Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(45): 17566-17576, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37906097

RESUMEN

Low-temperature catalytic oxidation is of significance to the degradation of halogenated volatile organic compounds (HVOCs) to avoid hazardous byproducts with low energy consumption. Efficient molecular oxygen (O2) activation is pivotal to it but usually limited by the insufficient electron cloud density at the metal center. Herein, Ru-B catalysts with enhanced electron density around Ru were designed to achieve efficient O2 activation, realizing dibromomethane (DBM) degradation T90 at 182 °C on RuB1/TiO2 (about 30 °C lower than pristine Ru/TiO2) with a TOFRu value of 0.055 s-1 (over 8 times that of Ru/TiO2). Compared to the limited electron transfer (0.02 e) on pristine Ru/TiO2, the Ru center gained sufficient negative charges (0.31 e) from BOx via strong p-d orbital hybridization. The Ru-B site then acted as the electron donor complexing with the 2π* antibonding orbital of O2 to realize the O2 dissociative activation. The reactive oxygen species formed thereby could initiate a fast conversion and oxidation of formate intermediates, thus eventually boosting the low-temperature catalytic activity. Furthermore, we found that the Ru-B sites for O2 activation have adaptation for pollutant removal and multiple metal availability. Our study shed light on robust O2 activation catalyst design based on electron density adjustment by boron.


Asunto(s)
Boro , Electrones , Temperatura , Metales
2.
Molecules ; 27(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36296668

RESUMEN

In this study, the asphaltene extracted from Luntai heavy oil was oxidized by a mixture of propionic anhydride and hydrogen peroxide without and with a catalyst. Elemental analysis and infrared spectroscopy results indicated the occurrence of oxygen addition, condensation, and side chain cleavage reactions in the oxidation process. Oxidation products were divided into methanol solubles and methanol insolubles. The H/C and O/C atomic ratios of the MeOHS in the oxidation products without a catalyst were higher than those of the Luntai asphaltene. MeOHS had fewer aromatic rings than Luntai asphaltene. Compared with the oxidative reaction without a catalyst, the total mass of oxidation products and the proportion of MeOHS in oxidation products both increased after catalytic oxidation. This low-temperature oxidation technology can be used to upgrade asphaltenes, and thus can promote the exploitation and processing of heavy oil.

3.
Small ; 16(38): e2002071, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32812377

RESUMEN

Atomic dispersed metal sites in single-atom catalysts are highly mobile and easily sintered to form large particles, which deteriorates the catalytic performance severely. Moreover, lack of criterion concerning the role of the metal-support interface prevents more efficient and wide application. Here, a general strategy is reported to synthesize stable single atom catalysts by crafting on a variety of cobalt-based nanoarrays with precisely controlled architectures and compositions. The highly uniform, well-aligned, and densely packed nanoarrays provide abundant oxygen vacancies (17.48%) for trapping Pd single atoms and lead to the creation of 3D configured catalysts, which exhibit very competitive activity toward low temperature CO oxidation (100% conversion at 90 °C) and prominent long-term stability (continuous conversion at 60 °C for 118 h). Theoretical calculations show that O vacancies at high-index {112} facet of Cox Oy nanocrystallite are preferential sites for trapping single atoms, which guarantee strong interface adhesion of Pd species to cobalt-based support and play a pivotal role in preventing the decrement of activity, even under moisture-rich conditions (≈2% water vapor). The progress presents a promising opportunity for tailoring catalytic properties consistent with the specific demand on target process, beyond a facile design with a tunable metal-support interface.

4.
ACS Appl Mater Interfaces ; 14(31): 35694-35703, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35904476

RESUMEN

To realize efficient low-temperature catalytic o-xylene oxidation, MOF-derived CeO2-X catalysts were prepared via the pyrolysis of MOF precursors with different ratios of cerium nitrate to trimesic acid. Among the synthesized catalysts, the bouquet like CeO2-1 exhibited the best activity with T50 and T90 of 156 and 198 °C and the lowest activation energy of 60.67 kJ·mol-1 (WHSV= 48 000 mL·g-1·h-1, o-xylene concentration = 500 ppm). o-Xylene was completely mineralized, and no change in conversion efficiency or CO2 yield was found at 5 vol % H2O for over 50 h. The rich active oxygen species (XPS: Osur/Olatt = 0.69) and abundant oxygen vacancies (Raman: ID/IF2g = 0.036) of CeO2-1 made crucial contribution to its superior catalytic activity. The O2-TPD and H2-TPR results confirmed that CeO2-1 had more surface active oxygen and better mobility of bulk oxygen. Moreover, the reaction routes under different atmospheres were probed through in situ DRIFTS, in which oxygen vacancy played a key role in promoting the adsorption and activation of molecular oxygen and facilitating the migration of the bulk lattice oxygen.

5.
Chemosphere ; 303(Pt 1): 134863, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35561759

RESUMEN

Spherical cerium dioxide (CeO2-S) nanoparticles were successfully prepared using a solvothermal method, and their performances in catalytic oxidation reactions were studied. The CeO2-S catalyst showed superior low-temperature catalytic activity for styrene removal (T90 = 118 °C, GHSV = 18,000 h-1) compared with commercial CeO2. The characterization results showed that there were numerous oxygen defects in CeO2-S that were key to its catalytic performance at low temperatures, high redox properties, and high adsorption capacity for the reaction gases (O2 and styrene). Moreover, the catalytic performance of CeO2-S was highly stable (132 h), and the particles were reusable. FTIR and in-situ DRIFTS results showed that the type of intermediates formed during the oxidation of styrene determined the CeO2 catalytic stability, and the main intermediates were bidentate carbonate species that accumulated on the surface of deactivated CeO2-S and were not thermally stable. Moreover, the soft carbon that also deposited on CeO2-S during the reaction was easily decomposed at higher temperatures. The role of the oxygen vacancies on the CeO2-S catalyst was further revealed by correlating the concentration of oxygen vacancies and the accumulation of coke on the catalyst surface.

6.
J Agric Food Chem ; 69(36): 10419-10439, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34463513

RESUMEN

Ethylene acts as an important hormone to trigger the ripening and senescence of fruits and vegetables (F&V). Thus, it is essential to eliminate trace ethylene and prevent F&V losses effectively. There are several technologies currently applying to control the ethylene concentration in the storage and transportation environment, including adsorption, gene modification, oxidation, etc. These protocols will be compared, and special attention will be paid to the low-temperature catalytic oxidation that has already been applied to practical production in this review. The active sites, supports, and reaction and deactivation mechanism of the catalysts for the low-temperature ethylene oxidation will be discussed and evaluated systematically to provide new insights for the development of effective catalysts, along with the suggestion of some perspectives for future research on this important catalytic system for F&V preservation.


Asunto(s)
Frutas , Verduras , Etilenos , Oxidación-Reducción , Temperatura
7.
Environ Technol ; 42(16): 2504-2515, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31854269

RESUMEN

Ceramic honeycomb monoliths were washcoated with cryptomelane-type manganese oxides and their catalytic performance was evaluated in the oxidation of ethyl acetate. The effect of a mixture of ethyl acetate with toluene and of the presence of water vapour was also assessed.Different coating parameters, namely size of catalyst particles, number of immersions in the washcoating solution, presence of an initial coating with alumina, calcination temperature of this coating, as well as the amount of binding agent and ethanol in the washcoating solution were studied and optimized based on the catalytic activity of the structured catalyst. Small particles are required for a correct impregnation; however, since the smallest particles are less active, an intermediate size achieved the best catalytic results. Increasing the number of immersions over 3 did not significantly increase the catalytic activity of the structured catalyst. The presence of an initial coating with alumina and a binding agent (colloidal alumina) in the washcoating solution was found essential to increase the activity, whereas increasing the calcination temperature after the initial alumina coating above 500°C decreased the activity of the catalyst. The presence of ethanol in the washcoating solution did not significantly improve the activity of the structured catalyst.The optimized structured catalyst presented high catalytic activity in the removal of ethyl acetate (90% conversion into CO2 at 256°C) and high stability during 100 h of reaction. The addition of toluene or water vapour in the feed gas did not significantly affect the activity of the coated monolith.


Asunto(s)
Compuestos Orgánicos Volátiles , Catálisis , Cerámica , Compuestos de Manganeso , Oxidación-Reducción , Óxidos
8.
Environ Technol ; 41(1): 117-130, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29924682

RESUMEN

Cryptomelane-type manganese oxides prepared by a solvent-free method were evaluated as catalysts for the oxidation of ethyl acetate, ethanol and toluene. The original catalyst (K-OMS-2) presented high catalytic activity for ethyl acetate and ethanol oxidation, achieving 90% conversion into CO2 around 200°C for both pollutants. Toluene was much harder to oxidize, requiring a temperature near 270°C for the same conversion. The original catalyst was mechanically treated in a ball mill at different intensities, in order to decrease the particle size for subsequent impregnation onto structured supports, as small particle sizes are usually recommended. The catalytic activity of the materials decreases with the increase in the severity of this treatment, which is related to the decrease of the surface area of the catalysts, since the other properties (phase purity, thermal stability, surface oxygen, average oxidation state and reactivity of the oxygen species) are similar among the catalysts with different ball milling treatments. For comparison, a platinum-based catalyst (1%-Pt/Al2O3) was also tested, which exhibited a high activity for toluene, but much lower activities for the two other volatile organic compounds tested. A long-term experiment, using ethanol as model pollutant, showed that the cryptomelane catalyst was stable for more than 100 h.


Asunto(s)
Compuestos Orgánicos Volátiles , Catálisis , Oxidación-Reducción , Platino (Metal) , Tolueno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA