Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Entropy (Basel) ; 24(12)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36554244

RESUMEN

Multi-task learning is a statistical methodology that aims to improve the generalization performances of estimation and prediction tasks by sharing common information among multiple tasks. On the other hand, compositional data consist of proportions as components summing to one. Because components of compositional data depend on each other, existing methods for multi-task learning cannot be directly applied to them. In the framework of multi-task learning, a network lasso regularization enables us to consider each sample as a single task and construct different models for each one. In this paper, we propose a multi-task learning method for compositional data using a sparse network lasso. We focus on a symmetric form of the log-contrast model, which is a regression model with compositional covariates. Our proposed method enables us to extract latent clusters and relevant variables for compositional data by considering relationships among samples. The effectiveness of the proposed method is evaluated through simulation studies and application to gut microbiome data. Both results show that the prediction accuracy of our proposed method is better than existing methods when information about relationships among samples is appropriately obtained.

2.
Biometrics ; 77(3): 984-995, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32683674

RESUMEN

A critical task in microbiome data analysis is to explore the association between a scalar response of interest and a large number of microbial taxa that are summarized as compositional data at different taxonomic levels. Motivated by fine-mapping of the microbiome, we propose a two-step compositional knockoff filter to provide the effective finite-sample false discovery rate (FDR) control in high-dimensional linear log-contrast regression analysis of microbiome compositional data. In the first step, we propose a new compositional screening procedure to remove insignificant microbial taxa while retaining the essential sum-to-zero constraint. In the second step, we extend the knockoff filter to identify the significant microbial taxa in the sparse regression model for compositional data. Thereby, a subset of the microbes is selected from the high-dimensional microbial taxa as related to the response under a prespecified FDR threshold. We study the theoretical properties of the proposed two-step procedure, including both sure screening and effective false discovery control. We demonstrate these properties in numerical simulation studies to compare our methods to some existing ones and show power gain of the new method while controlling the nominal FDR. The potential usefulness of the proposed method is also illustrated with application to an inflammatory bowel disease data set to identify microbial taxa that influence host gene expressions.


Asunto(s)
Microbiota , Simulación por Computador , Análisis de Datos , Microbiota/genética , Análisis de Regresión , Proyectos de Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA