Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Microbiol ; 76: 727-755, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35759872

RESUMEN

Methane is one of the most important greenhouse gases on Earth and holds an important place in the global carbon cycle. Archaea are the only organisms that use methanogenesis to produce energy and rely on the methyl-coenzyme M reductase complex (Mcr). Over the last decade, new results have significantly reshaped our view of the diversity of methane-related pathways in the Archaea. Many new lineages that synthesize or use methane have been identified across the whole archaeal tree, leading to a greatly expanded diversity of substrates and mechanisms. In this review, we present the state of the art of these advances and how they challenge established scenarios of the origin and evolution of methanogenesis, and we discuss the potential trajectories that may have led to this strikingly wide range of metabolisms.


Asunto(s)
Archaea , Metano , Metano/metabolismo , Oxidación-Reducción , Filogenia
2.
Proc Natl Acad Sci U S A ; 119(32): e2114799119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914169

RESUMEN

Natural and anthropogenic wetlands are major sources of the atmospheric greenhouse gas methane. Methane emissions from wetlands are mitigated by methanotrophic bacteria at the oxic-anoxic interface, a zone of intense redox cycling of carbon, sulfur, and nitrogen compounds. Here, we report on the isolation of an aerobic methanotrophic bacterium, 'Methylovirgula thiovorans' strain HY1, which possesses metabolic capabilities never before found in any methanotroph. Most notably, strain HY1 is the first bacterium shown to aerobically oxidize both methane and reduced sulfur compounds for growth. Genomic and proteomic analyses showed that soluble methane monooxygenase and XoxF-type alcohol dehydrogenases are responsible for methane and methanol oxidation, respectively. Various pathways for respiratory sulfur oxidation were present, including the Sox-rDsr pathway and the S4I system. Strain HY1 employed the Calvin-Benson-Bassham cycle for CO2 fixation during chemolithoautotrophic growth on reduced sulfur compounds. Proteomic and microrespirometry analyses showed that the metabolic pathways for methane and thiosulfate oxidation were induced in the presence of the respective substrates. Methane and thiosulfate could therefore be independently or simultaneously oxidized. The discovery of this versatile bacterium demonstrates that methanotrophy and thiotrophy are compatible in a single microorganism and underpins the intimate interactions of methane and sulfur cycles in oxic-anoxic interface environments.


Asunto(s)
Bacterias , Metano , Azufre , Bacterias/metabolismo , Metano/metabolismo , Oxidación-Reducción , Proteómica , Azufre/metabolismo , Tiosulfatos/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34349022

RESUMEN

The concentration of atmospheric methane (CH4) continues to increase with microbial communities controlling soil-atmosphere fluxes. While there is substantial knowledge of the diversity and function of prokaryotes regulating CH4 production and consumption, their active interactions with viruses in soil have not been identified. Metagenomic sequencing of soil microbial communities enables identification of linkages between viruses and hosts. However, this does not determine if these represent current or historical interactions nor whether a virus or host are active. In this study, we identified active interactions between individual host and virus populations in situ by following the transfer of assimilated carbon. Using DNA stable-isotope probing combined with metagenomic analyses, we characterized CH4-fueled microbial networks in acidic and neutral pH soils, specifically primary and secondary utilizers, together with the recent transfer of CH4-derived carbon to viruses. A total of 63% of viral contigs from replicated soil incubations contained homologs of genes present in known methylotrophic bacteria. Genomic sequences of 13C-enriched viruses were represented in over one-third of spacers in CRISPR arrays of multiple closely related Methylocystis populations and revealed differences in their history of viral interaction. Viruses infecting nonmethanotrophic methylotrophs and heterotrophic predatory bacteria were also identified through the analysis of shared homologous genes, demonstrating that carbon is transferred to a diverse range of viruses associated with CH4-fueled microbial food networks.


Asunto(s)
Bacterias/virología , Carbono/metabolismo , Virus ADN/genética , Metano/metabolismo , Suelo/química , Bacterias/genética , Bacterias/metabolismo , Radioisótopos de Carbono/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Genoma Bacteriano , Genoma Viral , Metagenómica , Metano/química , Microbiota , Microbiología del Suelo
4.
Appl Environ Microbiol ; 89(12): e0160123, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38014956

RESUMEN

IMPORTANCE: Aerobic methanotrophs play a critical role in the global carbon cycle, particularly in controlling net emissions of methane to the atmosphere. As methane is a much more potent greenhouse gas than carbon dioxide, there is increasing interest in utilizing these microbes to mitigate future climate change by increasing their ability to consume methane. Any such efforts, however, require a detailed understanding of how to manipulate methanotrophic activity. Herein, we show that methanotrophic activity is strongly controlled by MmoD, i.e., MmoD regulates methanotrophy through the post-transcriptional regulation of the soluble methane monooxygenase and controls the ability of methanotrophs to collect copper. Such data are likely to prove quite useful in future strategies to enhance the use of methanotrophs to not only reduce methane emissions but also remove methane from the atmosphere.


Asunto(s)
Methylosinus trichosporium , Methylosinus trichosporium/genética , Oxigenasas/genética , Metano , Cobre
5.
Glob Chang Biol ; 29(11): 3039-3053, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36843502

RESUMEN

Northern lakes disproportionately influence the global carbon cycle, and may do so more in the future depending on how their microbial communities respond to climate warming. Microbial communities can change because of the direct effects of climate warming on their metabolism and the indirect effects of climate warming on groundwater connectivity from thawing of surrounding permafrost, especially at lower landscape positions. Here we used shotgun metagenomics to compare the taxonomic and functional gene composition of sediment microbes in 19 peatland lakes across a 1600-km permafrost transect in boreal western Canada. We found microbes responded differently to the loss of regional permafrost cover than to increases in local groundwater connectivity. These results suggest that both the direct and indirect effects of climate warming, which were respectively associated with loss of permafrost and subsequent changes in groundwater connectivity interact to change microbial composition and function. Archaeal methanogens and genes involved in all major methanogenesis pathways were more abundant in warmer regions with less permafrost, but higher groundwater connectivity partly offset these effects. Bacterial community composition and methanotrophy genes did not vary with regional permafrost cover, and the latter changed similarly to methanogenesis with groundwater connectivity. Finally, we found an increase in sugar utilization genes in regions with less permafrost, which may further fuel methanogenesis. These results provide the microbial mechanism for observed increases in methane emissions associated with loss of permafrost cover in this region and suggest that future emissions will primarily be controlled by archaeal methanogens over methanotrophic bacteria as northern lakes warm. Our study more generally suggests that future predictions of aquatic carbon cycling will be improved by considering how climate warming exerts both direct effects associated with regional-scale permafrost thaw and indirect effects associated with local hydrology.


Asunto(s)
Lagos , Hielos Perennes , Clima , Hielos Perennes/microbiología , Ciclo del Carbono , Archaea/metabolismo , Carbono/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(39): 24459-24463, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32913059

RESUMEN

Aerobic and nitrite-dependent methanotrophs make a living from oxidizing methane via methanol to carbon dioxide. In addition, these microorganisms cometabolize ammonia due to its structural similarities to methane. The first step in both of these processes is catalyzed by methane monooxygenase, which converts methane or ammonia into methanol or hydroxylamine, respectively. Methanotrophs use methanol for energy conservation, whereas toxic hydroxylamine is a potent inhibitor that needs to be rapidly removed. It is suggested that many methanotrophs encode a hydroxylamine oxidoreductase (mHAO) in their genome to remove hydroxylamine, although biochemical evidence for this is lacking. HAOs also play a crucial role in the metabolism of aerobic and anaerobic ammonia oxidizers by converting hydroxylamine to nitric oxide (NO). Here, we purified an HAO from the thermophilic verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV and characterized its kinetic properties. This mHAO possesses the characteristic P460 chromophore and is active up to at least 80 °C. It catalyzes the rapid oxidation of hydroxylamine to NO. In methanotrophs, mHAO efficiently removes hydroxylamine, which severely inhibits calcium-dependent, and as we show here, lanthanide-dependent methanol dehydrogenases, which are more prevalent in the environment. Our results indicate that mHAO allows methanotrophs to thrive under high ammonia concentrations in natural and engineered ecosystems, such as those observed in rice paddy fields, landfills, or volcanic mud pots, by preventing the accumulation of inhibitory hydroxylamine. Under oxic conditions, methanotrophs mainly oxidize ammonia to nitrite, whereas in hypoxic and anoxic environments reduction of both ammonia-derived nitrite and NO could lead to nitrous oxide (N2O) production.


Asunto(s)
Amoníaco/metabolismo , Proteínas Bacterianas/metabolismo , Metano/metabolismo , Óxido Nítrico/metabolismo , Oxidorreductasas/metabolismo , Verrucomicrobia/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Verrucomicrobia/genética , Verrucomicrobia/metabolismo
7.
J Environ Manage ; 348: 119324, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37857224

RESUMEN

The area of sunflower crops is steadily increasing. A beneficial way of managing sunflower waste biomass could be its use as a feedstock for biochar production. Biochar is currently being considered as an additive for improving soil parameters, including the ability to oxidise methane (CH4) - one of the key greenhouse gases (GHG). Despite the high production of sunflower husk, there is still insufficient information on the impact of sunflower husk biochar on the soil environment, especially on the methanotrophy process. To fill this knowledge gap, an experiment was designed to evaluate the effects of addition of sunflower husk biochar (produced at 450-550 °C) at a wide range of doses (1-100 Mg ha-1) to Haplic Luvisol. In the presented study, the CH4 oxidation potential of soil with and without sunflower husk biochar was investigated at 60 and 100% water holding capacity (WHC), and with the addition of 1% CH4 (v/v). The comprehensive study included GHG exchange (CH4 and CO2), physicochemical properties of soil (pH, soil organic carbon (SOC), dissolved organic carbon (DOC), nitrate nitrogen (NO3--N), WHC), and the structure of soil microbial communities. That study showed that even low biochar doses (5 and 10 Mg ha-1) were sufficient to enhance pH, SOC, DOC and NO3--N content. Importantly, sunflower husk biochar was significant source of NO3--N, which soil concentration increased from 9.40 ± 0.09 mg NO3--N kg-1 for the control to even 19.40 ± 0.26 mg NO3--N kg-1 (for 100 Mg ha-1). Significant improvement of WHC (by 11.0-12.4%) was observed after biochar addition at doses of 60 Mg ha-1 and higher. At 60% WHC, application of biochar at a dose of 40 Mg ha-1 brought significant improvements in CH4 oxidation rate, which was 4.89 ± 0.37 mg CH4-C kg-1 d-1. Higher biochar doses were correlated with further improvement of CH4 oxidation rates, which at 100 Mg ha-1 was seventeen-fold higher (8.36 ± 0.84 mg CH4-C kg-1 d-1) than in the biochar-free control (0.48 ± 0.28 mg CH4-C kg-1 d-1). CO2 emissions were not proportional to biochar doses and only grew circa (ca.) twofold from 3.16 to 6.90 mg CO2-C kg-1 d-1 at 100 Mg ha-1. Above 60 Mg ha-1, the diversity of methanotrophic communities increased, with Methylobacter becoming the most abundant genus, which was as high as 7.45%. This is the first, such advanced and multifaceted study of the wide range of sunflower husk biochar doses on Haplic Luvisol. The positive correlation between soil conditions, methanotroph abundance and CH4 oxidation confirmed the multifaceted, positive effect of sunflower husk biochar on Haplic Luvisol. Sunflower husk biochar can be successfully used for Haplic Luvisol supplementation. This additive facilitates soil protection against degradation and has the potential to mitigate GHG emissions.


Asunto(s)
Gases de Efecto Invernadero , Helianthus , Suelo/química , Carbono , Metano/análisis , Nitrógeno/análisis , Dióxido de Carbono/análisis , Carbón Orgánico/química , Gases de Efecto Invernadero/análisis , Óxido Nitroso/análisis
8.
Metab Eng ; 71: 99-116, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34547453

RESUMEN

Abundant natural gas reserves, along with increased biogas production, have prompted recent interest in harnessing methane as an industrial feedstock for the production of liquid fuels and chemicals. Methane can either be used directly for fermentation or first oxidized to methanol via biological or chemical means. Methanol is advantageous due to its liquid state under normal conditions. Methylotrophy, defined as the ability of microorganisms to utilize reduced one-carbon compounds like methane and methanol as sole carbon and energy sources for growth, is widespread in bacterial communities. However, native methylotrophs lack the extensive and well-characterized synthetic biology toolbox of platform microorganisms like Escherichia coli, which results in slow and inefficient design-build-test cycles. If a heterologous production pathway can be engineered, the slow growth and uptake rates of native methylotrophs generally limit their industrial potential. Therefore, much focus has been placed on engineering synthetic methylotrophs, or non-methylotrophic platform microorganisms, like E. coli, that have been engineered with synthetic methanol utilization pathways. These platform hosts allow for rapid design-build-test cycles and are well-suited for industrial application at the current time. In this review, recent progress made toward synthetic methylotrophy (including methanotrophy) is discussed. Specifically, the importance of amino acid metabolism and alternative one-carbon assimilation pathways are detailed. A recent study that has achieved methane bioconversion to liquid chemicals in a synthetic E. coli methanotroph is also briefly discussed. We also discuss strategies for the way forward in order to realize the industrial potential of synthetic methanotrophs and methylotrophs.


Asunto(s)
Metano , Metanol , Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Metabólica/métodos , Metano/metabolismo , Metanol/metabolismo
9.
Appl Environ Microbiol ; 88(7): e0234621, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35285718

RESUMEN

Aerobic methanotrophic activity is highly dependent on copper availability, and methanotrophs have developed multiple strategies to collect copper. Specifically, when copper is limiting (ambient concentrations less than 1 µM), some methanotrophs produce and secret a small modified peptide (less than 1,300 Da) termed methanobactin (MB) that binds copper with high affinity. As MB is secreted into the environment, other microbes that require copper for their metabolism may be inhibited as MB may make copper unavailable; e.g., inhibition of denitrifiers as complete conversion nitrate to dinitrogen involves multiple enzymes, some of which are copper-dependent. Of key concern is inhibition of the copper-dependent nitrous oxide reductase (NosZ), the only known enzyme capable of converting nitrous oxide (N2O) to dinitrogen. Herein, we show that different forms of MB differentially affect copper uptake and N2O reduction by Pseudomonas stutzeri strain DCP-Ps1 (that expresses clade I NosZ) and Dechloromonas aromatica strain RCB (that expresses clade II NosZ). Specifically, in the presence of MB from Methylocystis sp. strain SB2 (SB2-MB), copper uptake and nosZ expression were more significantly reduced than in the presence of MB from Methylosinus trichosporium OB3b (OB3b-MB). Further, N2O accumulation increased more significantly for both P. stutzeri strain DCP-Ps1 and D. aromatica strain RCB in the presence of SB2-MB versus OB3b-MB. These data illustrate that copper competition between methanotrophs and denitrifying bacteria can be significant and that the extent of such competition is dependent on the form of MB that methanotrophs produce. IMPORTANCE Herein, it was demonstrated that the different forms of methanobactin differentially enhance N2O emissions from Pseudomonas stutzeri strain DCP-Ps1 (harboring clade I nitrous oxide reductase) and Dechloromonas aromatica strain RCB (harboring clade II nitrous oxide reductase). This work contributes to our understanding of how aerobic methanotrophs compete with denitrifiers for the copper uptake and also suggests how MBs prevent copper collection by denitrifiers, thus downregulating expression of nitrous oxide reductase. This study provides critical information for enhanced understanding of microbe-microbe interactions that are important for the development of better predictive models of net greenhouse gas emissions (i.e., methane and nitrous oxide) that are significantly controlled by microbial activity.


Asunto(s)
Methylocystaceae , Methylosinus trichosporium , Pseudomonas stutzeri , Betaproteobacteria , Cobre/metabolismo , Imidazoles , Methylocystaceae/metabolismo , Óxido Nitroso/metabolismo , Oligopéptidos , Pseudomonas stutzeri/metabolismo
10.
Appl Environ Microbiol ; 88(1): e0179321, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34669437

RESUMEN

Copper is an important component of methanotrophic physiology, as it controls the expression and activity of alternative forms of methane monooxygenase (MMO). To collect copper, some methanotrophs secrete a chalkophore- or copper-binding compound called methanobactin (MB). MB is a ribosomally synthesized posttranslationally modified polypeptide (RiPP) that, after binding copper, is collected by MbnT, a TonB-dependent transporter (TBDT). Structurally different forms of MB have been characterized, and here, we show that different forms of MB are collected by specific TBDTs. Further, we report that in the model methanotroph, Methylosinus trichosporium OB3b, expression of the TBDT required for uptake of a different MB made by Methylocystis sp. strain SB2 (MB-SB2) is induced in the presence of MB-SB2, suggesting that methanotrophs have developed specific machinery and regulatory systems to actively take up MB from other methanotrophs for copper collection. Moreover, the canonical "copper switch" in M. trichosporium OB3b that controls expression of alternative MMOs is apparent if one of the two TBDTs required for MB-OB3b and MB-SB2 uptake is knocked out, but is disrupted if both TBDTs are knocked out. These data indicate that MB uptake, including the uptake of exogenous MB, plays an important role in the copper switch in M. trichosporium OB3b and, thus, overall activity. Based on these data, we propose a revised model for the copper switch in this methanotroph that involves MB uptake. IMPORTANCE In this study, we demonstrate that different TBDTs in the model methanotroph Methylosinus trichosporium OB3b are responsible for uptake of either endogenous MB or exogenous MB. Interestingly, the presence of exogenous MB induces expression of its specific TBDT in M. trichosporium OB3b, suggesting that this methanotroph is able to actively take up MB produced by others. This work contributes to our understanding of how microbes collect and compete for copper and also helps inform how such uptake coordinates the expression of different forms of methane monooxygenase. Such studies are likely to be very important to develop a better understanding of methanotrophic interactions via synthesis and secretion of secondary metabolites such as methanobactin and thus provide additional means whereby these microbes can be manipulated for a variety of environmental and industrial purposes.


Asunto(s)
Methylosinus trichosporium , Cobre , Imidazoles , Methylosinus trichosporium/genética , Oligopéptidos , Oxigenasas/genética
11.
Glob Chang Biol ; 28(13): 4211-4224, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35377512

RESUMEN

Arctic soils are marked by cryoturbic features, which impact soil-atmosphere methane (CH4 ) dynamics vital to global climate regulation. Cryoturbic diapirism alters C/N chemistry within frost boils by introducing soluble organic carbon and nutrients, potentially influencing microbial CH4 oxidation. CH4 oxidation in soils, however, requires a spatio-temporal convergence of ecological factors to occur. Spatial delineation of microbial activity with respect to these key microbial and biogeochemical factors at relevant scales is experimentally challenging in inherently complex and heterogeneous natural soil matrices. This work aims to overcome this barrier by spatially linking microbial CH4 oxidation with C/N chemistry and metagenomic characteristics. This is achieved by using positron-emitting radiotracers to visualize millimeter-scale active CH4 uptake areas in Arctic soils with and without diapirism. X-ray absorption spectroscopic speciation of active and inactive areas shows CH4 uptake spatially associates with greater proportions of inorganic N in diapiric frost boils. Metagenomic analyses reveal Ralstonia pickettii associates with CH4 uptake across soils along with pertinent CH4 and inorganic N metabolism associated genes. This study highlights the critical relationship between CH4 and N cycles in Arctic soils, with potential implications for better understanding future climate. Furthermore, our experimental framework presents a novel, widely applicable strategy for unraveling ecological relationships underlying greenhouse gas dynamics under global change.


Asunto(s)
Forunculosis , Gases de Efecto Invernadero , Animales , Electrones , Gases de Efecto Invernadero/análisis , Metano/análisis , Suelo/química
12.
World J Microbiol Biotechnol ; 38(10): 176, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35922575

RESUMEN

Microorganisms act as both the source and sink of methane, a potent greenhouse gas, thus making a significant contribution to the environment as an important driver of climate change. The rhizosphere and phyllosphere of plants growing in natural (mangroves) and artificial wetlands (flooded agricultural ecosystems) harbor methane-utilizing bacteria that oxidize methane at the source and reduce its net flux. For several decades, microorganisms have been used as biofertilizers to promote plant growth. However, now their role in reducing net methane flux, especially from flooded agricultural ecosystems is gaining momentum globally. Research in this context has mainly focused on taxonomic aspects related to methanotrophy among diverse bacterial genera, and environmental factors that govern methane utilization in natural and artificial wetland ecosystems. In the last few decades, concerted efforts have been made to develop multifunctional microbial inoculants that can oxidize methane and alleviate greenhouse gas emissions, as well as promote plant growth. In this context, combinations of taxonomic groups commonly found in rice paddies and those used as biofertilizers are being explored. This review deals with methanotrophy among diverse bacterial domains, factors influencing methane-utilizing ability, and explores the potential of novel methane-utilizing microbial consortia with plant growth-promoting traits in flooded ecosystems.


Asunto(s)
Ecosistema , Gases de Efecto Invernadero , Agricultura , Bacterias , Metano/análisis , Suelo , Humedales
13.
Appl Environ Microbiol ; 87(20): e0133921, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34347514

RESUMEN

Permafrost soils store approximately twice the amount of carbon currently present in Earth's atmosphere and are acutely impacted by climate change due to the polar amplification of increasing global temperature. Many organic-rich permafrost sediments are located on large river floodplains, where river channel migration periodically erodes and redeposits the upper tens of meters of sediment. Channel migration exerts a first-order control on the geographic distribution of permafrost and floodplain stratigraphy and thus may affect microbial habitats. To examine how river channel migration in discontinuous permafrost environments affects microbial community composition, we used amplicon sequencing of the 16S rRNA gene on sediment samples from floodplain cores and exposed riverbanks along the Koyukuk River, a large tributary of the Yukon River in west-central Alaska. Microbial communities are sensitive to permafrost thaw: communities found in deep samples thawed by the river closely resembled near-surface active-layer communities in nonmetric multidimensional scaling analyses but did not resemble floodplain permafrost communities at the same depth. Microbial communities also displayed lower diversity and evenness in permafrost than in both the active layer and permafrost-free point bars recently deposited by river channel migration. Taxonomic assignments based on 16S and quantitative PCR for the methyl coenzyme M reductase functional gene demonstrated that methanogens and methanotrophs are abundant in older permafrost-bearing deposits but not in younger, nonpermafrost point bar deposits. The results suggested that river migration, which regulates the distribution of permafrost, also modulates the distribution of microbes potentially capable of producing and consuming methane on the Koyukuk River floodplain. IMPORTANCE Arctic lowlands contain large quantities of soil organic carbon that is currently sequestered in permafrost. With rising temperatures, permafrost thaw may allow this carbon to be consumed by microbial communities and released to the atmosphere as carbon dioxide or methane. We used gene sequencing to determine the microbial communities present in the floodplain of a river running through discontinuous permafrost. We found that the river's lateral movement across its floodplain influences the occurrence of certain microbial communities-in particular, methane-cycling microbes were present on the older, permafrost-bearing eroding riverbank but absent on the newly deposited river bars. Riverbank sediment had microbial communities more similar to those of the floodplain active-layer samples than permafrost samples from the same depth. Therefore, spatial patterns of river migration influence the distribution of microbial taxa relevant to the warming Arctic climate.


Asunto(s)
Microbiota , Hielos Perennes/microbiología , Ríos/microbiología , Alaska , Ciclo del Carbono , Movimientos del Agua
14.
New Phytol ; 230(6): 2200-2212, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33715152

RESUMEN

Knowledge regarding mechanisms moderating methane (CH4 ) sink/source behaviour along the soil-tree stem-atmosphere continuum remains incomplete. Here, we applied stable isotope analysis (δ13 C-CH4 ) to gain insights into axial CH4 transport and oxidation in two globally distributed subtropical lowland species (Melaleuca quinquenervia and Casuarina glauca). We found consistent trends in CH4 flux (decreasing with height) and δ13 C-CH4 enrichment (increasing with height) in relation to stem height from ground. The average lower tree stem δ13 C-CH4 (0-40 cm) of Melaleuca and Casuarina (-53.96‰ and -65.89‰) were similar to adjacent flooded soil CH4 ebullition (-52.87‰ and -62.98‰), suggesting that stem CH4 is derived mainly by soil sources. Upper stems (81-200 cm) displayed distinct δ13 C-CH4 enrichment (Melaleuca -44.6‰ and Casuarina -46.5‰, respectively). Coupled 3D-photogrammetry with novel 3D-stem measurements revealed distinct hotspots of CH4 flux and isotopic fractionation on Melaleuca, which were likely due to bark anomalies in which preferential pathways of gas efflux were enhanced. Diel experiments revealed greater δ13 C-CH4 enrichment and higher oxidation rates in the afternoon, compared with the morning. Overall, we estimated that c. 33% of the methane was oxidised between lower and upper stems during axial transport, therefore potentially representing a globally significant, yet previously unaccounted for, methane sink.


Asunto(s)
Metano , Árboles , Atmósfera , Bosques , Suelo
15.
Can J Microbiol ; 67(6): 464-475, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33301360

RESUMEN

Experiments were carried out to elucidate linkage between methane consumption and mineralization of phosphorous (P) from different P sources. The treatments were (i) no CH4 + no P amendment (absolute control), (ii) with CH4 + no P amendment (control), (iii) with CH4 + inorganic P as Ca3(PO4)2, and (iv) with CH4 + organic P as sodium phytate. P sources were added at 25 µg P·(g soil)-1. Soils were incubated to undergo three repeated CH4 feeding cycles, referred to as feeding cycle I, feeding cycle II, and feeding cycle III. CH4 consumption rate k (µg CH4 consumed·(g soil)-1·day-1) was 0.297 ± 0.028 in no P amendment control, 0.457 ± 0.016 in Ca3(PO4)2, and 0.627 ± 0.013 in sodium phytate. Rate k was stimulated by 2 to 6 times over CH4 feeding cycles and followed the trend of sodium phytate > Ca3(PO4)2 > no P amendment control. CH4 consumption stimulated P solubilization from Ca3(PO4)2 by a factor of 2.86. Acid phosphatase (µg paranitrophenol released·(g soil)-1·h-1) was higher in sodium phytate than the no P amendment control. Abundance of 16S rRNA and pmoA genes increased with CH4 consumption rates. The results of the study suggested that CH4 consumption drives mineralization of unavailable inorganic and organic P sources in the soil ecosystem.


Asunto(s)
Ecosistema , Metano/metabolismo , Fósforo/metabolismo , Suelo , Fosfatasa Ácida/análisis , Fosfatasa Ácida/metabolismo , Disponibilidad Biológica , Genes Microbianos/genética , Metano/análisis , Oxigenasas/genética , Fósforo/análisis , Fósforo/farmacocinética , ARN Ribosómico 16S/genética , Suelo/química , Microbiología del Suelo
16.
World J Microbiol Biotechnol ; 37(4): 72, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33765207

RESUMEN

Worldwide, the use of methane is limited to generating power, electricity, heating, and for production of chemicals. We believe this valuable gas can be employed more widely. Here we review the possibility of using methane as a feedstock for biotechnological processes based on the application of synthetic methanotrophs. Methane monooxygenase (MMO) enables aerobic methanotrophs to utilize methane as a sole carbon and energy source, in contrast to industrial microorganisms that grow on carbon sources, such as sugar cane, which directly compete with the food market. However, naturally occurring methanotrophs have proven to be difficult to manipulate genetically and their current industrial use is limited to generating animal feed biomass. Shifting the focus from genetic engineering of methanotrophs, towards introducing metabolic pathways for methane utilization in familiar industrial microorganisms, may lead to construction of efficient and economically feasible microbial cell factories. The applications of a technology for MMO production are not limited to methane-based industrial synthesis of fuels and value-added products, but are also of interest in bioremediation where mitigating anthropogenic pollution is an increasingly relevant issue. Published research on successful functional expression of MMO does not exist, but several attempts provide promising future perspectives and a few recent patents indicate that there is an ongoing research in this field. Combining the knowledge on genetics and metabolism of methanotrophy with tools for functional heterologous expression of MMO-encoding genes in non-methanotrophic bacterial species, is a key step for construction of synthetic methanotrophs that holds a great biotechnological potential.


Asunto(s)
Biotecnología , Metano/metabolismo , Oxigenasas/metabolismo , Alimentación Animal , Biodegradación Ambiental , Biomasa , Carbono/metabolismo
17.
Mol Ecol ; 29(10): 1806-1819, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32285532

RESUMEN

Belowground ecosystem processes can be highly variable and difficult to predict using microbial community data. Here, we argue that this stems from at least three issues: (a) complex covariance structure of samples (with environmental conditions or spatial proximity) can make distinguishing biotic drivers a challenge; (b) communities can control ecosystem processes through multiple mechanisms, making the identification of these controls a challenge; and (c) ecosystem function assessments can be broad in physiological scale, encapsulating multiple processes with unique microbially mediated controls. We test these assertions using methane (CH4 )-cycling processes in soil samples collected along a wetland-to-upland habitat gradient in the Congo Basin. We perform our measurements of function under controlled laboratory conditions and statistically control for environmental covariates to aid in identifying biotic drivers. We divide measurements of microbial communities into four attributes (abundance, activity, composition, and diversity) that represent different forms of community control. Lastly, our process measurements differ in physiological scale, including broader processes (gross methanogenesis and methanotrophy) that involve more mediating groups, to finer processes (hydrogenotrophic methanogenesis and high-affinity CH4 oxidation) with fewer mediating groups. We observed that finer scale processes can be more readily predicted from microbial community structure than broader scale processes. In addition, the nature of those relationships differed, with broad processes limited by abundance while fine-scale processes were associated with diversity and composition. These findings demonstrate the importance of carefully defining the physiological scale of ecosystem function and performing community measurements that represent the range of possible controls on ecosystem processes.


Asunto(s)
Ecosistema , Metano , Microbiota , Microbiología del Suelo , Biodiversidad , Congo , Humedales
18.
Glob Chang Biol ; 26(5): 2988-3005, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32068924

RESUMEN

Vegetated coastal ecosystems (VCEs; i.e., mangroves, salt marshes, and seagrasses) play a critical role in global carbon (C) cycling, storing 10× more C than temperate forests. Methane (CH4 ), a potent greenhouse gas, can form in the sediments of these ecosystems. Currently, CH4 emissions are a missing component of VCE C budgets. This review summarizes 97 studies describing CH4 fluxes from mangrove, salt marsh, and seagrass ecosystems and discusses factors controlling CH4 flux in these systems. CH4 fluxes from these ecosystems were highly variable yet they all act as net methane sources (median, range; mangrove: 279.17, -67.33 to 72,867.83; salt marsh: 224.44, -92.60 to 94,129.68; seagrass: 64.80, 1.25-401.50 µmol CH4 m-2 day-1 ). Together CH4 emissions from mangrove, salt marsh, and seagrass ecosystems are about 0.33-0.39 Tmol CH4 -C/year-an addition that increases the current global marine CH4 budget by more than 60%. The majority (~45%) of this increase is driven by mangrove CH4 fluxes. While organic matter content and quality were commonly reported in individual studies as the most important environmental factors driving CH4 flux, they were not significant predictors of CH4 flux when data were combined across studies. Salinity was negatively correlated with CH4 emissions from salt marshes, but not seagrasses and mangroves. Thus the available data suggest that other environmental drivers are important for predicting CH4 emissions in vegetated coastal systems. Finally, we examine stressor effects on CH4 emissions from VCEs and we hypothesize that future changes in temperature and other anthropogenic activites (e.g., nitrogen loading) will likely increase CH4 emissions from these ecosystems. Overall, this review highlights the current and growing importance of VCEs in the global marine CH4 budget.


Asunto(s)
Ecosistema , Metano , Carbono , Bosques , Humedales
19.
New Phytol ; 221(3): 1447-1456, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30267569

RESUMEN

Upland forest soils are known to be the main biological sink for methane, but studies have shown that net methane uptake of a forest ecosystem can be reduced when methane emissions by vegetation are considered. We estimated the methane budget of a young oak plantation by considering tree stems but also the understorey vegetation. Automated chambers connected to a laser-based gas analyser, on tree stems, bare soil and soil covered with understorey vegetation, recorded CH4 fluxes for 7 months at 3 h intervals. Tree stem emissions were low and equated to only 0.1% of the soil sink. Conversely, the presence of understorey vegetation increased soil methane uptake. This plant-driven enhancement of CH4 uptake occurred when the soil was consuming methane. At the stand level, the methane budget shifted from -1.4 ± 0.4 kg C ha-1 when we upscaled data obtained only on bare soil, to -2.9 ± 0.6 kg C ha-1 when we considered soil area that was covered with understorey vegetation. These results indicate that aerenchymatous plant species, which are known to reduce the methane sink in wetlands, actually increase soil methane uptake two-fold in an upland forest by enhancing methane and oxygen transport and/or by promoting growth of methanotrophic populations.


Asunto(s)
Bosques , Metano/metabolismo , Plantas/metabolismo , Clima , Tallos de la Planta/metabolismo , Quercus/metabolismo , Estaciones del Año , Suelo
20.
Appl Environ Microbiol ; 84(6)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29305514

RESUMEN

Aerobic methanotrophs have long been known to play a critical role in the global carbon cycle, being capable of converting methane to biomass and carbon dioxide. Interestingly, these microbes exhibit great sensitivity to copper and rare-earth elements, with the expression of key genes involved in the central pathway of methane oxidation controlled by the availability of these metals. That is, these microbes have a "copper switch" that controls the expression of alternative methane monooxygenases and a "rare-earth element switch" that controls the expression of alternative methanol dehydrogenases. Further, it has been recently shown that some methanotrophs can detoxify inorganic mercury and demethylate methylmercury; this finding is remarkable, as the canonical organomercurial lyase does not exist in these methanotrophs, indicating that a novel mechanism is involved in methylmercury demethylation. Here, we review recent findings on methanotrophic interactions with metals, with a particular focus on these metal switches and the mechanisms used by methanotrophs to bind and sequester metals.


Asunto(s)
Bacterias Anaerobias/metabolismo , Metales/metabolismo , Metano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA