RESUMEN
Rice (Oryza sativa) is an important nutritional grain for the majority of Asian countries, but it is also a major source of cadmium (Cd) accumulation. A pot experiment was carried out to investigate the Cd uptake and translocation of high Cd (IR-50) and low Cd (White Ponni) rice cultivars in Cd-contaminated soils. The findings revealed that Cd impacts on rice development and growth differed depending on rice cultivars. Soil Cd levels in the seedling stage exceeded the critical levels (3-6 mg kg-1) only 5.0 mg kg-1 Cd treatment for the IR-50 (7.47 mg kg-1). At higher Cd treatments (1.0 and 5.0 mg kg-1), morphometric characteristics and yield of grains showed a declining and increasing trend in both rice varieties, respectively. The accumulation of Cd was higher in soil and roots during seedling and tillering stages, whereas in booting and maturity stages increased in stems and leaves in IR-50 and WP rice varieties. Cd levels in rice grains above the maximum allowable limit (0.4 mg kg-1) only in IR-50 (0.51 mg kg-1) rice cultivar at maturity stage. The EF of Cd were classified as minor enrichment to 'moderate enrichment' in both rice cultivars. TF values exhibited > 1 in booting and maturity stages in both rice cultivars at higher Cd treatments. The study concluded that the IR-50 rice variety exhibited increased Cd intake and transported to various parts of rice plants, particularly grains. The findings indicate that WP rice cultivar is more resistant to Cd toxicity, reducing health hazards for persons who preferred the staple food rice.
Asunto(s)
Cadmio , Oryza , Contaminantes del Suelo , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Cadmio/metabolismo , Contaminantes del Suelo/metabolismo , Raíces de Plantas/metabolismo , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Oligoelementos/metabolismoRESUMEN
Few studies have analyzed the indicators of oxidative stress in marine mammals following exposure to lipopolysaccharides (LPS); sex and maturity-related differences have not been explored. The objective of this study was to compare the indicators of oxidative stress following exposure to LPS for 24 and 48 h in isolated Pacific bottlenose dolphin (Tursiops truncatus; N = 12) leukocytes in relation to sex and maturity stage, using spectrophotometry. Following 48 h under experimental conditions (10 µg LPS mL-1), the leukocytes from males (n = 5) produced significantly more superoxide radical (O2â¢-; F (1, 8) = 13.965, p = 0.006) and displayed significantly greater activities of catalase (CAT; F (1, 8) = 9.465, p = 0.015) and glutathione S-transferase (GST; p = 0.028) compared to the leukocytes from females (n = 7). Following 48 h under experimental conditions, maturity-stage did not significantly influence the indicators of oxidative stress. Mature bottlenose dolphins (n = 7) had a significantly higher average daily dietary intake compared to immature bottlenose dolphins (n = 5; F (1, 10) = 5.825, p = 0.036). These results suggest that sex-related strategies for coping with a proinflammatory challenge may be present within the leukocytes from bottlenose dolphins, while potential maturity stage-related strategies require further investigation.
Asunto(s)
Delfín Mular , Animales , Masculino , Femenino , Lipopolisacáridos , Leucocitos , Estrés OxidativoRESUMEN
Aquaporins (AQPs) in plants can transport water and small molecules, and they play an important role in plant development and abiotic stress response. However, to date, a comprehensive study on AQP family members is lacking. In this study, 27 AQP genes were identified from the passion fruit genome and classified into four groups (NIP, PIP, TIP, SIP) on the basis of their phylogenetic relationships. The prediction of protein interactions indicated that the AQPs of passion fruit were mainly associated with AQP family members and boron protein family genes. Promoter cis-acting elements showed that most PeAQPs contain light response elements, hormone response elements, and abiotic stress response elements. According to collinear analysis, passion fruit is more closely related to Arabidopsis than rice. Furthermore, three different fruit ripening stages and different tissues were analyzed on the basis of the transcriptome sequencing results for passion fruit AQPs under drought, high-salt, cold and high-temperature stress, and the results were confirmed by qRT-PCR. The results showed that the PeAQPs were able to respond to different abiotic stresses, and some members could be induced by and expressed in response to multiple abiotic stresses at the same time. Among the three different fruit ripening stages, 15 AQPs had the highest expression levels in the first stage. AQPs are expressed in all tissues of the passion fruit. One of the passion fruit aquaporin genes, PeTIP3-2, which was induced by drought stress, was selected and transformed into Arabidopsis. The survival rate of transgenic plants under drought stress treatment is higher than that of wild-type plants. The results indicated that PeTIP3-2 was able to improve the drought resistance of plants. Our discovery lays the foundation for the functional study of AQPs in passion fruit.
Asunto(s)
Acuaporinas , Arabidopsis , Passiflora , Acuaporinas/genética , Acuaporinas/metabolismo , Arabidopsis/genética , Sequías , Frutas/genética , Frutas/metabolismo , Passiflora/genética , Filogenia , Proteínas de Plantas/metabolismoRESUMEN
The occurrence of the Western corn rootworm and increasing frequency of summer droughts have reduced forage maize yields and quality in Central Europe in recent years. Therefore, sorghum (Sorghum bicolor (L.) Moench) has been increasingly used as alternative forage in ruminant feeding, although information on the nutritive value of whole crop sorghum silage (WCSS) under Central European climate conditions is scarce. This research project aimed to study differences between sorghum varieties and harvest dates regarding dry matter (DM) yield, chemical composition of fresh panicle, fresh stover, fresh whole plant and WCSS as well as whole tract digestibility and energy content of WCSS. For this purpose, six sorghum varieties, classified by their predominant use (biomass, silage, grain), were cultivated and harvested at three maturity stages (late milk stage, dough stage, full maturity). Furthermore, WCSS quality was compared with feed value of fresh and ensiled forage maize. Dry matter yield was higher (p < 0.05) in biomass sorghum (24.9 t/ha) compared to other sorghum varieties (12.4 to 16.7 t/ha). However, panicle proportion was lowest in biomass sorghum (10.5%), highest in grain sorghum (59.1%) and intermediate in silage sorghum. Fibre content declined and starch content increased with rising panicle proportion in fresh panicle, fresh whole plant and WCSS. Therefore, whole tract organic matter digestibility (66.8%) and metabolisable energy (ME) content (9.49 MJ/kg DM) were highest in grain sorghum silage. Especially low ME content was found in the biomass sorghum silage (7.43 MJ/kg DM). Dry matter yield of sorghum increased between late milk and dough stage of maturity, while it remained constant afterwards. Furthermore, ME content of WCSS rose tendentially (0.05 < p < 0.10) between late milk and dough stage of maturity and dropped again between dough stage and full maturity. Highest nutritive value of WCSS is achieved if grain sorghum varieties are used and both nutritive value and DM yield are optimised if harvest is carried out at dough stage of maturity. However, compared to forage maize, grain sorghum varieties have disadvantages both in DM yield and in nutritive value under common Central European climate conditions.
RESUMEN
The study was conducted to determine the effects of cultivar, harvest period and their interaction on the hydrophilic phenolic components extra virgin olive oils of the cultivars 'Ayvalik', 'Memecik' and 'Topakasi'. Olives were collected at three different harvesting periods; (1) early harvest period-1 (Beginning of spotting), (2) early harvest period-2 (End of spotting), and (3) optimum harvest period. Oils were extracted using an abencor system. HPLC (High-performance liquid chromatograph) technique was used to quantify The phenolic compounds including: tyrosol (p-HPEA), hydroxytyrosol (3,4-DHPEA), luteolin, rutin, quercetin, catechin, sinapinic acid, p-coumaric acid, cinnamic acid, vanillin, vanillic acid, ferulic acid and gallic acid were quantified using HPLC. The results indicated that the effects of harvest period on the phenolic components were variety dependent. At the early harvest period-1, 'Memecik' and 'Topakasi' had the highest efficiency in luteolin, cinnamic acid, vanillic acid, and ferulic acid contents, while 'Ayvalik' had the highest efficiency in hydroxytyrosol, sinapinic acid, p-coumaric, vanillin and ferulic acid contents. At the optimum harvest period, 'Ayvalik' had the highest efficiency in luteolin, tyrosol and gallic acid contents, while 'Topakasi' had the highest efficiency in tyrosol, hydroxytyrosol and rutin content. The highest phenolic content was detected in the early harvest period-1. The content of tyrosol linearly increased with the progress of maturity harvest period, whereas the contents of the sinapinic acid, vanillin, vanilic acid and ferulic acid decreased. The oils of 'Memecik' variety had significantly higher phenolic content than those of 'Ayvalik' and 'Topakasi' varieties.
Asunto(s)
Frutas/química , Olea/química , Aceite de Oliva/análisis , Fenoles/análisis , Cromatografía Líquida de Alta PresiónRESUMEN
The maturity stage of bananas has a considerable influence on the fruit postharvest quality and the shelf life. In this study, an optical imaging based method was formulated to assess the importance of different external properties on the identification of four successive banana maturity stages. External optical properties, including the peel color and the local textural and local shape information, were extracted from the stalk, middle and tip of the bananas. Specifically, the peel color attributes were calculated from individual channels in the hue-saturation-value (HSV), the International Commission on Illumination (CIE) L*a*b* and the CIE L*ch color spaces; the textural information was encoded using a local binary pattern with uniform patterns (UP-LBP); and the local shape features were described by histogram of oriented gradients (HOG). Three classifiers based on the naïve Bayes (NB), linear discriminant analysis (LDA) and support vector machine (SVM) algorithms were adopted to evaluate the performance of identifying banana fruit maturity stages using the different optical appearance features. The experimental results demonstrate that overall identification accuracies of 99.2%, 100% and 99.2% were achieved using color appearance features with the NB, LDA and SVM classifiers, respectively; overall accuracies of 92.6%, 86.8% and 93.4% were obtained using local textural features for the three classifiers, respectively; and overall accuracies of only 84.3%, 83.5% and 82.6% were obtained using local shape features with the three classifiers, respectively. Compared to the complicated calculation of both the local textural and local shape properties, the simplicity and high accuracy of the peel color property make it more appropriate for identifying banana fruit maturity stages using optical imaging techniques.
Asunto(s)
Frutas/crecimiento & desarrollo , Musa/crecimiento & desarrollo , Imagen Óptica , Algoritmos , Teorema de Bayes , Color , Análisis Discriminante , Máquina de Vectores de SoporteRESUMEN
BACKGROUND: Several anti-arthritic drugs and synthetic antioxidants have wide pharmaceutical uses and are often associated with various side effects on the human health. Dietary seed oils and their minor components like policosanol may offer an effective alternative treatment for arthritic and oxidative-stress related diseases. The biological effects of seed oils were affected by different parameters such as the stage of seed maturity. Hence, this study seeks to determine the policosanol content, antioxidant and anti-arthritic activities of milk thistle (Silybium marianum L.) oil extracted at various stages of seed maturation. METHODS: Milk thistle oil samples were extracted from seeds collected at three maturation stages (immature, intermediate, and mature). The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) radical scavenging assays were used to determine the antioxidant activity of the extracted oils. The anti-arthritic activity of oil samples was evaluated with bovine serum protein denaturation and egg albumin denaturation methods. Gas chromatography coupled to mass spectrometry (GC-MS) was employed to determine the policosanol profile. RESULTS: Policosanol profile, antioxidant and anti-arthritic activities of milk thistle oil were influenced by the seed maturity stages. The oil extracted from the immature seeds had the highest total policosanol content (987.68 mg/kg of oil) and displayed the maximum antiradical activity (96.42% and 90.35% for DPPH test and ABTS assay, respectively). Nine aliphatic alcohols were identified in the milk thistle oil. The dominant poliosanol in the mature seed oil was octacosanol (75.44%), while triacontanol was the major compound (40.25%) in the immature seed oil. Additionally, the maximum inhibition of bovine serum protein denaturation (92.53%) and egg albumin denaturation (86.36%) were observed in immature seed oil as compared to mature seed oil. A high correlation was found between the total policosanol content, anti-arthritic activity and antioxidant capacity of oil. CONCLUSIONS: The milk thistle oil exhibited a potential anti-arthritic and antioxidant activities and that it might contribute to the protection of humans from a variety of diseases like rheumatoid arthritis. Also, it could serve as natural antioxidant and anti-arthritic agents for application in the food industries and pharmaceutic. Policosanol level in the seed oils might contribute to their anti-arthritic and antioxidant activities.
Asunto(s)
Antioxidantes/uso terapéutico , Artritis/tratamiento farmacológico , Alcoholes Grasos/análisis , Alcoholes Grasos/farmacología , Aceites de Plantas/farmacología , Semillas/crecimiento & desarrollo , Silybum marianum/química , Animales , Antioxidantes/farmacología , Bovinos , Pollos , Desnaturalización Proteica/efectos de los fármacos , Albúmina Sérica Bovina/efectos de los fármacos , Albúmina Sérica Bovina/metabolismoRESUMEN
To determine the effect of maturity stage on the food attributes of hihatsumodoki (Piper retrofractum Vahl) fresh fruit, the flavor characteristics and antioxidant capacities were investigated at green (GM), orange (OM), and red maturity (RM) stages. Total organic acids, total free amino acids (FAA), and piperine decreased with increasing fruit maturation, reaching minima at the RM stage. Conversely, total sugars and the FAA that contribute to both umami and sweetness were the highest RM stage. Principal component analysis revealed that the volatile composition of the fruit at the GM stage was clearly different from that at the other stages. The DPPH radical scavenging activity and total phenolic content, as measures of antioxidant capacity, decreased with increasing fruit maturation from GM to RM, which was consistent with the changes in piperine content. Therefore, the maturity stage has a significant influence on the flavor and antioxidant characteristics of hihatsumodoki fresh fruit.
RESUMEN
Long lifespan and late maturation make it difficult to establish gamete maturity and breeding age of captive endangered Chinese sturgeon, Acipenser sinensis. This greatly handicaps timely breeding and future conservation stocking efforts. We used ultrasound imagery and sex steroids to determine the gender and gonadal maturity stage of captive Chinese sturgeon (age, 10-17years old). The echogenicity of the reproductive organs and the respective morphology of the gonads were described and two quantitative parameters po (proportion of the ovary to the entire reproductive organs) and d (thickness of the reproductive organs) were measured to characterize sex and maturity stage of Chinese sturgeon. Females were accordingly placed fish into several categories: FII (FII-, FII, FII+), FIII (FIII, FIII+) and FIV (FIV, FIV+) and FVI and males as MII, MIII, MIV, MV and MVI. The accuracy of gender and maturity stage determination provided by ultrasonographic methods was 72.7% for FII- ovary (n=11) and 76.2% for MII testis (n=42). Accuracy of sex and maturity determination using only serum sex steroid of testosterone (T) and estradiol-17ß (E2) was low (58-73%, depending on maturity stage). However, when the two methods were used together, accuracy increased sharply, especially for immature (II stage) females. In summary, of 151 Chinese sturgeon, whose sex and maturity stage were independently confirmed, 88.1% (n=133), 62.9% (n=95), and 96.7% (n=146) were successfully sexed and staged using ultrasound, sex steroids, or both methods, respectively. The results provide reliable non-invasive techniques for determining sex and gonadal maturation of captive Chinese sturgeon. These methods can track individual gonad characteristics over multi-year reproductive cycles, which will assist captive broodstock management, artificial reproduction, and future conservation stocking.
Asunto(s)
Estradiol/sangre , Peces/crecimiento & desarrollo , Peces/fisiología , Ovario/crecimiento & desarrollo , Maduración Sexual/fisiología , Testículo/crecimiento & desarrollo , Animales , Femenino , Peces/sangre , Masculino , Ovario/fisiología , Reproducción , Análisis para Determinación del Sexo , Testículo/fisiología , Testosterona/sangre , UltrasonografíaRESUMEN
BACKGROUND: The present study evaluated the variability of cambuci fruit (Campomanesia phaea) cultivated in São Paulo State in the towns of Mogi das Cruzes, Paraibuna, Paranapiacaba and Rio Grande da Serra, and characterized it at different maturity stages with respect to size, firmness, soluble solids content, titratable acidity, phenolic content, ethylene production, respiration rate and in vitro antioxidant capacity. RESULTS: Ripe fruit from the same locality, Paraibuna, showed large variations in size and acidity. Ripe fruit from different towns showed significant variation of total phenolics and, consequently, variation in antioxidant capacity. During maturation, the phenolic content and firmness decreased from unripe to ripe stages. The total soluble solids/titratable acidity ratio can be used as a parameter to differentiate cambuci at different maturity stages. However, the decrease in firmness combined with the absence of an ethylene climacteric peak does not allow us to conclude whether cambuci is climacteric or non-climacteric. CONCLUSION: Genetic and soil composition studies are needed to assess the reasons for the differences found among fruit from the same location, as well as the variability among fruit harvested in four localities. The best parameters for assessing the maturity stages of cambuci comprise the rounding of its corners and its firmness because the more mature the pulp, the softer is the fruit. © 2016 Society of Chemical Industry.
Asunto(s)
Agricultura , Antioxidantes/farmacología , Etilenos/biosíntesis , Frutas/crecimiento & desarrollo , Dureza , Myrtaceae/crecimiento & desarrollo , Fenoles/metabolismo , Ácidos/metabolismo , Antioxidantes/metabolismo , Brasil , Frutas/metabolismo , Humanos , Myrtaceae/genética , Myrtaceae/metabolismo , FenotipoRESUMEN
BACKGROUND: There are 69 species of edible Mangifera recognized in Southeast Asia. Most of these species have not been characterized for nutritional properties. This paper describes the nutritional quality of the pulp of several Mangifera species - Mangifera casturi, Mangifera lalijiwa, Mangifera odorata, Mangifera zeylanica and two cultivars of Mangifera indica, 'Tommy-Kent' and 'Tommy Atkins' - at two maturity stages. RESULTS: The results showed that nutritional quality varied with maturity stage and among species. The immature pulp of all species had higher content of total dietary fibre, vitamin C, vitamin E, total soluble polyphenols and antioxidant capacity. In mature pulp, the protein, ash, fat, soluble carbohydrate and B vitamin values were higher in all species. The species with the best nutritional quality were, in order from highest to lowest, M. casturi, M. odorata, M. zeylanica, M. indica cultivars and M. lalijiwa. CONCLUSION: The fruit pulp of three species had higher nutritional quality at both maturity stages in comparison with M. indica cultivars. These other Mangifera species can be nutritionally important in communities facing food insecurity and have potential as emerging crops. The decline of these valuable species in their natural habitats is an increasing concern, and their nutritional properties justify greater efforts to protect them. © 2017 Society of Chemical Industry.
Asunto(s)
Frutas/crecimiento & desarrollo , Mangifera/química , Antioxidantes/análisis , Ácido Ascórbico/análisis , Frutas/química , Frutas/clasificación , Mangifera/clasificación , Mangifera/crecimiento & desarrollo , Valor Nutritivo , Polifenoles/análisisRESUMEN
In order to increase the diffusion of cactus pear fruits, in this study, the proper maturity index for peeling and processing them as ready-to-eat product was evaluated and characterized. Thereafter, the effects of different storage temperatures and modified atmosphere conditions on the marketability of ready-to-eat cactus pear were studied. The storage of ready-to-eat fruits at 4 °C in both passive (air) and semi-active (10 kPa O2 and 10 kPa CO2) modified atmosphere improved the marketability by 30%, whereas the storage at 8 °C caused a dangerous reduction in O2 partial pressure inside modified atmosphere packages, due to fruits' increased metabolic activity. A very low level of initial microbial growth was detected, while a severe increase in mesophilic and psychrophilic bacteria was shown in control samples at both temperatures during storage; an inhibitory effect of modified atmosphere on microbial growth was also observed. In conclusion, modified atmosphere improved only the marketability of fruits stored at 4 °C; whereas the storage at 8 °C resulted in deleterious effects on the ready-to-eat fruits, whether stored in air or in modified atmosphere.
RESUMEN
This study explored the physicochemical properties and structural characteristics of Agrocybe cylindracea polysaccharides at four developmental stages, as well as their dynamic evolution during maturation. Results showed that the polysaccharides from A. cylindracea water extract exhibited similar structural characteristics across all four maturity stages, despite a significant reduction in yields. Four water-soluble heteroglycans, including one high molecular weight (ACPM-Et50-I) and three low molecular weight (ACPM-Et50-II, ACPM-Et60, ACPM-Et80), were isolated from A. cylindracea at each maturity stage. ACPM-Et50-I was identified as branched heterogalactans, while ACPM-Et60 and ACPM-Et80 were branched heteroglucans. However, ACPM-Et50-II was characterized as a branched glucuronofucogalactoglucan at the tide-turning stage but a glucuronofucoglucogalactan at the pileus expansion stage due to the increase of its α-(1 â 6)-D-Galp. In general, although the structural skeletons of most A. cylindracea heteroglycans were similar during maturation as shown by their highly consistent glycosyl linkages, there were still differences in the distribution of some heteroglucans. This work has for the first time reported a glucuronofucogalactoglucan in A. cylindracea and its dynamic evolution during maturation, which may facilitate the potential application of A. cylindracea in food and biomedicine industries.
Asunto(s)
Agrocybe , Agua , Agua/química , Agrocybe/química , Glucanos/química , Polisacáridos/química , Peso MolecularRESUMEN
Male Idesia polycarpa, which display distinct morphological and physiological traits, exhibit greater adaptability to stressful environments than females. However, the connection between this adaptability and rhizosphere processes remains unclear. Here, we investigate the differences in root bacterial community structures between male and female plants at different developmental stages, identifying bacterial strains associated with plant sex through functional predictions. This study aims to inform the optimal allocation of male and female plants during cultivation and provide a theoretical basis for sex identification and breeding. Samples from seven-year-old male and female plants were collected during the flowering (May) and fruit ripening (October) stages. Rhizosphere nutrient content and bacterial diversity were analyzed using Illumina high-throughput sequencing technology. The results demonstrate that total nitrogen (TN), total carbon (TC), and available potassium (AK) varied between sexes at different times. No significant differences between male and female plants were observed in the Shannon, Simpson, and Chao1 indexes during the flowering period. However, the Chao1 and Shannon indexes were significantly higher at fruit maturity in male rather than female plants. The predominant phyla of rhizosphere bacteria were Pseudomonadota, Acidobacteriota, and Actinomycetes. Interestingly, from flowering to fruit ripening, the dominant phyla in both male and female plants shifted from Actinomycetes to Pseudomonadota. A significant correlation was observed between pH and AK and rhizosphere bacteria (p < 0.05), with metabolism being the main functional difference. This study provides preliminary insights into the functional predictions and analyses of bacteria associated with Idesia polycarpa. The above findings lay the groundwork for further investigation into the sex-specific differences in microbial flora across different developmental stages, elucidating the mechanisms underlying flora changes and offering theoretical support for the high-quality management of Idesia polycarpa.
RESUMEN
Phallus atrovolvatus, a wild edible mushroom, has attracted increasing interest for consumption due to its unique taste and beneficial health benefits. This study determined the chemical components in the so-called fruiting body during the egg and mature stages and investigated its gut microbiota-modulating activities. The egg stage contained higher total carbohydrates, dietary fiber, glucans, ash, and fat, while the total protein content was lower than in the mature stage. Two consumption forms, including cooked mushrooms and a mushroom aqueous extract from both stages, were used in this study. An in vitro gut fermentation was performed for 24 h to assess gut microbiota regulation. All mushroom-supplemented fermentations increased short-chain fatty acid (SCFA) production compared to the blank control. Furthermore, all mushroom supplementations promoted the growth of Bifidobacterium and Streptococcus. Samples from the mature stage increased the relative abundance of Clostridium sensu stricto 1, while those from the egg stage increased the Bacteroides group. The inhibition of harmful bacteria, including Escherichia-Shigella, Klebsiella, and Veillonella, was only observed for the mature body. Our findings demonstrate that P. atrovolvatus exhibits potential benefits on gut health by promoting SCFA production and the growth of beneficial bacteria, with the mature stage demonstrating superior effects compared to the egg stage.
Asunto(s)
Fermentación , Cuerpos Fructíferos de los Hongos , Microbioma Gastrointestinal , Microbioma Gastrointestinal/efectos de los fármacos , Ácidos Grasos Volátiles/metabolismo , Agaricales/química , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Fibras de la Dieta/farmacología , Fibras de la Dieta/análisis , HumanosRESUMEN
During puberty, the biological maturity of children of the same chronological age differs. To generate equal opportunities for talent selection in youth sports, the athlete's biological maturity should be considered. This is often assessed with a left hand and wrist radiography. Alternatively, ultrasound (US) could be advantageous, especially by avoiding ionizing radiation. This pilot study aimed to assess intrarater and interrater reliability of an experienced and a non-experienced examiner in an US-based examination of the knee in 20 healthy females (10-17 years). Epiphyseal closure at five anatomical landmarks was staged (stages 1-3) and its interrater and intrarater reliabilities were analyzed using Cohen's kappa (k). Interrater reliability of the calculation of the ossification ratio (OssR) was analyzed using the Bland-Altman method and intraclass correlation coefficients (ICCs). Interrater reliability for the stages was almost perfect for four landmarks. Interrater reliability ranged from k = 0.69 to k = 0.90. Intrarater reliability for the stages was almost perfect for four landmarks. Intrarater reliability ranged from k = 0.70 to k = 1.0. For the OssR, ICC was 0.930 and a minimal detectable change of 0.030 was determined. To conclude, experienced and non-experienced examiners can reliably assign individuals to different ossification stages and calculate an OssR using US-based imaging of the knee.
RESUMEN
Rosa roxburghii (R. roxburghii), native to the southwest provinces of China, is a fruit crop of important economic value in Guizhou Province. However, the changes in fruit quality and flavor during R. roxburghii fruit ripening have remained unknown. Here, this study investigated the changes of seven active components and volatile organic compounds (VOCs) during the ripening of the R. roxburghii fruit at five different ripening stages including 45, 65, 75, 90, and 105 days after anthesis. The results indicated that during the ripening process, the levels of total acid, vitamin C, and soluble sugar significantly increased (p < 0.05), while the levels of total flavonoids, superoxide dismutase (SOD), and soluble tannin significantly decreased (p < 0.05). Additionally, the content of total phenol exhibited a trend of first decreasing significantly and then increasing significantly (p < 0.05). A total of 145 VOCs were detected by HS-SPME-GC-MS at five mature stages, primarily consisting of aldehydes, alcohols, esters, and alkenes. As R. roxburghii matured, both the diversity and total quantity of VOCs in the fruit increased, with a notable rise in the contents of acids, ketones, and alkenes. By calculating the ROAV values of these VOCs, 53 key substances were identified, which included aromas such as fruit, citrus, green, caramel, grass, flower, sweet, soap, wood, and fat notes. The aromas of citrus, caramel, sweet, and wood were predominantly concentrated in the later stages of R. roxburghii fruit ripening. Cluster heatmap analysis revealed distinct distribution patterns of VOCs across five different maturity stages, serving as characteristic chemical fingerprints for each stage. Notably, stages IV and V were primarily characterized by a dominance of alkenes. OPLS-DA analysis categorized the ripening process of R. roxburghii fruit into three segments: the first segment encompassed the initial three stages (I, II, and III), the second segment corresponded to the fourth stage (IV), and the third segment pertained to the fifth stage (V). Following the variable importance in projection (VIP) > 1 criterion, a total of 30 key differential VOCs were identified across the five stages, predominantly comprising ester compounds, which significantly influenced the aroma profiles of R. roxburghii fruit. By integrating the VIP > 1 and ROAV > 1 criteria, 21 differential VOCs were further identified as key contributors to the aroma changes in R. roxburghii fruit during the ripening process. This study provided data on the changes in quality and aroma of R. roxburghii fruit during ripening and laid the foundation for the investigation of the mechanism of compound accumulation during ripening.
RESUMEN
In this study, comprehensive and systematic nontargeted metabolomics analysis was performed with the metabolites of Zangju peel (Citrus reticulata cv. Manau Gan, CRZP, which has been cultivated for over 400 years in Derong County, China.) at four different mature stages. A total of 1878 metabolites were identified, among which flavonoids were the most abundant (62.04 %), and identified 62 key differential metabolites significantly affected by maturity. Based on biological activity measurements, CRZP showed better antioxidant activity, lipase inhibition ability, inhibition of adipogenic differentiation in 3TT-L1 cells and promotion of lipid metabolism, with the biological activity of CRZP at different maturity stages being associated with key differential metabolite. Thus, CRZP is natural antioxidants and possess anti-obesity potential, and industrial production needs to consider the Maturity stage of its collection.
RESUMEN
Cereal and leguminous seeds are considered as major generic dietary source of energy, carbohydrates as well as proteins in the Mediterranean diet and are frequently consumed in their immature form in several regions including the Middle East. Hence, the current study aimed to assess metabolites' heterogeneity amongst five major cereal and leguminous seeds of different species, and cultivars, i.e., Triticum aestivum L. (two cultivars), Hordeum vulgare L., Vicia faba L. and Cicer arietinum L., at different maturity stages. Gas chromatography mass-spectrometry (GC-MS) analysis using multivariate data analyses was employed for nutrient profiling and sample segregation assessed using chemometric tools, respectively. A total of 70 peaks belonging to sugars, fatty acids/esters, steroids, amino acids and organic acids were identified including sucrose, melibiose, glucose and fructose as major sugars, with butyl caprylate, hydroxybutanoic acid and malic acid contributing to the discrimination between seed species at different maturity stages. The investigation of total protein content revealed comparable protein levels amongst all examined seeds with the highest level detected at 20.1% w/w in mature fava bean. Results of this study provide a novel insight on cereal and leguminous seeds' metabolomics in the context of their maturity stages for the first time in literature.
RESUMEN
This work focuses on the study of the physicochemical changes that take place during the first stage of ripening of plantain, with particular attention to the changes in the orthorhombic and hexagonal nanocrystals present in this starch, and its relation shift with resistance starch. Significant changes were observed in the proximal analysis of plantain flour. A gradual increase in moisture content was attributed to the high content of crystalline structures and molecules that can be removed by drying. Water activity increased with ripening, which was attributed to the hygroscopic nature of the flours. The protein content increased, and the carbohydrate content decreased, indicating the progress of biochemical reactions. The changes in the fat content are consistent with the hydrolysis and resynthesis of lipids during the ripening process. The obtained results indicate a significant influence of the ripening stage on the physicochemical properties of flour and starch of plantain, which is associated with the occurrence of a climacteric peak on the 4th day of ripening. The hydration properties of plantain flour decreased significantly during the ripening days, consistent with the occurrence of a climacteric peak. Water holding capacity (WHC) and water binding capacity (WBC) were affected by the degree of digestion of native starch granules and protein denaturation during fruit ripening. Scanning electron microscopes (SEM) showed that during ripening the surface of the isolated starches do not suffer any significative damage. X-ray diffraction patterns were used to identify crystalline structures and to study the changes in the crystalline structures. These results showed that the starch contains orthorhombic and hexagonal nanocrystals, which play and important role and which show small structural damage during ripening reflected in a decrease in their relative crystallinity. This is the first time that these nanocrystals have been studied and considered in the ripening process. Differential scanning calorimetry was used to study the thermal transition in isolated starch. The results indicated that the gelatinization of starch corresponds to the solvation of orthorhombic and hexagonal nanocrystals, and that during ripening there is a decrease in the enthalpy reflecting some crystal structural damage. Pasting properties were studied using a Starch cell for flours and isolated starches, indicating that the pasting profile is governed by intrinsic and extrinsic factors. The resistant starch does not show significant changes at this stage of maturation. This starch is the one with the highest resistant starch content reported in the literature (38%). It was hypothesized that the resistant starch is directly related to the amount of whole starch granules, and more importantly, directly related to the number concentration of orthorhombic and hexagonal nanocrystals. Therefore, knowledge of the physicochemical and nutritional properties of plantain and flour at each stage of ripening allows better selection according to industrial applications.