Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(14): 3674-3688.e18, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34166616

RESUMEN

PspA is the main effector of the phage shock protein (Psp) system and preserves the bacterial inner membrane integrity and function. Here, we present the 3.6 Å resolution cryoelectron microscopy (cryo-EM) structure of PspA assembled in helical rods. PspA monomers adopt a canonical ESCRT-III fold in an extended open conformation. PspA rods are capable of enclosing lipids and generating positive membrane curvature. Using cryo-EM, we visualized how PspA remodels membrane vesicles into µm-sized structures and how it mediates the formation of internalized vesicular structures. Hotspots of these activities are zones derived from PspA assemblies, serving as lipid transfer platforms and linking previously separated lipid structures. These membrane fusion and fission activities are in line with the described functional properties of bacterial PspA/IM30/LiaH proteins. Our structural and functional analyses reveal that bacterial PspA belongs to the evolutionary ancestry of ESCRT-III proteins involved in membrane remodeling.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Choque Térmico/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , Endocitosis , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/ultraestructura , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Dominios Proteicos , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Liposomas Unilamelares/metabolismo
2.
Cell ; 182(5): 1140-1155.e18, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32814015

RESUMEN

The endosomal sorting complex required for transport-III (ESCRT-III) catalyzes membrane fission from within membrane necks, a process that is essential for many cellular functions, from cell division to lysosome degradation and autophagy. How it breaks membranes, though, remains unknown. Here, we characterize a sequential polymerization of ESCRT-III subunits that, driven by a recruitment cascade and by continuous subunit-turnover powered by the ATPase Vps4, induces membrane deformation and fission. During this process, the exchange of Vps24 for Did2 induces a tilt in the polymer-membrane interface, which triggers transition from flat spiral polymers to helical filament to drive the formation of membrane protrusions, and ends with the formation of a highly constricted Did2-Ist1 co-polymer that we show is competent to promote fission when bound on the inside of membrane necks. Overall, our results suggest a mechanism of stepwise changes in ESCRT-III filament structure and mechanical properties via exchange of the filament subunits to catalyze ESCRT-III activity.


Asunto(s)
Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Fusión de Membrana/fisiología , Adenosina Trifosfatasas/metabolismo , Línea Celular Tumoral , Endosomas/metabolismo , Células HeLa , Humanos , Polimerizacion , Transporte de Proteínas/fisiología
3.
Annu Rev Cell Dev Biol ; 34: 85-109, 2018 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-30095293

RESUMEN

The endosomal sorting complexes required for transport (ESCRT) pathway mediates cellular membrane remodeling and fission reactions. The pathway comprises five core complexes: ALIX, ESCRT-I, ESCRT-II, ESCRT-III, and Vps4. These soluble complexes are typically recruited to target membranes by site-specific adaptors that bind one or both of the early-acting ESCRT factors: ALIX and ESCRT-I/ESCRT-II. These factors, in turn, nucleate assembly of ESCRT-III subunits into membrane-bound filaments that recruit the AAA ATPase Vps4. Together, ESCRT-III filaments and Vps4 remodel and sever membranes. Here, we review recent advances in our understanding of the structures, activities, and mechanisms of the ESCRT-III and Vps4 machinery, including the first high-resolution structures of ESCRT-III filaments, the assembled Vps4 enzyme in complex with an ESCRT-III substrate, the discovery that ESCRT-III/Vps4 complexes can promote both inside-out and outside-in membrane fission reactions, and emerging mechanistic models for ESCRT-mediated membrane fission.


Asunto(s)
Citoesqueleto de Actina/genética , Adenosina Trifosfatasas/genética , Membrana Celular/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Proteínas de Saccharomyces cerevisiae/genética , Citoesqueleto de Actina/química , Adenosina Trifosfatasas/química , Membrana Celular/química , Citocinesis , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Endosomas/química , Endosomas/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
4.
Proc Natl Acad Sci U S A ; 121(20): e2402180121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38717859

RESUMEN

Membrane tubulation coupled with fission (MTCF) is a widespread phenomenon but mechanisms for their coordination remain unclear, partly because of the lack of assays to monitor dynamics of membrane tubulation and subsequent fission. Using polymer cushioned bilayer islands, we analyze the membrane tubulator Bridging Integrator 1 (BIN1) mixed with the fission catalyst dynamin2 (Dyn2). Our results reveal this mixture to constitute a minimal two-component module that demonstrates MTCF. MTCF is an emergent property and arises because BIN1 facilitates recruitment but inhibits membrane binding of Dyn2 in a dose-dependent manner. MTCF is therefore apparent only at high Dyn2 to BIN1 ratios. Because of their mutual involvement in T-tubules biogenesis, mutations in BIN1 and Dyn2 are associated with centronuclear myopathies and our analysis links the pathology with aberrant MTCF. Together, our results establish cushioned bilayer islands as a facile template for the analysis of membrane tubulation and inform of mechanisms that coordinate MTCF.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Dinamina II , Proteínas Supresoras de Tumor , Dinamina II/metabolismo , Dinamina II/genética , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Membrana Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Dinámicas Mitocondriales/fisiología , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo
5.
Traffic ; 24(1): 34-47, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36435193

RESUMEN

Membrane-enclosed transport carriers sort biological molecules between stations in the cell in a dynamic process that is fundamental to the physiology of eukaryotic organisms. While much is known about the formation and release of carriers from specific intracellular membranes, the mechanism of carrier formation from the recycling endosome, a compartment central to cellular signaling, remains to be resolved. In Caenorhabditis elegans, formation of transport carriers from the recycling endosome requires the dynamin-like, Eps15-homology domain (EHD) protein, RME-1, functioning with the Bin/Amphiphysin/Rvs (N-BAR) domain protein, AMPH-1. Here we show, using a free-solution single-particle technique known as burst analysis spectroscopy (BAS), that AMPH-1 alone creates small, tubular-vesicular products from large, unilamellar vesicles by membrane fission. Membrane fission requires the amphipathic H0 helix of AMPH-1 and is slowed in the presence of RME-1. Unexpectedly, AMPH-1-induced membrane fission is stimulated in the presence of GTP. Furthermore, the GTP-stimulated membrane fission activity seen for AMPH-1 is recapitulated by the heterodimeric N-BAR amphiphysin protein from yeast, Rvs161/167p, strongly suggesting that GTP-stimulated membrane fission is a general property of this important class of N-BAR proteins.


Asunto(s)
Endocitosis , Endosomas , Animales , Membrana Celular/metabolismo , Endocitosis/fisiología , Endosomas/metabolismo , Membranas Intracelulares , Caenorhabditis elegans , Guanosina Trifosfato/metabolismo
6.
Cell Mol Life Sci ; 81(1): 134, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478101

RESUMEN

The functions of human Apolipoproteins L (APOLs) are poorly understood, but involve diverse activities like lysis of bloodstream trypanosomes and intracellular bacteria, modulation of viral infection and induction of apoptosis, autophagy, and chronic kidney disease. Based on recent work, I propose that the basic function of APOLs is the control of membrane dynamics, at least in the Golgi and mitochondrion. Together with neuronal calcium sensor-1 (NCS1) and calneuron-1 (CALN1), APOL3 controls the activity of phosphatidylinositol-4-kinase-IIIB (PI4KB), involved in both Golgi and mitochondrion membrane fission. Whereas secreted APOL1 induces African trypanosome lysis through membrane permeabilization of the parasite mitochondrion, intracellular APOL1 conditions non-muscular myosin-2A (NM2A)-mediated transfer of PI4KB and APOL3 from the Golgi to the mitochondrion under conditions interfering with PI4KB-APOL3 interaction, such as APOL1 C-terminal variant expression or virus-induced inflammatory signalling. APOL3 controls mitophagy through complementary interactions with the membrane fission factor PI4KB and the membrane fusion factor vesicle-associated membrane protein-8 (VAMP8). In mice, the basic APOL1 and APOL3 activities could be exerted by mAPOL9 and mAPOL8, respectively. Perspectives regarding the mechanism and treatment of APOL1-related kidney disease are discussed, as well as speculations on additional APOLs functions, such as APOL6 involvement in adipocyte membrane dynamics through interaction with myosin-10 (MYH10).


Asunto(s)
Apolipoproteína L1 , Insuficiencia Renal Crónica , Humanos , Ratones , Animales , Apolipoproteínas L , Apolipoproteína L1/genética , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Miosinas
7.
Bioessays ; 44(12): e2200158, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36344475

RESUMEN

Intercellular communication is an essential process in all multicellular organisms. During this process, molecules secreted by one cell will bind to a receptor on the cognate cell leading to the subsequent uptake of the receptor-ligand complex. Once inside, the cell then determines the fate of the receptor-ligand complex and any other proteins that were endocytosed together. Approximately 80% of endocytosed material is recycled back to the plasma membrane either directly or indirectly via the Golgi apparatus and the remaining 20% is delivered to the lysosome for degradation. Although most pathways have been identified, we still lack understanding on how specificity in sorting of recycling cargos into different pathways is achieved, and how the cell reaches high accuracy of these processes in the absence of clear sorting signals in the bulk of the client proteins. In this review, we will summarize our current understanding of the mechanism behind recycling cargo sorting and propose a model of differential affinities between cargo and cargo receptors/adaptors with regards to iterative sorting in endosomes.


Asunto(s)
Endocitosis , Endosomas , Humanos , Ligandos , Endosomas/metabolismo , Transporte de Proteínas , Proteínas/metabolismo , Comunicación Celular
8.
Biol Chem ; 404(8-9): 813-819, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37139661

RESUMEN

Atg18, Atg21 and Hsv2 are homologous ß-propeller proteins binding to PI3P and PI(3,5)P2. Atg18 is thought to organize lipid transferring protein complexes at contact sites of the growing autophagosome (phagophore) with both the ER and the vacuole. Atg21 is restricted to the vacuole phagophore contact, where it organizes part of the Atg8-lipidation machinery. The role of Hsv2 is less understood, it partly affects micronucleophagy. Atg18 is further involved in regulation of PI(3,5)P2 synthesis. Recently, a novel Atg18-retromer complex and its role in vacuole homeostasis and membrane fission was uncovered.


Asunto(s)
Autofagia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
J Cell Sci ; 133(14)2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32675215

RESUMEN

Mitochondrial fusion and fission (mitochondrial dynamics) are homeostatic processes that safeguard normal cellular function. This relationship is especially strong in tissues with constitutively high energy demands, such as brain, heart and skeletal muscle. Less is known about the role of mitochondrial dynamics in developmental systems that involve changes in metabolic function. One such system is spermatogenesis. The first mitochondrial dynamics gene, Fuzzy onions (Fzo), was discovered in 1997 to mediate mitochondrial fusion during Drosophila spermatogenesis. In mammals, however, the role of mitochondrial fusion during spermatogenesis remained unknown for nearly two decades after discovery of Fzo Mammalian spermatogenesis is one of the most complex and lengthy differentiation processes in biology, transforming spermatogonial stem cells into highly specialized sperm cells over a 5-week period. This elaborate differentiation process requires several developmentally regulated mitochondrial and metabolic transitions, making it an attractive model system for studying mitochondrial dynamics in vivo We review the emerging role of mitochondrial biology, and especially its dynamics, during the development of the male germ line.


Asunto(s)
Proteínas de Drosophila , Dinámicas Mitocondriales , Animales , Drosophila , Masculino , Mitocondrias/genética , Espermatogénesis/genética
10.
J Cell Sci ; 133(17)2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32907930

RESUMEN

Autophagy is fundamental for cell and organismal health. Two types of autophagy are conserved in eukaryotes: macroautophagy and microautophagy. During macroautophagy, autophagosomes deliver cytoplasmic constituents to endosomes or lysosomes, whereas during microautophagy lytic organelles take up cytoplasm directly. While macroautophagy has been investigated extensively, microautophagy has received much less attention. Nonetheless, it has become clear that microautophagy has a broad range of functions in biosynthetic transport, metabolic adaptation, organelle remodeling and quality control. This Review discusses the selective and non-selective microautophagic processes known in yeast, plants and animals. Based on the molecular mechanisms for the uptake of microautophagic cargo into lytic organelles, I propose to distinguish between fission-type microautophagy, which depends on ESCRT proteins, and fusion-type microautophagy, which requires the core autophagy machinery and SNARE proteins. Many questions remain to be explored, but the functional versatility and mechanistic diversity of microautophagy are beginning to emerge.


Asunto(s)
Lisosomas , Microautofagia , Animales , Autofagia , Endosomas , Saccharomyces cerevisiae/genética
11.
J Membr Biol ; 255(2-3): 143-150, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35218392

RESUMEN

Dynamin-related protein1 (Drp1) functions to divide mitochondria and peroxisomes by binding specific adaptor proteins and lipids, both of which are integral to the limiting organellar membrane. In efforts to understand how such multivalent interactions regulate Drp1 functions, in vitro reconstitution schemes rely on recruiting soluble portions of the adaptors appended with genetically encoded polyhistidine tags onto membranes containing Ni2+-bound chelator lipids. These strategies are facile and circumvent the challenge in working with membrane proteins but assume that binding is specific to proteins carrying the polyhistidine tag. Here, we find using chelator lipids and chelator beads that both native and recombinant Drp1 directly bind Ni2+ ions. Metal binding, therefore, represents a potential strategy to deplete or purify Drp1 from native tissue lysates. Importantly, high concentrations of the metal in solution inhibit GTP hydrolysis and renders Drp1 inactive in membrane fission. Together, our results emphasize a metal-binding propensity, which could significantly impact Drp1 functions.


Asunto(s)
Dinámicas Mitocondriales , Proteínas Mitocondriales , Quelantes/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Lípidos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
12.
Biochem Soc Trans ; 50(4): 1157-1167, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35960003

RESUMEN

Visualization of cellular dynamics using fluorescent light microscopy has become a reliable and indispensable source of experimental evidence for biological studies. Over the past two decades, the development of super-resolution microscopy platforms coupled with innovations in protein and molecule labeling led to significant biological findings that were previously unobservable due to the barrier of the diffraction limit. As a result, the ability to image the dynamics of cellular processes is vastly enhanced. These imaging tools are extremely useful in cellular physiology for the study of vesicle fusion and endocytosis. In this review, we will explore the power of stimulated emission depletion (STED) and confocal microscopy in combination with various labeling techniques in real-time observation of the membrane transformation of fusion and endocytosis, as well as their underlying mechanisms. We will review how STED and confocal imaging are used to reveal fusion and endocytic membrane transformation processes in live cells, including hemi-fusion; hemi-fission; hemi-to-full fusion; fusion pore opening, expansion, constriction and closure; shrinking or enlargement of the Ω-shape membrane structure after vesicle fusion; sequential compound fusion; and the sequential endocytic membrane transformation from flat- to O-shape via the intermediate Λ- and Ω-shape transition. We will also discuss how the recent development of imaging techniques would impact future studies in the field.


Asunto(s)
Endocitosis , Fusión de Membrana , Membrana Celular/metabolismo , Endocitosis/fisiología , Exocitosis/fisiología , Fusión de Membrana/fisiología , Microscopía Confocal , Vesículas Secretoras/fisiología
13.
EMBO J ; 36(22): 3274-3291, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29030482

RESUMEN

Sorting, transport, and autophagic degradation of proteins in endosomes and lysosomes, as well as the division of these organelles, depend on scission of membrane-bound tubulo-vesicular carriers. How scission occurs is poorly understood, but family proteins bind these membranes. Here, we show that the yeast PROPPIN Atg18 carries membrane scission activity. Purified Atg18 drives tubulation and scission of giant unilamellar vesicles. Upon membrane contact, Atg18 folds its unstructured CD loop into an amphipathic α-helix that inserts into the bilayer. This allows the protein to engage its two lipid binding sites for PI3P and PI(3,5)P2 PI(3,5)P2 induces Atg18 oligomerization, which should concentrate lipid-inserted α-helices in the outer membrane leaflet and drive membrane tubulation and scission. The scission activity of Atg18 is compatible with its known roles in endo-lysosomal protein trafficking, autophagosome biogenesis, and vacuole fission. Key features required for membrane tubulation and scission by Atg18 are shared by other PROPPINs, suggesting that membrane scission may be a generic function of this protein family.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Autofagia , Proteínas Relacionadas con la Autofagia/química , Proteínas Fluorescentes Verdes/metabolismo , Lípidos/química , Proteínas de la Membrana/química , Mutación/genética , Péptidos/química , Fosfatos de Fosfatidilinositol/metabolismo , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Cloruro de Sodio/farmacología , Imagen de Lapso de Tiempo , Liposomas Unilamelares/metabolismo , Vacuolas/metabolismo
14.
Traffic ; 19(5): 328-335, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29437294

RESUMEN

It is now widely accepted that dynamin-mediated fission is a fundamentally mechanical process: dynamin undergoes a GTP-dependent conformational change, constricting the neck between two compartments, somehow inducing their fission. However, the exact connection between dynamin's conformational change and the scission of the neck is still unclear. In this paper, we re-evaluate the suggestion that a change in the pitch or radius of dynamin's helical geometry drives the lipid bilayer through a mechanical instability, similar to a well-known phenomenon occurring in soap films. We find that, contrary to previous claims, there is no such instability. This lends credence to an alternative model, in which dynamin drives the membrane up an energy barrier, allowing thermal fluctuations to take it into the hemifission state.


Asunto(s)
Membrana Celular/química , Dinaminas/química , Modelos Teóricos , Animales , Membrana Celular/metabolismo , Dinaminas/metabolismo , Humanos , Propiedades de Superficie
15.
EMBO J ; 35(21): 2270-2284, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27670760

RESUMEN

The large GTPase dynamin is the first protein shown to catalyze membrane fission. Dynamin and its related proteins are essential to many cell functions, from endocytosis to organelle division and fusion, and it plays a critical role in many physiological functions such as synaptic transmission and muscle contraction. Research of the past three decades has focused on understanding how dynamin works. In this review, we present the basis for an emerging consensus on how dynamin functions. Three properties of dynamin are strongly supported by experimental data: first, dynamin oligomerizes into a helical polymer; second, dynamin oligomer constricts in the presence of GTP; and third, dynamin catalyzes membrane fission upon GTP hydrolysis. We present the two current models for fission, essentially diverging in how GTP energy is spent. We further discuss how future research might solve the remaining open questions presently under discussion.


Asunto(s)
Membrana Celular/fisiología , Dinaminas/fisiología , Animales , Guanosina Trifosfato/fisiología , Humanos
16.
EMBO J ; 35(4): 443-57, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26783363

RESUMEN

Vesicle release upon endocytosis requires membrane fission, catalyzed by the large GTPase dynamin. Dynamin contains five domains that together orchestrate its mechanochemical activity. Hydrogen-deuterium exchange coupled with mass spectrometry revealed global nucleotide- and membrane-binding-dependent conformational changes, as well as the existence of an allosteric relay element in the α2(S) helix of the dynamin stalk domain. As predicted from structural studies, FRET analyses detect large movements of the pleckstrin homology domain (PHD) from a 'closed' conformation docked near the stalk to an 'open' conformation able to interact with membranes. We engineered dynamin constructs locked in either the closed or open state by chemical cross-linking or deletion mutagenesis and showed that PHD movements function as a conformational switch to regulate dynamin self-assembly, membrane binding, and fission. This PHD conformational switch is impaired by a centronuclear myopathy-causing disease mutation, S619L, highlighting the physiological significance of its role in regulating dynamin function. Together, these data provide new insight into coordinated conformational changes that regulate dynamin function and couple membrane binding, oligomerization, and GTPase activity during dynamin-catalyzed membrane fission.


Asunto(s)
Dinaminas/química , Dinaminas/metabolismo , Línea Celular , Dinaminas/genética , Transferencia Resonante de Energía de Fluorescencia , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Membranas Intracelulares/metabolismo , Espectroscopía de Resonancia Magnética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformación Proteica , Multimerización de Proteína , Eliminación de Secuencia
17.
Proc Natl Acad Sci U S A ; 114(16): E3258-E3267, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28373566

RESUMEN

Membrane fission, which facilitates compartmentalization of biological processes into discrete, membrane-bound volumes, is essential for cellular life. Proteins with specific structural features including constricting rings, helical scaffolds, and hydrophobic membrane insertions are thought to be the primary drivers of fission. In contrast, here we report a mechanism of fission that is independent of protein structure-steric pressure among membrane-bound proteins. In particular, random collisions among crowded proteins generate substantial pressure, which if unbalanced on the opposite membrane surface can dramatically increase membrane curvature, leading to fission. Using the endocytic protein epsin1 N-terminal homology domain (ENTH), previously thought to drive fission by hydrophobic insertion, our results show that membrane coverage correlates equally with fission regardless of the hydrophobicity of insertions. Specifically, combining FRET-based measurements of membrane coverage with multiple, independent measurements of membrane vesiculation revealed that fission became spontaneous as steric pressure increased. Further, fission efficiency remained equally potent when helices were replaced by synthetic membrane-binding motifs. These data challenge the view that hydrophobic insertions drive membrane fission, suggesting instead that the role of insertions is to anchor proteins strongly to membrane surfaces, amplifying steric pressure. In line with these conclusions, even green fluorescent protein (GFP) was able to drive fission efficiently when bound to the membrane at high coverage. Our conclusions are further strengthened by the finding that intrinsically disordered proteins, which have large hydrodynamic radii yet lack a defined structure, drove fission with substantially greater potency than smaller, structured proteins.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Membrana Celular/fisiología , Endocitosis/fisiología , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Citocinesis , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica , Ratas
18.
Proc Natl Acad Sci U S A ; 114(21): 5449-5454, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28484031

RESUMEN

Dynamin is a dimeric GTPase that assembles into a helix around the neck of endocytic buds. Upon GTP hydrolysis, dynamin breaks these necks, a reaction called membrane fission. Fission requires dynamin to first constrict the membrane. It is unclear, however, how dynamin helix constriction works. Here we undertake a direct high-speed atomic force microscopy imaging analysis to visualize the constriction of single dynamin-coated membrane tubules. We show GTP-induced dynamic rearrangements of the dynamin helix turns: the average distances between turns reduce with GTP hydrolysis. These distances vary, however, over time because helical turns were observed to transiently pair and dissociate. At fission sites, these cycles of association and dissociation were correlated with relative lateral displacement of the turns and constriction. Our findings show relative longitudinal and lateral displacements of helical turns related to constriction. Our work highlights the potential of high-speed atomic force microscopy for the observation of mechanochemical proteins onto membranes during action at almost molecular resolution.


Asunto(s)
Dinaminas/metabolismo , Endocitosis , Membrana Celular/fisiología , Guanosina Trifosfato/metabolismo , Humanos , Microscopía de Fuerza Atómica
19.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066582

RESUMEN

In biology, the modern scientific fashion is to mostly study proteins. Much less attention is paid to lipids. However, lipids themselves are extremely important for the formation and functioning of cellular membrane organelles. Here, the role of the geometry of the lipid bilayer in regulation of organelle shape is analyzed. It is proposed that during rapid shape transition, the number of lipid heads and their size (i.e., due to the change in lipid head charge) inside lipid leaflets modulates the geometrical properties of organelles, in particular their membrane curvature. Insertion of proteins into a lipid bilayer and the shape of protein trans-membrane domains also affect the trans-membrane asymmetry between surface areas of luminal and cytosol leaflets of the membrane. In the cases where lipid molecules with a specific shape are not predominant, the shape of lipids (cylindrical, conical, or wedge-like) is less important for the regulation of membrane curvature, due to the flexibility of their acyl chains and their high ability to diffuse.


Asunto(s)
Membrana Celular/química , Forma de la Célula , Forma de los Orgánulos , Animales , División Celular , Membrana Celular/ultraestructura , Vesículas Citoplasmáticas/química , Aparato de Golgi/química , Humanos , Biogénesis de Organelos , Seudópodos/química
20.
Biochem Soc Trans ; 47(1): 441-448, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30783012

RESUMEN

The endosomal sorting complex required for transport-III (ESCRT-III) and VPS4 catalyze a variety of membrane-remodeling processes in eukaryotes and archaea. Common to these processes is the dynamic recruitment of ESCRT-III proteins from the cytosol to the inner face of a membrane neck structure, their activation and filament formation inside or at the membrane neck and the subsequent or concomitant recruitment of the AAA-type ATPase VPS4. The dynamic assembly of ESCRT-III filaments and VPS4 on cellular membranes induces constriction of membrane necks with large diameters such as the cytokinetic midbody and necks with small diameters such as those of intraluminal vesicles or enveloped viruses. The two processes seem to use different sets of ESCRT-III filaments. Constriction is then thought to set the stage for membrane fission. Here, we review recent progress in understanding the structural transitions of ESCRT-III proteins required for filament formation, the functional role of VPS4 in dynamic ESCRT-III assembly and its active role in filament constriction. The recent data will be discussed in the context of different mechanistic models for inside-out membrane fission.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Adenosina Trifosfatasas/metabolismo , Catálisis , Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Humanos , Polimerizacion , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA