR-ABL1 monitoring. Analyses of CD34+ cells and MNCs fractionized by flow cytometric cell sorting according to their separase activity levels (H- and L-fractions) revealed that CD34+ cells with elevated separase activity levels (H-fractions) displayed enhanced proliferation/viability when compared with cells with regular (L-fraction) separase activity (mean 3.3-fold, p = 0.0011). BCR-ABL1 gene expression positivity prevailed in MNC H-fractions over L-fractions (42% vs. 8%, respectively). Moreover, expanding CD34+ cells of H-fractions showed decreased replication fork velocity compared with cells of L-fractions (p < 0.0001). Our data suggests an association between high separase activity, residual BCR-ABL1 gene expression, and enhanced proliferative capacity in hematopoietic cells within the leukemic niche of TKI-treated chronic phase CML.


Asunto(s)
Antígenos CD34/metabolismo , Biomarcadores de Tumor/metabolismo , Proliferación Celular/efectos de los fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva , Inhibidores de Proteínas Quinasas/administración & dosificación , Separasa/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/enzimología , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Masculino , Persona de Mediana Edad
16.
Cell Mol Life Sci ; 76(13): 2489-2497, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30715556

RESUMEN

Adipose tissue (AT) is an extramedullary reservoir of normal hematopoietic stem cells (HSCs). Adipocytes prevent the production of normal HSCs via secretion of inflammatory factors, and adipocyte-derived free fatty acids may contribute to the development and progression of leukemia via providing energy for leukemic cells. In addition, adipocytes are able to metabolize and inactivate therapeutic agents, reducing the concentrations of active drugs in adipocyte-rich microenvironments. The aim of this study was to detect the role of adipocytes in the progression and treatment of leukemia. Relevant literature was identified through a PubMed search (2000-2018) of English-language papers using the following terms: leukemia, adipocyte, leukemic stem cell, chemotherapy, and bone marrow. Findings suggest the striking interplay between leukemic cells and adipocytes to create a unique microenvironment supporting the metabolic demands and survival of leukemic cells. Based on these findings, targeting lipid metabolism of leukemic cells and adipocytes in combination with standard therapeutic agents might present novel treatment options.


Asunto(s)
Adipocitos/patología , Antineoplásicos/farmacología , Médula Ósea/patología , Resistencia a Antineoplásicos , Leucemia/patología , Microambiente Tumoral/efectos de los fármacos , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Humanos , Leucemia/tratamiento farmacológico , Leucemia/metabolismo
17.
Int J Mol Sci ; 21(11)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486249

RESUMEN

Mitochondria are the main fascinating energetic source into the cells. Their number, shape, and dynamism are controlled by the cell's type and current behavior. The perturbation of the mitochondrial inward system via stress response and/or oncogenic insults could activate several trafficking molecular mechanisms with the intention to solve the problem. In this review, we aimed to clarify the crucial pathways in the mitochondrial system, dissecting the different metabolic defects, with a special emphasis on hematological malignancies. We investigated the pivotal role of mitochondria in the maintenance of hematopoietic stem cells (HSCs) and their main alterations that could induce malignant transformation, culminating in the generation of leukemic stem cells (LSCs). In addition, we presented an overview of LSCs mitochondrial dysregulated mechanisms in terms of (1) increasing in oxidative phosphorylation program (OXPHOS), as a crucial process for survival and self-renewal of LSCs,(2) low levels of reactive oxygen species (ROS), and (3) aberrant expression of B-cell lymphoma 2 (Bcl-2) with sustained mitophagy. Furthermore, these peculiarities may represent attractive new "hot spots" for mitochondrial-targeted therapy. Finally, we remark the potential of the LCS metabolic effectors to be exploited as novel therapeutic targets.


Asunto(s)
Neoplasias Hematológicas/metabolismo , Células Madre Hematopoyéticas/metabolismo , Leucemia/metabolismo , Mitocondrias/metabolismo , Animales , Apoptosis , Diferenciación Celular , Linaje de la Célula , Supervivencia Celular , Transformación Celular Neoplásica/metabolismo , Regulación Leucémica de la Expresión Génica , Humanos , Ratones , Mitofagia , Células Madre Neoplásicas/metabolismo , Fosforilación Oxidativa , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
18.
Scand J Clin Lab Invest ; 79(1-2): 65-70, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30638095

RESUMEN

SALL4 is a transcription factor that retains stem cells in an undifferentiated state and promotes its self-renewal. In addition, it is implicated in leukemogenesis via its effect on leukemic stem cells. This study aimed to characterize the expression pattern of SALL4 gene in acute myeloid leukemia (AML) and chronic myeloid leukemia (CML) at different progression phases of the leukemic process and to assess its prognostic significance. Real-time PCR was used in 106 patients: 54 AML patients; 43 de novo and 11 in complete remission (CR), 52 CML patients; 31 in chronic phase (CP), 11 in deep molecular response (MR4) and 10 in accelerated/blastic phase (AP/BP); and in 21 nonmalignant bone marrow samples. SALL4 gene expression was elevated in AML, AML-CR and CML-CP (median = 5.180, 4.604 and 14.125 fold changes, respectively). Elevated SALL4 gene expression among AML de novo patient was associated with poor disease-free survival (DFS) rates (p = .022). Among CML patients, the highest percentage of patients with a high SALL4 (p = .033) was among CML-CP. SALL4 has a role in leukemogenesis; high SALL4 expression was associated with poor DFS among AML patients.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinogénesis/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/genética , Factores de Transcripción/genética , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/sangre , Carcinogénesis/metabolismo , Carcinogénesis/patología , Estudios de Casos y Controles , Progresión de la Enfermedad , Femenino , Expresión Génica , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/diagnóstico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/mortalidad , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/mortalidad , Masculino , Persona de Mediana Edad , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Pronóstico , Inducción de Remisión , Análisis de Supervivencia , Factores de Transcripción/sangre
19.
Adv Exp Med Biol ; 1143: 1-39, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31338813

RESUMEN

Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) utilize many of the same signaling pathways for their maintenance and survival. In this review, we will focus on several signaling pathways whose roles have been extensively studied in both HSCs and LSCs. Our main focus will be on the PI3K/AKT/mTOR pathway and several of its regulators and downstream effectors. We will also discuss several other signaling pathways of particular importance in LSCs, including the WNT/ß-catenin pathway, the NOTCH pathway, and the TGFß pathway. For each of these pathways, we will emphasize differences in how these pathways operate in LSCs, compared to their function in HSCs, to highlight opportunities for the specific therapeutic targeting of LSCs. We will also highlight areas of crosstalk between multiple signaling pathways that may affect LSC function.


Asunto(s)
Células Madre Hematopoyéticas , Células Madre Neoplásicas , Transducción de Señal , Células Madre Hematopoyéticas/fisiología , Humanos , Células Madre Neoplásicas/fisiología , Proteína Oncogénica v-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
20.
Int J Mol Sci ; 20(11)2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31167387

RESUMEN

Acute myeloid leukaemia (AML) is a heterogeneous clonal malignancy of hematopoietic progenitor cells. The Wnt pathway and its downstream targets are tightly regulated by ß-catenin. We recently discovered a new protein, FLYWCH1, which can directly bind nuclear ß-catenin. Herein, we studied the FLYWCH1/ß-catenin pathway in AML cells using qRT-PCR, Western blot, and immunofluorescence assays. In addition, the stemness activity and cell cycle were analysed by the colony-forming unit (CFU) using methylcellulose-based and Propidium iodide/flow cytometry assays. We found that FLYWCH1 mRNA and protein were differentially expressed in the AML cell lines. C-Myc, cyclin D1, and c-Jun expression decreased in the presence of higher FLYWCH1 expression, and vice versa. There appeared to be the loss of FLYWCH1 expression in dividing cells. The sub-G0 phase was prolonged and shortened in the low and high FLYWCH1 expression cell lines, respectively. The G0/G1 arrest correlated with FLYWCH1-expression, and these cell lines also formed colonies, whereas the low FLYWCH1 expression cell lines could not. Thus, FLYWCH1 functions as a negative regulator of the Wnt/ß-catenin pathway in AML.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Ciclo Celular/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Células Madre Neoplásicas/metabolismo , ARN Mensajero/genética , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA