RESUMEN
Introduction: This study aimed to delineate longitudinal antibody responses to the Pfizer-BioNTech BNT162b2 COVID-19 vaccine within the Ugandan subset of the Sub-Saharan African (SSA) demographic, filling a significant gap in global datasets. Methods: We enrolled 48 participants and collected 320 specimens over 12 months after the primary vaccination dose. A validated enzyme-linked immunosorbent assay (ELISA) was used to quantify SARS-CoV-2-specific IgG, IgM, and IgA antibody concentrations (ng/ml) and optical densities (ODs). Statistical analyses included box plots, diverging bar graphs, and the Wilcoxon test with Bonferroni correction. Results: We noted a robust S-IgG response within 14 days of the primary vaccine dose, which was consistent with global data. There was no significant surge in S-IgG levels after the booster dose, contrasting trends in other global populations. The S-IgM response was transient and predominantly below established thresholds for this population, which reflects its typical early emergence and rapid decline. S-IgA levels rose after the initial dose then decreased after six months, aligning with the temporal patterns of mucosal immunity. Eleven breakthrough infections were noted, and all were asymptomatic, regardless of the participants' initial S-IgG serostatus, which suggests a protective effect from vaccination. Discussion: The Pfizer-BioNTech BNT162b2 COVID-19 vaccine elicited strong S-IgG responses in the SSA demographic. The antibody dynamics distinctly differed from global data highlighting the significance of region-specific research and the necessity for customised vaccination strategies.
Asunto(s)
Inmunoglobulina G , Vacunas , Humanos , Vacuna BNT162 , Formación de Anticuerpos , Vacunas contra la COVID-19 , Uganda , Vacunación , Anticuerpos Antivirales , Políticas , Inmunoglobulina MRESUMEN
Background: Therapeutically immunosuppressed transplant recipients exhibit attenuated responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines. To elucidate the kinetics and variant cross-protection of vaccine-induced antibodies in this population, we conducted a prospective longitudinal study in heart and lung transplant recipients receiving the SARS-CoV-2 messenger RNA (mRNA) 3-dose vaccination series. Methods: We measured longitudinal serum antibody and neutralization responses against the ancestral and major variants of SARS-CoV-2 in SARS-CoV-2-uninfected lung (n = 18) and heart (n = 17) transplant recipients, non-lung-transplanted patients with cystic fibrosis (n = 7), and healthy controls (n = 12) before, during, and after the primary mRNA vaccination series. Results: Among healthy controls, strong anti-spike responses arose immediately following vaccination and displayed cross-neutralization against all variants. In contrast, among transplant recipients, after the first 2 vaccine doses, increases in antibody concentrations occurred gradually, and cross-neutralization was completely absent against the Omicron B.1.1.529 variant. However, most (73%) of the transplant recipients had a significant response to the third vaccine dose, reaching levels comparable to those of healthy controls, with improved but attenuated neutralization of immune evasive variants, particularly Beta, Gamma, and Omicron. Responses in non-lung-transplanted patients with cystic fibrosis paralleled those in healthy controls. Conclusions: In this prospective, longitudinal analysis of variant-specific antibody responses, lung and heart transplant recipients display delayed and defective responses to the first 2 SARS-CoV-2 vaccine doses but significantly augmented responses to a third dose. Gaps in antibody-mediated immunity among transplant recipients are compounded by decreased neutralization against Omicron variants, leaving many patients with substantially weakened immunity against currently circulating variants.