RESUMEN
The development of large-scale, high-quality ferroelectric semiconductor nanowire arrays with interesting light-emitting properties can address limitations in traditional wide-bandgap ferroelectrics, thus serving as building blocks for innovative device architectures and next-generation high-density optoelectronics. Here, we investigate the optical properties of ferroelectric CsGeX3 (X = Br, I) halide perovskite nanowires that are epitaxially grown on muscovite mica substrates by vapor phase deposition. Detailed structural characterizations reveal an incommensurate heteroepitaxial relationship with the mica substrate. Furthermore, photoluminescence that can be tuned from yellow-green to red emissions by varying the halide composition demonstrates that these nanowire networks can serve as platforms for future optoelectronic applications. In addition, the room-temperature ferroelectricity and ferroelectric domain structures of these nanowires are characterized using second harmonic generation (SHG) polarimetry. The combination of room-temperature ferroelectricity with photoluminescence in these nanowire arrays unlocks new avenues for the design of novel multifunctional materials.
RESUMEN
Bismuth halide perovskites are widely regarded as nontoxic alternatives to lead halide perovskites for optoelectronics and solar energy harvesting applications. With a tailorable composition and intriguing optical properties, bismuth halide perovskites are also promising candidates for tunable photonic devices. However, robust control of the anion composition in bismuth halide perovskites remains elusive. Here, we established chemical vapor deposition and anion exchange protocols to synthesize bismuth halide perovskite nanoflakes with controlled dimensions and variable compositions. In particular, we demonstrated the gradient bromide distribution by controlling the anion exchange and diffusion processes, which is spatially resolved by time-of-flight secondary ion mass spectrometry. Moreover, the optical waveguiding properties of bismuth halide perovskites can be modulated by flake thicknesses and anion compositions. With a unique gradient anion distribution and controllable optical properties, bismuth halide perovskites provide new possibilities for applications in optoelectronic devices and integrated photonics.
RESUMEN
Metal halide perovskites (MHP) are highly promising semiconductors. In this study, we focus on FAPbBr3 nanocrystals, which are of great interest for green light-emitting diodes. Structural parameters significantly impact the properties of MHPs and are linked to phase instability, which hampers long-term applications. Clearly, there is a need for local and precise characterization techniques at the atomic scale, such as transmission electron microscopy. Because of the high electron beam sensitivity of MHPs, these investigations are extremely challenging. Here, we applied a low-dose method based on four-dimensional scanning transmission electron microscopy. We quantified the observed elongation of the projections of the Br atomic columns, suggesting an alternation in the position of the Br atoms perpendicular to the Pb-Br-Pb bonds. Together with molecular dynamics simulations, these results remarkably reveal local distortions in an on-average cubic structure. Additionally, this study provides an approach to prospectively investigating the fundamental degradation mechanisms of MHPs.
RESUMEN
Metal halide perovskites are multifunctional semiconductors with tunable structures and properties. They are highly dynamic crystals with complex octahedral tilting patterns and strongly anharmonic atomic behavior. In the higher temperature, higher symmetry phases of these materials, several complex structural features are observed. The local structure can differ greatly from the average structure and there is evidence that dynamic 2D structures of correlated octahedral motion form. An understanding of the underlying complex atomistic dynamics is, however, still lacking. In this work, the local structure of the inorganic perovskite CsPbI3 is investigated using a new machine learning force field based on the atomic cluster expansion framework. Through analysis of the temporal and spatial correlation observed during large-scale simulations, it is revealed that the low frequency motion of octahedral tilts implies a double-well effective potential landscape, even well into the cubic phase. Moreover, dynamic local regions of lower symmetry are present within both higher symmetry phases. These regions are planar and the length and timescales of the motion are reported. Finally, the spatial arrangement of these features and their interactions are investigated and visualized, providing a comprehensive picture of local structure in the higher symmetry phases.
RESUMEN
Hybrid metal halide perovskite (MHP) materials, while being promising for photovoltaic technology, also encounter challenges related to material stability. Combining 2D MHPs with 3D MHPs offers a viable solution, yet there is a gap in the understanding of the stability among various 2D materials. The mechanical, ionic, and environmental stability of various 2D MHP ligands are reported, and an improvement with the use of a quater-thiophene-based organic cation (4TmI) that forms an organic-semiconductor incorporated MHP structure is demonstrated. It is shown that the best balance of mechanical robustness, environmental stability, ion activation energy, and reduced mobile ion concentration under accelerated aging is achieved with the usage of 4TmI. It is believed that by addressing mechanical and ion-based degradation modes using this built-in barrier concept with a material system that also shows improvements in charge extraction and device performance, MHP solar devices can be designed for both reliability and efficiency.
RESUMEN
In recent decades, two-dimensional (2D) perovskites have emerged as promising semiconductors for next-generation photovoltaics, showing notable advancements in solar energy conversion. Herein, we explore the impact of alternative inorganic lattice BX-based compositions (B=Ge or Sn, X=Br or I) on the energy gap and stability. Our investigation encompasses BA2Man-1BnX3n+1 2D Ruddlesden-Popper perovskites (for n=1-5 layers) and 3D bulk (MA)BX3 systems, employing first-principles calculations with spin-orbit coupling (SOC), DFT-1/2 quasiparticle, and D3 dispersion corrections. The study unveils how atoms with smaller ionic radii induce anisotropic internal and external distortions within the inorganic and organic lattices. Introducing the spacers in the low-layer regime reduces local distortions but widens band gaps. Our calculation protocol provides deeper insights into the physics and chemistry underlying 2D perovskite materials, paving the way for optimizing environmentally friendly alternatives that can efficiently replace with sustainable materials.
RESUMEN
Perovskite solar cells (PSCs) have rapidly become a prevalent photovoltaic technology owing to their simple structure, low processing cost, and remarkable increase in solar-to-electric power conversion efficiency (PCE). However, the intermittent nature of solar radiation induces some technical and financial challenges for its practical applications as a reliable power source. To address this issue, the integration of PSCs with supercapacitors (SCs) in the form of integrated photo-supercapacitors (IPSs) has gathered significant attention. This integration can balance energy availability and demand, reduce energy wastage, and stabilize power output for portable and wearable electronics. Meanwhile, the excellent optoelectronic properties with mixed electronic and ionic conductivity of metal halide perovskites (MHPs) have expanded their application as electrode and electrolyte materials for SCs and photo-supercapacitors (PSs) applications. This review provides an all-inclusive summary of the current state-of-the-art research progress of PSCs-IPSs and MHPs-based SCs and PSs by highlighting their basics and integration approaches. It also discusses the challenges and prospects of these materials and technologies.
RESUMEN
Transition-metal dichalcogenides (TMDs) and metal halide perovskites (MHPs) have been investigated for various applications, owing to their unique physical properties and excellent optoelectronic functionalities. TMD monolayers synthesized via chemical vapor deposition (CVD), which are advantageous for large-area synthesis, exhibit low mobility and prominent hysteresis in the electrical signals of field-effect transistors (FETs) because of their native defects. In this study, we demonstrate an increase in electrical mobility by â¼170 times and reduced hysteresis in the current-bias curves of MoS2 FETs hybridized with CsPbBr3 for charge transfer doping, which is implemented via solution-based CsPbBr3-nanocluster precipitation on CVD-grown MoS2 monolayer FETs. Electrons injected from CsPbBr3 into MoS2 induce heavy n-doping and heal point defects in the MoS2 channel layer, thus significantly increasing mobility and reducing hysteresis in the hybrid FETs. Our results provide a foundation for improving the reliability and performance of TMD-based FETs by hybridizing them with solution-based perovskites.
RESUMEN
We present a new approach to achieving strong coupling between electrically injected excitons and photonic bound states in the continuum of a dielectric metasurface. Here a high-finesse metasurface cavity is monolithically patterned in the channel of a perovskite light-emitting transistor to induce a large Rabi splitting of â¼200 meV and more than 50-fold enhancement of the polaritonic emission compared to the intrinsic excitonic emission of the perovskite film. Moreover, the directionality of polaritonic electroluminescence can be dynamically tuned by varying the source-drain bias, which induces an asymmetric distribution of exciton population within the transistor channel. We argue that this approach provides a new platform to study strong light-matter interactions in dispersion engineered photonic cavities under electrical injection and paves the way to solution-processed electrically pumped polariton lasers.
RESUMEN
Chiral perovskites possess a huge applicative potential in several areas of optoelectronics and spintronics. The development of novel lead-free perovskites with tunable properties is a key topic of current research. Herein, we report a novel lead-free chiral perovskite, namely (R/S-)ClMBA2 SnI4 (ClMBA=1-(4-chlorophenyl)ethanamine) and the corresponding racemic system. ClMBA2 SnI4 samples exhibit a low band gap (2.12â eV) together with broad emission extending in the red region of the spectrum (â¼1.7â eV). Chirality transfer from the organic ligand induces chiroptical activity in the 465-530â nm range. Density functional theory calculations show a Rashba type band splitting for the chiral samples and no band splitting for the racemic isomer. Self-trapped exciton formation is at the origin of the large Stokes shift in the emission. Careful correlation with analogous lead and lead-free 2D chiral perovskites confirms the role of the symmetry-breaking distortions in the inorganic layers associated with the ligands as the source of the observed chiroptical properties providing also preliminary structure-property correlation in 2D chiral perovskites.
RESUMEN
Because of instability issues presented by metal halide perovskites based on methylammonium (MA), its replacement to Cs has emerged as an alternative to improve the materials' durability. However, the impact of this replacement on electronic properties, especially gap energy and bulk Rashba splitting remains unclear since electrostatic interactions from organic cations can play a crucial role. Through first-principles calculations, we investigated how organic/inorganic cations impact the electronic properties of MAPbI 3 and CsPbI 3 perovskites. Although at high temperatures the organic cation can assume spherical-like configurations due to its rotation into the cages, our results provide a complete electronic mechanism to show, from a chemical perspective based on ab initio calculations at 0 K , how the MA dipoles suppression can reduce the MAPbI 3 gap energy by promoting a degeneracy breaking in the electronic states from the PbI 3 framework, while the dipole moment reinforcement is crucial to align theory â experiment, increasing the bulk Rashba splitting through higher Pb off-centering motifs. The lack of permanent dipole moment in Cs results in CsPbI 3 polymorphs with a pronounced Pb on-centering-like feature, which causes suppression in their respective bulk Rashba effect.
RESUMEN
Cesium lead iodide (CsPbI3) is a promising semiconductor with a suitable band gap for optoelectronic devices. CsPbI3 has a metastable perovskite phase that undergoes a phase transition into an unfavorable nonperovskite phase in an ambient environment. This phase transition changes the optoelectronic properties of CsPbI3 and hinders its potential for device applications. Therefore, it is of central importance to understand the kinetics of such instability and develop strategies to control and stabilize the perovskite phase. Here, we use ultralong CsPbI3 nanowires as a model platform to investigate the phase transition kinetics. Our results depict the role of environmental stressors (moisture and temperature) in controlling the phase transition dynamics of CsPbI3, which can serve as guiding principles for future phase transition studies and the design of related photovoltaics. Furthermore, we demonstrate the controllability of phase propagation on individual nanowires by varying the moisture level and temperature.
Asunto(s)
Nanocables , Cesio , Yoduros , SemiconductoresRESUMEN
The optimized exploitation of perovskite nanocrystals and nanoplatelets as highly efficient light sources requires a detailed understanding of the energy spacing within the exciton manifold. Dark exciton states are particularly relevant because they represent a channel that reduces radiative efficiency. Here, we apply large in-plane magnetic fields to brighten optically inactive states of CsPbBr3-based nanoplatelets for the first time. This approach allows us to access the dark states and directly determine the dark-bright splitting, which reaches 22 meV for the thinnest nanoplatelets. The splitting is significantly less for thicker nanoplatelets due to reduced exciton confinement. Additionally, the form of the magneto-PL spectrum suggests that dark and bright state populations are nonthermalized, which is indicative of a phonon bottleneck in the exciton relaxation process.
RESUMEN
Charge collection narrowing (CCN) has been reported to be an efficient strategy to achieve optical filter-free narrowband photodetection (NPD) with metal halide perovskite (MHP) single crystals. However, the necessity of utilizing thick crystals in CCN limits their applications in large scale, flexible, self-driven, and high-performance optoelectronics. Here, for the first time, we fabricate vertically integrated MHP quantum wire/nanowire (QW/NW) array based photodetectors in nanoengineered porous alumina membranes (PAMs) showing self-driven broadband photodetection (BPD) and NPD capability simultaneously. Two cutoff detection edges of the NPDs are located at around 770 and 730 nm, with a full-width at half-maxima (fwhm) of around 40 nm. The optical bandgap difference between the NWs and the QWs, in conjunction with the high carrier recombination rate in QWs, contributes to the intriguing NPD performance. Thanks to the excellent mechanical flexibility of the PAMs, a flexible NPD is demonstrated with respectable performance. Our work here opens a new pathway to design and engineer a nanostructured MHP for novel color selective and full color sensing devices.
RESUMEN
Strain is an effective strategy to modulate the optoelectronic properties of 2D materials, but it has been almost unexplored in layered hybrid organic-inorganic metal halide perovskites (HOIPs) due to their complex band structure and mechanical properties. Here, we investigate the temperature-dependent microphotoluminescence (PL) of 2D (C6H5CH2CH2NH3)2Cs3Pb4Br13 HOIP subject to biaxial strain induced by a SiO2 ring platform on which flakes are placed by viscoelastic stamping. At 80 K, we found that a strain of <1% can change the PL emission from a single peak (unstrained) to three well-resolved peaks. Supported by micro-Raman spectroscopy, we show that the thermomechanically generated strain modulates the bandgap due to changes in the octahedral tilting and lattice expansion. Mechanical simulations demonstrate the coexistence of tensile and compressive strain along the flake. The observed PL peaks add an interesting feature to the rich phenomenology of photoluminescence in 2D HOIPs, which can be exploited in tailored sensing and optoelectronic devices.
RESUMEN
Metal halide perovskites (MHPs), in particular lead-based perovskites, have earned recognized fame in several fields for their outstanding optoelectronic properties, including direct generation of free charge carriers, optimal ambipolar charge carrier transport properties, high absorption coefficient, point-defect tolerance, and compositional versatility. Nowadays, this class of materials represents a real and promising alternative to silicon for photovoltaic technologies. This worthy success led to a growing interest in the exploration of MHPs in other hot research fields, such as solar-driven photocatalytic water splitting towards hydrogen production. Nevertheless, many of these perovskites show air and moisture instability problems that considerably hinder their practical application for photocatalytic water splitting. Moreover, if chemical instability is a problem that can be in part mitigated by the optimization of the chemical composition and crystal structure, the presence of lead represents a real problem for the practical application of MHPs in commercial devices due to environmental and healthcare issues. To successfully overcome these problems, lead-free metal halide perovskites (LFMHPs) have gained increasing interest thanks to their optoelectronic properties, comparable to lead-based materials, and their more eco-friendly nature. Among all the lead-free perovskite alternatives, this mini-review considers bismuth-based perovskites and perovskite derivatives with a specific focus on solar-driven photocatalysis application for H2 evolution. Special attention is dedicated to the structure and composition of the different materials and to the advantage of heterojunction engineering and the relative impact on the photocatalytic process.
RESUMEN
Hybrid organic-inorganic perovskites (HOIPs) are promising materials in several fields related to electronics, offering long carrier-diffusion lengths, high absorption coefficients, tunable band gaps, and long spin lifetimes. Recently, chiral perovskites have attracted huge interest thanks to the possibility of further widening the applications of HOIPs. Chiral materials, being intrinsically non-centrosymmetric, display several attractive physicochemical properties, including circular dichroism, circularly polarized photoluminescence, nonlinear optics, ferroelectricity, and spin-related effects. Recent studies have shown that chirality can be transferred from the chiral organic ligands into the inorganic perovskite framework, resulting in materials combining the advantages of both chirality and perovskite superior optoelectronic characteristics. As for HOIPs for photovoltaics, strong interest is currently devoted towards the development of lead-free chiral perovskites to overcome any toxicity issue. While considering the basic and general features of chiral HOIPs, this review mainly focuses on lead-free materials. It highlights the first attempts to understand the correlation between the crystal structure characteristics and the chirality-induced functional properties in lead and lead-free chiral perovskites.
RESUMEN
The nanostructuring of single-molecule magnets (SMMs) on substrates, in nanotubes and periodic frameworks is highly desired for the future magnetic recording devices. However, the ability to organize SMMs into long-range ordered arrays in these systems is still lacking. Here, we report the incorporation of magnetic (RECl2 (H2 O)6 )+ (RE=rare earths) molecular groups into the framework of an organic metal halide perovskite (OMHP)-(H2 dabco)CsCl3 . Intriguingly, we show the incorporated rare-earth groups self-organized into long-range ordered arrays that uniformly and periodically distributed in the A sites of OMHP. The ordered (RECl2 (H2 O)6 )+ groups serve as SMMs in the perovskite frameworks, exhibiting large effective magnetic moment, moderate magnetic anisotropy and two-step relaxation behavior. With the additional merit of great structural flexibility and multifunction of OMHPs, the preparation of the first SMMs@OMHP magnetic materials furthers the development of molecular spintronics.
RESUMEN
Charge carrier transport in materials is of essential importance for photovoltaic and photonic applications. Here, the authors demonstrate a controllable acceleration or deceleration of charge carrier transport in specially structured metal-alloy perovskite (MACs)PbI3 (MA= CH3 NH3 ) single-crystals with a gradient composition of CsPbI3 /(MA1- x Csx )PbI3 /MAPbI3 . Depending on the Cs-cation distribution in the structure and therefore the energy band alignment, two different effects are demonstrated: i) significant acceleration of electron transport across the depth driven by the gradient band alignment and suppression of electron-hole recombination, benefiting for photovoltaic and detector applications; and ii) decelerated electron transport and thus improved radiative carrier recombination and emission efficiency, highly beneficial for light and display applications. At the same time, the top Cs-layer results in hole localization in the top layer and surface passivation. This controllable acceleration and deceleration of electron transport is critical for various applications in which efficient electron-hole separation and suppressed nonradiative electron-hole recombination is demanded.
RESUMEN
Despite intriguing optoelectronic attributes in solar cells, light-emitting diodes, and photocatalysis, the instability of organic-inorganic perovskites poises a grand challenge for long-term applications. Herein, we report a simple yet robust strategy via light-and-solution treatment to create an organic membrane that effectively passivates CH3NH3PbI3 (MAPbI3). Specifically, the restructuring of MA+ is observed on MAPbI3 in aqueous hydrogen iodide. HIO3 molecules are generated via the reaction between water and I2 induced by photocatalysis when MAPbI3 is illuminated. The hydrogen bonding between HIO3 molecules at different perovskite particles not only directs the creeplike growth of perovskite particles but also in situ forms a passivating layer firmly anchoring on the perovskite surface with hydrophilic -NH3+ groups tethering to perovskites and hydrophobic -CH3 moieties exposed to air. Intriguingly, such MA+ film greatly improves the stability of perovskites against moisture as well as their crystal quality, considerably enhancing the photocatalytic hydrogen evolution rate.