Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 580
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant J ; 118(5): 1327-1342, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38319946

RESUMEN

Anthocyanin generation in apples (Malus domestica) and the pigmentation that results from it may be caused by irradiation and through administration of methyl jasmonate (MeJA). However, their regulatory interrelationships associated with fruit coloration are not well defined. To determine whether MdERF109, a transcription factor (TF) involved in light-mediated coloration and anthocyanin biosynthesis, has synergistic effects with other proteins, we performed a yeast two-hybrid assessment and identified another TF, MdWER. MdWER was induced by MeJA treatment, and although overexpression of MdWER alone did not promote anthocyanin accumulation co-overexpression with MdERF109 resulted in significantly increase in anthocyanin biosynthesis. MdWER may form a protein complex with MdERF109 to promote anthocyanin accumulation by enhancing combinations between the proteins and their corresponding genes. In addition, MdWER, as a MeJA responsive protein, interacts with the anthocyanin repressor MdJAZ2. Transient co-expression in apple fruit and protein interaction assays allowed us to conclude that MdERF109 and MdJAZ2 interact with MdWER and take part in the production of anthocyanins upon MeJA treatment and irradiation. Our findings validate a role for the MdERF109-MdWER-MdJAZ2 module in anthocyanin biosynthesis and uncover a novel mechanism for how light and MeJA signals are coordinated anthocyanin biosynthesis in apple fruit.


Asunto(s)
Acetatos , Antocianinas , Ciclopentanos , Frutas , Regulación de la Expresión Génica de las Plantas , Luz , Malus , Oxilipinas , Proteínas de Plantas , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Antocianinas/metabolismo , Antocianinas/biosíntesis , Acetatos/farmacología , Acetatos/metabolismo , Malus/metabolismo , Malus/genética , Malus/efectos de la radiación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Frutas/metabolismo , Frutas/genética , Frutas/efectos de la radiación , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Reguladores del Crecimiento de las Plantas/metabolismo
2.
BMC Genomics ; 25(1): 195, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373903

RESUMEN

BACKGROUND: Lipoxygenase (LOX) is a multifunctional enzyme that is primarily related to plant organ growth and development, biotic and abiotic stress responses, and production of flavor-associated metabolites. In higher plants, the LOX family encompasses several isozymes with varying expression patterns between tissues and developmental stages. These affect processes including seed germination, seed storage, seedling growth, fruit ripening, and leaf senescence. LOX family genes have multiple functions in response to hormones such as methyl jasmonate (MeJA) and salicylic acid. RESULTS: In this study, we identified 30 and 95 LOX homologs in Medicago truncatula and Medicago sativa, respectively. These genes were characterized with analyses of their basic physical and chemical properties, structures, chromosomal distributions, and phylogenetic relationships to understand structural variations and their physical locations. Phylogenetic analysis was conducted for members of the three LOX subfamilies (9-LOX, type I 13-LOX, and type II 13-LOX) in Arabidopsis thaliana, Glycine max, M. truncatula, and M. sativa. Analysis of predicted promoter elements revealed several relevant cis-acting elements in MtLOX and MsLOX genes, including abscisic acid (ABA) response elements (ABREs), MeJA response elements (CGTCA-motifs), and antioxidant response elements (AREs). Cis-element data combined with transcriptomic data demonstrated that LOX gene family members in these species were most likely related to abiotic stress responses, hormone responses, and plant development. Gene expression patterns were confirmed via quantitative reverse transcription PCR. Several MtLOX genes (namely MtLOX15, MtLOX16, MtLOX20, and MtLOX24) belonging to the type I 13-LOX subfamily and other LOX genes (MtLOX7, MtLOX11, MsLOX23, MsLOX87, MsLOX90, and MsLOX94) showed significantly different expression levels in the flower tissue, suggesting roles in reproductive growth. Type I 13-LOXs (MtLOX16, MtLOX20, MtLOX21, MtLOX24, MsLOX57, MsLOX84, MsLOX85, and MsLOX94) and type II 13-LOXs (MtLOX5, MtLOX6, MtLOX9, MtLOX10, MsLOX18, MsLOX23, and MsLOX30) were MeJA-inducible and were predicted to function in the jasmonic acid signaling pathway. Furthermore, exogenous MtLOX24 expression in Arabidopsis verified that MtLOX24 was involved in MeJA responses, which may be related to insect-induced abiotic stress. CONCLUSIONS: We identified six and four LOX genes specifically expressed in the flowers of M. truncatula and M. sativa, respectively. Eight and seven LOX genes were induced by MeJA in M. truncatula and M. sativa, and the LOX genes identified were mainly distributed in the type I and type II 13-LOX subfamilies. MtLOX24 was up-regulated at 8 h after MeJA induction, and exogenous expression in Arabidopsis demonstrated that MtLOX24 promoted resistance to MeJA-induced stress. This study provides valuable new information regarding the evolutionary history and functions of LOX genes in the genus Medicago.


Asunto(s)
Acetatos , Arabidopsis , Ciclopentanos , Medicago truncatula , Oxilipinas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago sativa/genética , Estudio de Asociación del Genoma Completo , Filogenia , Arabidopsis/genética , Hormonas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
3.
BMC Genomics ; 25(1): 390, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649807

RESUMEN

Medicinal plants are rich sources for treating various diseases due their bioactive secondary metabolites. Fenugreek (Trigonella foenum-graecum) is one of the medicinal plants traditionally used in human nutrition and medicine which contains an active substance, called diosgenin, with anticancer properties. Biosynthesis of this important anticancer compound in fenugreek can be enhanced using eliciting agents which involves in manipulation of metabolite and biochemical pathways stimulating defense responses. Methyl jasmonate elicitor was used to increase diosgenin biosynthesis in fenugreek plants. However, the molecular mechanism and gene expression profiles underlying diosgening accumulation remain unexplored. In the current study we performed an extensive analysis of publicly available RNA-sequencing datasets to elucidate the biosynthesis and expression profile of fenugreek plants treated with methyl jasmonate. For this purpose, seven read datasets of methyl jasmonate treated plants were obtained that were covering several post-treatment time points (6-120 h). Transcriptomics analysis revealed upregulation of several key genes involved in diosgenein biosynthetic pathway including Squalene synthase (SQS) as the first committed step in diosgenin biosynthesis as well as Squalene Epoxidase (SEP) and Cycloartenol Synthase (CAS) upon methyl jasmonate application. Bioinformatics analysis, including gene ontology enrichment and pathway analysis, further supported the involvement of these genes in diosgenin biosynthesis. The bioinformatics analysis led to a comprehensive validation, with expression profiling across three different fenugreek populations treated with the same methyl jasmonate application. Initially, key genes like SQS, SEP, and CAS showed upregulation, followed by later upregulation of Δ24, suggesting dynamic pathway regulation. Real-time PCR confirmed consistent upregulation of SQS and SEP, peaking at 72 h. Additionally, candidate genes Δ24 and SMT1 highlighted roles in directing metabolic flux towards diosgenin biosynthesis. This integrated approach validates the bioinformatics findings and elucidates fenugreek's molecular response to methyl jasmonate elicitation, offering insights for enhancing diosgenin yield. The assembled transcripts and gene expression profiles are deposited in the Zenodo open repository at https://doi.org/10.5281/zenodo.8155183 .


Asunto(s)
Vías Biosintéticas , Perfilación de la Expresión Génica , Oxilipinas , Terpenos , Transcriptoma , Trigonella , Trigonella/metabolismo , Trigonella/genética , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Terpenos/metabolismo , Oxilipinas/farmacología , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Acetatos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
4.
BMC Plant Biol ; 24(1): 47, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38216888

RESUMEN

Panax ginseng is an important medicinal plant, and ginsenosides are the main bioactive molecules of ginseng. The TCP (TBI, CYC, PCF) family is a group of transcription factors (TFs) that play an important role in plant growth and development, hormone signalling and synthesis of secondary metabolites. In our study, 78 PgTCP transcripts were identified from the established ginseng transcriptome database. A phylogenetic tree analysis showed that the 67 PgTCP transcripts with complete open reading frames were classified into three subfamilies, including CIN, PCF, and CYC/TB1. Protein structure analysis showed that PgTCP genes had bHLH structures. Chromosomal localization analysis showed that 63 PgTCP genes were localized on 17 of the 24 chromosomes of the Chinese ginseng genome. Expression pattern analysis showed that PgTCP genes differed among different lineages and were spatiotemporally specific. Coexpression network analysis indicated that PgTCP genes were coexpressed and involved in plant activities or metabolic regulation in ginseng. The expression levels of PgTCP genes from class I (PCF) were significantly downregulated, while the expression levels of PgTCP genes from class II (CIN and CYC/TB1) were upregulated, suggesting that TCP genes may be involved in the regulation of secondary metabolism in ginseng. As the PgTCP26-02 gene was found to be related to ginsenoside synthesis, its predicted protein structure and expression pattern were further analysed. Our results provide new insights into the origin, differentiation, evolution and function of the PgTCP gene family in ginseng, as well as the regulation of plant secondary metabolism.


Asunto(s)
Ginsenósidos , Panax , Ginsenósidos/metabolismo , Panax/genética , Panax/metabolismo , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo
5.
BMC Plant Biol ; 24(1): 66, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38262919

RESUMEN

Gentiana macrophylla is one of Chinese herbal medicines in which 4 kinds of iridoids or secoiridoids, such as loganic acid, sweroside, swertiamarin, and gentiopicroside, are identified as the dominant medicinal secondary metabolites. WRKY, as a large family of transcription factors (TFs), plays an important role in the synthesis of secondary metabolites in plants. Therefore, WRKY genes involved in the biosynthesis of secoiridoids in G. macrophylla were systematically studied. First, a comprehensive genome-wide analysis was performed, and 42 GmWRKY genes were identified, which were unevenly distributed in 12 chromosomes. Accordingly, gene structure, collinearity, sequence alignment, phylogenetic, conserved motif and promoter analyses were performed, and the GmWRKY proteins were divided into three subfamilies based on phylogenetic and multiple sequence alignment analyses. Moreover, the enzyme-encoding genes of the secoiridoid biosynthesis pathway and their promoters were then analysed, and the contents of the four secoiridoids were determined in different tissues. Accordingly, correlation analysis was performed using Pearson's correlation coefficient to construct WRKY gene-enzyme-encoding genes and WRKY gene-metabolite networks. Meanwhile, G. macrophylla seedlings were treated with methyl jasmonate (MeJA) to detect the dynamic change trend of GmWRKYs, biosynthetic genes, and medicinal ingredient accumulation. Thus, a total of 12 GmWRKYs were identified to be involved in the biosynthesis of secoiridoids, of which 8 (GmWRKY1, 6, 12, 17, 33, 34, 38 and 39) were found to regulate the synthesis of gentiopicroside, and 4 (GmWRKY7, 14, 26 and 41) were found to regulate the synthesis of loganic acid. Taken together, this study systematically identified WRKY transcription factors related to the biosynthesis of secoiridoids in G. macrophylla, which could be used as a cue for further investigation of WRKY gene functions in secondary metabolite accumulation.


Asunto(s)
Gentiana , Glucósidos Iridoides , Factores de Transcripción , Filogenia , Genómica , Iridoides
6.
BMC Plant Biol ; 24(1): 56, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38238679

RESUMEN

Salvia verticillata L. is a well-known herb rich in rosmarinic acid (RA) and with therapeutic values. To better understand the possible roles of phytohormones in the production of phenolic acids in S. verticillata, in this work, we investigated some physiological and biochemical responses of the species to methyl jasmonate (MJ) and multi-walled carbon nanotubes (MWCNTs) as two effective elicitors. The leaves were sprayed with aqueous solutions containing 100 mg L-1 MWCNTs and 100 µM MJ and then harvested during interval times of exposure up to 96 h. The level of abscisic acid, as the first effective phytohormone, was altered in the leaves in response to MJ and MWCNTs elicitation (2.26- and 3.06-fold more than the control, respectively), followed by significant increases (P ˂ 0.05) detected in jasmonic acid and salicylic acid contents up to 8 h after exposure. Obtained data revealed that simultaneously with changes in phytohormone profiles, significant (P ˂ 0.05) rises were observed in the content of H2O2 (8.85- and 9.74-folds of control), and the amount of lipid peroxidation (10.18- and 17.01-folds of control) during the initial times after exposure to MJ and MWCNTs, respectively. Later, the content of phenolic acids increased in the elicited leaves due to changes in the transcription levels of key enzymes involved in their biosynthesis pathways, so 2.71- and 11.52-fold enhances observed in the RA content of the leaves after exposure to MJ and MWCNTs, respectively. It is reasonable to conclude that putative linkages between changes in some phytohormone pools lead to the accumulation of phenolic acids in the leaves of S. verticillata under elicitation. Overall, the current findings help us improve our understanding of the signal transduction pathways of the applied stimuli that led to enhanced secondary metabolite production in medicinal plants.


Asunto(s)
Acetatos , Nanotubos de Carbono , Salvia , Reguladores del Crecimiento de las Plantas/farmacología , Peróxido de Hidrógeno/farmacología , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Oxilipinas/farmacología , Oxilipinas/metabolismo
7.
BMC Plant Biol ; 24(1): 520, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853268

RESUMEN

BACKGROUND: One of the most effective strategies to increase phytochemicals production in plant cultures is elicitation. In the present study, we studied the effect of abiotic and biotic elicitors on the growth, key biosynthetic genes expression, antioxidant capacity, and phenolic compounds content in Rhizobium (Agrobacterium) rhizogenes-induced hairy roots cultures of Ficus carica cv. Siah. METHODS: The elicitors included methyl jasmonate (MeJA) as abiotic elicitor, culture filtrate and cell extract of fungus Piriformospora indica as biotic elicitors were prepared to use. The cultures of F. carica hairy roots were exposed to elicitores at different time points. After elicitation treatments, hairy roots were collected, and evaluated for growth index, total phenolic (TPC) and flavonoids (TFC) content, antioxidant activity (2,2-diphenyl-1-picrylhydrazyl, DPPH and ferric ion reducing antioxidant power, FRAP assays), expression level of key phenolic/flavonoid biosynthesis genes, and high-performance liquid chromatography (HPLC) analysis of some main phenolic compounds in comparison to control. RESULTS: Elicitation positively or negatively affected the growth, content of phenolic/flavonoid compounds and DPPH and FRAP antioxidant activities of hairy roots cultures in depending of elicitor concentration and exposure time. The maximum expression level of chalcone synthase (CHS: 55.1), flavonoid 3'-hydroxylase (F3'H: 34.33) genes and transcription factors MYB3 (32.22), Basic helix-loop-helix (bHLH: 45.73) was induced by MeJA elicitation, whereas the maximum expression level of phenylalanine ammonia-lyase (PAL: 26.72) and UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT: 27.57) genes was obtained after P. indica culture filtrate elicitation. The P. indica elicitation also caused greatest increase in the content of gallic acid (5848 µg/g), caffeic acid (508.2 µg/g), rutin (43.5 µg/g), quercetin (341 µg/g), and apigenin (1167 µg/g) phenolic compounds. CONCLUSIONS: This study support that elicitation of F. carica cv. Siah hairy roots can be considered as an effective biotechnological method for improved phenolic/flavonoid compounds production, and of course this approach requires further research.


Asunto(s)
Acetatos , Ciclopentanos , Ficus , Oxilipinas , Fenoles , Raíces de Plantas , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Acetatos/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Fenoles/metabolismo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Antioxidantes/metabolismo , Basidiomycota , Reguladores del Crecimiento de las Plantas/metabolismo , Agrobacterium
8.
BMC Plant Biol ; 24(1): 353, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693493

RESUMEN

BACKGROUND: Wasabi, a Brassicaceae member, is well-known for its unique pungent and hot flavor which is produced from glucosinolate (GSL) degradation. Myrosinase (MYR) is a principle enzyme catalyzing the primary conversion of GSLs to GSL hydrolysis products (GHPs) which is responsible for plant defense system and food quality. Due to the limited information in relation to MYRs present in wasabi (Wasabia japonica M.), this study aimed to identify the MYR isogenes in W. japonica and analyze their roles in relation to GSL metabolism. RESULTS: In results, WjMYRI-1 was abundantly expressed in all organs, whereas WjMYRI-2 showed only trace expression levels. WjMYRII was highly expressed in the aboveground tissues. Interestingly, WjMYRII expression was significantly upregulated by certain abiotic factors, such as methyl jasmonate (more than 40-fold in petioles and 15-fold in leaves) and salt (tenfold in leaves). Young leaves and roots contained 97.89 and 91.17 µmol‧g-1 of GSL, whereas less GSL was produced in mature leaves and petioles (38.36 and 44.79 µmol‧g-1, respectively). Similar pattern was observed in the accumulation of GHPs in various plant organs. Notably, despite the non-significant changes in GSL production, abiotic factors treated samples enhanced significantly GHP content. Pearson's correlation analysis revealed that WjMYRI-1 expression significantly correlated with GSL accumulation and GHP formation, suggesting the primary role of WjMYRI-1-encoding putative protein in GSL degradation. In contrast, WjMYRII expression level showed no correlation with GSL or GHP content, suggesting another physiological role of WjMYRII in stress-induced response. CONCLUSIONS: In conclusions, three potential isogenes (WjMYRI-1, WjMYRI-2, and WjMYRII) encoding for different MYR isoforms in W. japonica were identified. Our results provided new insights related to MYR and GSL metabolism which are important for the implications of wasabi in agriculture, food and pharmaceutical industry. Particularly, WjMYRI-1 may be primarily responsible for GSL degradation, whereas WjMYRII (clade II) may be involved in other regulatory pathways induced by abiotic factors.


Asunto(s)
Acetatos , Glucosinolatos , Glicósido Hidrolasas , Glucosinolatos/metabolismo , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Regulación de la Expresión Génica de las Plantas , Brassicaceae/genética , Brassicaceae/metabolismo , Brassicaceae/enzimología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética
9.
BMC Plant Biol ; 24(1): 549, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38872078

RESUMEN

Ginseng (Panax ginseng C. A. Mey.) is an important and valuable medicinal plant species used in traditional Chinese medicine, and its metabolite ginsenoside is the primary active ingredient. The FAR1/FHY3 gene family members play critical roles in plant growth and development as well as participate in a variety of physiological processes, including plant development and signaling of hormones. Studies have indicated that methyl jasmonate treatment of ginseng adventitious roots resulted in a significant increase in the content of protopanaxadiol ginsenosides. Therefore, it is highly significant to screen the FAR1/FHY3 gene family members in ginseng and preliminarily investigate their expression patterns in response to methyl jasmonic acid signaling. In this study, we screened and identified the FAR1/FHY3 family genes in the ginseng transcriptome databases. And then, we analyzed their gene structure and phylogeny, chromosomal localization and expression patterns, and promoter cis-acting elements, and made GO functional annotations on the members of this family. After that, we treated the ginseng adventitious roots with 200 mM methyl jasmonate and investigated the trend of the expression of four genes containing the largest number of methyl jasmonate cis-acting elements at different treatment times. All four genes were able to respond to methyl jasmonate, the most significant change was in the PgFAR40 gene. This study provides data support for subsequent studies of this family member in ginseng and provides experimental reference for subsequent validation of the function of this family member under methyl jasmonic acid signaling.


Asunto(s)
Acetatos , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Oxilipinas , Panax , Filogenia , Proteínas de Plantas , Oxilipinas/farmacología , Ciclopentanos/farmacología , Panax/genética , Panax/metabolismo , Panax/efectos de los fármacos , Acetatos/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas , Ginsenósidos
10.
Fungal Genet Biol ; 170: 103864, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38199492

RESUMEN

Methyl jasmonate (MeJA)-regulated postharvest quality retention of Agaricus bisporus fruiting bodies is associated with arginine catabolism. However, the mechanism of MeJA-regulated arginine catabolism in edible mushrooms is still unclear. This study aimed to investigate the regulatory modes of MeJA on the expression of arginine catabolism-related genes and proteins in intact and different tissues of A. bisporus mushrooms during storage. Results showed that exogenous MeJA treatment activated endogenous JA biosynthesis in A. bisporus mushrooms, and differentially and tissue-specifically regulated the expression of arginine catabolism-related genes (AbARG, AbODC, AbSPE-SDH, AbSPDS, AbSAMDC, and AbASL) and proteins (AbARG, AbSPE-SDH, AbASL, and AbASS). MeJA caused no significant change in AbASS expression but resulted in a dramatic increase in AbASS protein level. Neither the expression of the AbSAMS gene nor the AbSAMS protein was conspicuously altered upon MeJA treatment. Additionally, MeJA reduced the contents of arginine and ornithine and induced the accumulation of free putrescine and spermidine, which was closely correlated with MeJA-regulated arginine catabolism-related genes and proteins. Hence, the results suggested that the differential and tissue-specific regulation of arginine catabolism-related genes and proteins by MeJA contributed to their selective involvement in the postharvest continuing development and quality retention of button mushrooms.


Asunto(s)
Agaricus , Agaricus/genética , Acetatos/farmacología , Ciclopentanos/farmacología , Oxilipinas/farmacología
11.
Planta ; 259(6): 152, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735012

RESUMEN

MAIN CONCLUSION: Overexpression of Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT) leads to enhanced artemisinin content in Artemisia annua. Artemisinin-based combination therapies remain the sole deterrent against deadly disease malaria and Artemisia annua remains the only natural producer of artemisinin. In this study, the 1101 bp gene S-adenosyl-L-methionine (SAM): Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT), was characterised from A. annua, which converts jasmonic acid (JA) to methyl jasmonate (MeJA). From phylogenetic analysis, we confirmed that AaJMT shares a common ancestor with Arabidopsis thaliana, Eutrema japonica and has a close homology with JMT of Camellia sinensis. Further, the Clustal Omega depicted that the conserved motif I, motif III and motif SSSS (serine) required to bind SAM and JA, respectively, are present in AaJMT. The relative expression of AaJMT was induced by wounding, MeJA and salicylic acid (SA) treatments. Additionally, we found that the recombinant AaJMT protein catalyses the synthesis of MeJA from JA with a Km value of 37.16 µM. Moreover, site-directed mutagenesis of serine-151 in motif SSSS to tyrosine, asparagine-10 to threonine and glutamine-25 to histidine abolished the enzyme activity of AaJMT, thus indicating their determining role in JA substrate binding. The GC-MS analysis validated that mutant proteins of AaJMT were unable to convert JA into MeJA. Finally, the artemisinin biosynthetic and trichome developmental genes were upregulated in AaJMT overexpression transgenic lines, which in turn increased the artemisinin content.


Asunto(s)
Acetatos , Artemisia annua , Artemisininas , Ciclopentanos , Metiltransferasas , Oxilipinas , Filogenia , Artemisia annua/genética , Artemisia annua/enzimología , Artemisia annua/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Artemisininas/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacología , Metiltransferasas/metabolismo , Metiltransferasas/genética , Acetatos/farmacología , Acetatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regulación de la Expresión Génica de las Plantas , Ácido Salicílico/metabolismo
12.
J Chem Ecol ; 50(5-6): 250-261, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38270732

RESUMEN

To what extent particular plant defences against herbivorous insects are constitutive or inducible will depend on the costs and benefits in their neighbourhood. Some defensive chemicals in leaves are thought to be costly and hard to produce rapidly, while others, including volatile organic compounds that attract natural enemies, might be cheaper and can be released rapidly. When surrounding tree species are more closely related, trees can face an increased abundance of both specialist herbivores and their parasitoids, potentially increasing the benefits of constitutive and inducible defences. To test if oaks (Quercus robur) respond more to herbivore attacks with volatile emission than with changes in leaf phenolic chemistry and carbon to nitrogen ratio (C: N), and whether oaks respond to the neighbouring tree species, we performed an experiment in a forest in Poland. Oak saplings were placed in neighbourhoods dominated by oak, beech, or pine trees, and half of them were treated with the phytohormone methyl jasmonate (elicitor of anti-herbivore responses). Oaks responded to the treatment by emitting a different volatile blend within 24 h, while leaf phenolic chemistry and C: N remained largely unaffected after 16 days and multiple treatments. Leaf phenolics were subtly affected by the neighbouring trees with elevated flavan-3-ols concentrations in pine-dominated plots. Our results suggest that these oaks rely on phenols as a constitutive defence and when attacked emit volatiles to attract natural enemies. Further studies might determine if the small effect of the neighbourhood on leaf phenolics is a response to different levels of shading, or if oaks use volatile cues to assess the composition of their neighbourhood.


Asunto(s)
Flavonoides , Herbivoria , Hojas de la Planta , Quercus , Compuestos Orgánicos Volátiles , Quercus/química , Quercus/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Flavonoides/metabolismo , Flavonoides/análisis , Flavonoides/química , Animales , Acetatos , Oxilipinas/metabolismo , Oxilipinas/química , Ciclopentanos/metabolismo , Ciclopentanos/química , Nitrógeno/metabolismo , Carbono/metabolismo , Carbono/química
13.
Biochem Genet ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653889

RESUMEN

Peppermint (Mentha piperita) is a perennial medicinal plant containing active ingredients that can be used for treating liver and prostate cancers, acute respiratory infections, allergies, digestive problems, neuralgia, and migraines. The objective of this research is to investigate the expression of essential genes in the menthol pathway of Mentha piperita, including Pulegone reductase (Pr), Menthofuran synthase (Mfs), and limonene synthase (Ls) using qPCR, physiological analysis and essential oil composition in response to methyl jasmonate (MeJA) (0.5 mM) elicitation. Physiological analysis showed that 0.5 mM MeJA triggers defensive responsiveness in Mentha piperita by increasing superoxide dismutase (SOD) and Peroxidase (POD) enzymes activity. The highest transcript levels of Pr and Mfs genes were observed during 8 and 12 h after treatment respectively, but following 24 h, they were down-regulated. Essential oil analysis indicated that the percentage of constituents in the essential oil was changed using MeJA at 48 h and 96 h after post-treatment. Effective antimicrobial compounds, α-pinene, ß-pinene, linalool and methyl acetate, were induced after 48 h. A non-significant positive relationship was detected between menthol content, and expression of the Pr and Mfs genes. Due to the significant change in the expression of Pr and Mfs genes in the menthol pathway, role of Pr gene in directing the pathway to the valuable compound menthol and deviation of the menthol pathway to the menthofuran as an undesirable component of essential oil by Mfs gene, it can be deduced that they are the most critical genes in response to MeJA treatment, which are appropriate candidates for metabolite engineering. In addition, MeJA improved defensive responsiveness and percentage of some constituents with antimicrobial properties in Mentha piperita.

14.
Plant Dis ; 108(7): 2111-2121, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38530233

RESUMEN

Methyl jasmonate (MeJA) and salicylic acid (SA) are important in mediating plant responses to abiotic and biotic stresses. MeJA and SA can act as elicitors by triggering plant defense responses similar to those induced by pathogens and may even provide long-term protection against them. Thus, exogenous application of MeJA and SA could protect susceptible avocado plants against white root rot (WRR) disease caused by the necrotrophic fungus Rosellinia necatrix, one of the main diseases affecting avocado orchards. This work evaluates the effects of MeJA or SA on the physiological and molecular response of susceptible 'Dusa' avocado rootstock and their ability to provide some protection against WRR. The application of MeJA and SA in avocado increased photoprotective mechanisms (nonphotochemical chlorophyll fluorescence quenching) and upregulated the glutathione S-transferase, suggesting the triggering of mechanisms closely related to oxidative stress relief and reactive oxygen species scavenging. In contrast to SA, MeJA's effects were more pronounced at the morphoanatomical level, including functional traits such as high leaf mass area, high stomatal density, and high root/shoot ratio, closely related to strategies to cope with water scarcity and WRR disease. Moreover, MeJA upregulated a greater number of defense-related genes than SA, including a glu protease inhibitor, a key gene in avocado defense against R. necatrix. The overall effects of MeJA increased 'Dusa' avocado tolerance to R. necatrix by inducing a primed state that delayed WRR disease symptoms. These findings point toward the use of MeJA application as an environmentally friendly strategy to mitigate the impact of this disease on susceptible avocado orchards.


Asunto(s)
Acetatos , Ciclopentanos , Oxilipinas , Persea , Enfermedades de las Plantas , Ácido Salicílico , Oxilipinas/farmacología , Persea/microbiología , Persea/efectos de los fármacos , Ciclopentanos/farmacología , Acetatos/farmacología , Ácido Salicílico/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/microbiología , Ascomicetos/fisiología , Ascomicetos/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Clorofila/metabolismo
15.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999970

RESUMEN

Taraxacum kok-saghyz (TKS) is a model plant and a potential rubber-producing crop for the study of natural rubber (NR) biosynthesis. The precise analysis of the NR biosynthesis mechanism is an important theoretical basis for improving rubber yield. The small rubber particle protein (SRPP) and rubber elongation factor (REF) are located in the membrane of rubber particles and play crucial roles in rubber biosynthesis. However, the specific functions of the SRPP/REF gene family in the rubber biosynthesis mechanism have not been fully resolved. In this study, we performed a genome-wide identification of the 10 TkSRPP and 2 TkREF genes' family members of Russian dandelion and a comprehensive investigation on the evolution of the ethylene/methyl jasmonate-induced expression of the SRPP/REF gene family in TKS. Based on phylogenetic analysis, 12 TkSRPP/REFs proteins were divided into five subclades. Our study revealed one functional domain and 10 motifs in these proteins. The SRPP/REF protein sequences all contain typical REF structural domains and belong to the same superfamily. Members of this family are most closely related to the orthologous species T. mongolicum and share the same distribution pattern of SRPP/REF genes in T. mongolicum and L. sativa, both of which belong to the family Asteraceae. Collinearity analysis showed that segmental duplication events played a key role in the expansion of the TkSRPP/REFs gene family. The expression levels of most TkSRPP/REF members were significantly increased in different tissues of T. kok-saghyz after induction with ethylene and methyl jasmonate. These results will provide a theoretical basis for the selection of candidate genes for the molecular breeding of T. kok-saghyz and the precise resolution of the mechanism of natural rubber production.


Asunto(s)
Acetatos , Ciclopentanos , Etilenos , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Oxilipinas , Filogenia , Proteínas de Plantas , Taraxacum , Oxilipinas/farmacología , Ciclopentanos/farmacología , Taraxacum/genética , Taraxacum/metabolismo , Taraxacum/efectos de los fármacos , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Acetatos/farmacología , Genoma de Planta , Estudio de Asociación del Genoma Completo
16.
Int J Mol Sci ; 25(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791472

RESUMEN

Yellow pitahaya is a tropical fruit that has gained popularity in recent years. Natural elicitors are compounds that can stimulate the resistance and quality of fruits. The objective of this study was to evaluate the effects of natural elicitors, methyl salicylate (MeSa), methyl jasmonate (JaMe), salicylic acid (SA) and oxalic acid (OA) at concentrations of 0.1 mM (MeSa and JaMe) and 5 mM (SA and OA), applied to the yellow pitahaya fruits under greenhouse conditions. After full blossom, four applications were made with a frequency of 15 days. At the time of harvest and after storage, the following variables were evaluated: firmness (whole fruit), total soluble solids (TSS), total acidity (TA), phenolics and carotenoids (in the pulp), while phenolics, carotenoids, macronutrients and micronutrients were determined in the peel. The results showed MeSa advanced the fruit maturation, according to higher TSS, lower TA and firmness than MeJa-treated fruits, for which a delayed ripening process was shown. All treatments induced a higher polyphenolic concentration during storage. Regarding the alternative use of the peel as a by-product, the application of natural elicitors significantly increased the content of polyphenols, carotenoids, macronutrients and micronutrients in the peel, especially MeSa, which can be used as a bioactive compound in the food industry. In conclusion, the results indicate that natural elicitors can be an alternative to improve the quality and shelf life of yellow pitahaya fruits.


Asunto(s)
Acetatos , Cactaceae , Carotenoides , Ciclopentanos , Almacenamiento de Alimentos , Frutas , Oxilipinas , Ácido Salicílico , Frutas/química , Frutas/efectos de los fármacos , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Oxilipinas/farmacología , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Acetatos/farmacología , Carotenoides/metabolismo , Almacenamiento de Alimentos/métodos , Cactaceae/química , Cactaceae/crecimiento & desarrollo , Cactaceae/metabolismo , Ácido Salicílico/farmacología , Salicilatos/farmacología , Salicilatos/metabolismo , Fenoles/análisis , Ácido Oxálico/metabolismo
17.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473957

RESUMEN

Chlorogenic acids (CGAs) are bioactive compounds widely used in the food, pharmaceutical, and cosmetic industries. Carthamus tinctorius is an important economic crop, and its suspension cells are rich in CGAs. However, little is known about the biosynthesis and regulation of CGAs in Carthamus tinctorius cells. This study first elucidated the regulatory mechanism of CGA biosynthesis in methyl jasmonate (MeJA)-treated Carthamus tinctorius cells and the role of the MeJA-responsive hydroxycinnamoyl transferase (HCT) gene in enhancing their CGA accumulation. Firstly, temporal changes in intracellular metabolites showed that MeJA increased the intracellular CGA content up to 1.61-fold to 100.23 mg·g-1. Meanwhile, 31 primary metabolites showed significant differences, with 6 precursors related to increasing CGA biosynthesis. Secondly, the transcriptome data revealed 3637 new genes previously unannotated in the Carthamus tinctorius genome and 3653 differentially expressed genes. The genes involved in the plant signaling pathway and the biosynthesis of CGAs and their precursors showed a general up-regulation, especially the HCT gene family, which ultimately promoted CGA biosynthesis. Thirdly, the expression of a newly annotated and MeJA-responsive HCT gene (CtHCT, CtNewGene_3476) was demonstrated to be positively correlated with CGA accumulation in the cells, and transient overexpression of CtHCT enhanced CGA accumulation in tobacco. Finally, in vitro catalysis kinetics and molecular docking simulations revealed the ability and mechanism of the CtHCT protein to bind to various substrates and catalyze the formation of four hydroxycinnamic esters, including CGAs. These findings strengthened our understanding of the regulatory mechanism of CGA biosynthesis, thereby providing theoretical support for the efficient production of CGAs.


Asunto(s)
Acetatos , Carthamus tinctorius , Ciclopentanos , Oxilipinas , Transferasas , Transferasas/metabolismo , Ácido Clorogénico/metabolismo , Carthamus tinctorius/genética , Simulación del Acoplamiento Molecular , Transcriptoma , Nucleotidiltransferasas/metabolismo , Regulación de la Expresión Génica de las Plantas
18.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474120

RESUMEN

The accumulation and composition of anthocyanins in leaves of Kalanchoë blossfeldiana, detached and kept for five days under natural light conditions, were investigated. The presence of fifteen derivatives of cyanidin, petunidin, and delphinidin was found. Changes in the content of each anthocyanin in the leaves before and after exposure to light on the abaxial (naturally upper) and adaxial (naturally lower) sides of the leaves were compared. When the adaxial side was exposed to light, the anthocyanin contents of the leaves did not change. In contrast, when the abaxial side of detached leaves was exposed to light, there was enhanced accumulation of delphinidin-rhamnoside-glucoside, cyanidin-rhamnoside-glucoside, cyanidin-glucoside-glucoside, and two unknown derivatives of petunidin and delphinidin. Application of methyl jasmonate (JA-Me) on the abaxial side exposed to light inhibited the accumulation of these anthocyanins. This effect could probably be due to the presence of these anthocyanins in the epidermal cells of K. blossfeldiana leaves and was visible in the microscopic view of its cross-section. These anthocyanins were directly exposed to JA-Me, leading to inhibition of their formation and/or accumulation. The lack of significant effects of JA-Me on anthocyanin mono- and tri-glycosides may indicate that they are mainly present in the mesophyll tissue of the leaf.


Asunto(s)
Antocianinas , Kalanchoe , Hojas de la Planta/fisiología , Glicósidos , Glucósidos
19.
J Sci Food Agric ; 104(3): 1621-1629, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37827991

RESUMEN

BACKGROUND: Changes in apple fruit quality indices in response to foliar spray with 24-epibrassinolide (EBL) at 0 and 1 µmol L-1 and methyl jasmonate (MeJA) at 0 and 0.5 µmol L-1 , as well as the combination of these phytohormones, were investigated at harvest and during cold storage. RESULTS: Both phytohormones synergistically enhanced the fruit firmness, specific weight, size, fresh weight, water content, total antioxidant activity, total phenolics, ascorbic acid, total anthocyanins, total soluble solids/titratable acidity ratio and precocity. In addition, the fruit abscission pattern was changed in response to different treatments. Treated fruit exhibited lower weight loss and internal breakdown symptoms and higher total soluble solids index, firmness and phytochemicals during cold storage. A negative correlation was seen between fruit mass, firmness, specific weight, antioxidant activity, total phenolics and vitamin C content with internal breakdown occurrence and weight loss. CONCLUSION: Foliar spray with EBL and MeJA during the growth season is a good environmental friendly and safe method for enhancing the apple fruit different quality parameters, marketability and postharvest life. © 2023 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Malus , Antioxidantes/análisis , Malus/metabolismo , Antocianinas/análisis , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Ascórbico/análisis , Frutas/química , Pérdida de Peso
20.
J Sci Food Agric ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031784

RESUMEN

BACKGROUND: Viticulture has adapted foliar applications of biostimulants as a tool to improve crop quality. Recently, nanotechnology has been incorporated as a strategy to reduce the loss of biostimulants and treat nutrient deficiencies. Therefore, the present study aimed to investigate the effect of foliar applications of amorphous calcium phosphate nanoparticles (ACP) doped with methyl jasmonate (ACP-MeJA) and urea (ACP-Ur), individually or together (ACP-MeJA+Ur), on the content of volatile compounds in 'Tempranillo' grapes, compared to the conventional application of MeJA and Ur, individually or in combination (MeJA+Ur). RESULTS: The results showed that nanoparticle treatments reduced the total C6 compounds and some carbonyl compounds in the grape musts. This is of novel interest because their presence at high levels is undesirable to quality. In addition, some aroma-positive compounds such as nerol, neral, geranyl acetone, ß-cyclocitral, ß-ionone, 2-phenylethanal and 2-phenylethanol increased, despite applying MeJA and Ur at a lower dose. CONCLUSION: Consequently, although few differences in grape volatile composition were detected, nanotechnology could be an option for improving the aromatic quality of grapes, at the same time as reducing the required doses of biostimulants and generating more sustainable agricultural practices. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA